超低热膨胀系数

仪器信息网超低热膨胀系数专题为您整合超低热膨胀系数相关的最新文章,在超低热膨胀系数专题,您不仅可以免费浏览超低热膨胀系数的资讯, 同时您还可以浏览超低热膨胀系数的相关资料、解决方案,参与社区超低热膨胀系数话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超低热膨胀系数相关的耗材

  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • 威达优尔 其他耗材 表面保护板
    该板采用陶瓷玻璃制成,能够保护高质量表面免受高温容器烫伤,如坩埚、蒸发皿、玻璃容器等。其还能够为深度冷冻产品提供可靠保护。板边缘的垫脚设计,避免其与受保护表面的直接接触。温度耐受范围?235.5到 +648.8 °C易清洁、防污表面低热膨胀系数,耐热冲击长度x宽度颜色数量货号102×102 mm深棕色1VWRI115-0094 152×152 mm深棕色1VWRI115-0095229×229 mm深棕色1VWRI115-0096 305×305 mm深棕色1VWRI115-0097
  • Yb:YAG ZERODUR激光线反射镜
    Yb:YAG ZERODUR激光线反射镜&bull ZERODUR® 基板提供接近零的热膨胀&bull Yb:YAG谐波频率下的反射率为99.8%&bull 高激光损伤阈值规格通用规格基底:ZERODUR® 入射角 (°):45DWL时的反射 (%) :99.8有效孔径 (%):90镀膜类型:Dielectric平行度(弧秒):30表面平整度 (P-V):λ/10表面质量:20-10产品介绍Yb:YAG ZERODUR激光线反射镜将ZERODUR® 基板的极低热膨胀系数与高反射TECHSPEC® Yb:YAG镜涂层相结合。这些反射镜的热膨胀系数(CTE)为±0.10 x 10-6/°C,非常适合光学元件暴露在波动温度下的应用。Yb:YAG涂层提供了与脉冲和连续波激光器兼容的高激光损伤阈值。Yb:YAG ZERODUR激光线镜采用精密抛光基板设计,具有λ/10的平面度和20-10的表面质量。这些镜子非常适合激光应用,包括激光烧蚀、焊接、钻孔、切割和烧结。订购信息标题产品编码10mm Dia. 515nm 45°, Yb:YAG Laser Line Mirror26-88415mm Dia. 515nm 45°, Yb:YAG Laser Line Mirror26-88520mm Dia. 515nm 45°, Yb:YAG Laser Line Mirror26-88625mm Dia. 515nm 45°, Yb:YAG Laser Line Mirror26-88710mm Dia. 1030nm 45°, Yb:YAG Laser Line Mirror26-89415mm Dia. 1030nm 45°, Yb:YAG Laser Line Mirror26-89520mm Dia. 1030nm 45°, Yb:YAG Laser Line Mirror26-89625mm Dia. 1030nm 45°, Yb:YAG Laser Line Mirror26-897

超低热膨胀系数相关的仪器

  • 一、概述:本仪器用于检测刚玉、玻璃、耐火材料、造型材料、陶瓷、釉料、石墨、碳素等无机材料、金属制品的热膨胀性能,为科研、教学提供必备的测试手段。可完成线性膨胀系数、体膨胀系数、软化温度、烧结的动力学研究并描绘出相关变化曲线。可根据需求选择无荷或有荷检测。 二,执行标准 仪器参考标准:GB/T3810.8-2016对陶瓷砖线性热膨胀的测定,GB/T16535-2008精细陶瓷线性热膨胀系数试验方法:顶杆法,GB/T16920-2015对玻璃平均线热膨胀系数的测定,GB/T3074.4-2016对石墨电极热膨胀系数的测定,GB/T 7320-2018《耐火制品热膨胀试验方法》。 三,技术参数1、最高炉温:0-1200℃。2、升温速度:0-20度/分可调,微电脑程序控温。3、自动计算补偿系数并自动补偿,也可人工修正。4、连计算机自动记录、存储、打印数椐,打印温度-膨胀系数曲线。所有试验操作均计算机界面完成,操作方便易学并提供全套软件。5、膨胀值测量范围:±2mm。6、测量膨胀值分辨率:0.1um,自动校正量程。7、试样范围:样品直径0-50mm,高5mm-70mm。8、加热炉体上下滑动方便试样装卸.8、可充氮气。9、电源电压:220V±10﹪,2KW。 四,配置清单主机一台;试验软件一套;电脑一台;合格证1份;保修卡1分;电源线1根;说明书1份;操作视频1份
    留言咨询
  • XXS-01线热膨胀系数测试仪_玻璃瓶热膨胀系数仪XXS-01线热膨胀系数测试仪_玻璃瓶热膨胀系数仪用于测定在高温状态下的玻璃等材料在受热过程中的膨胀和收缩性能。 XXS-01线热膨胀系数测试仪_玻璃瓶热膨胀系数仪产品特征PID程序控温 计算机自动计算膨胀系数、体膨胀、线性膨胀量 自动记录、存储、打印数据、打印温度-膨胀系数曲线 XXS-01线热膨胀系数测试仪_玻璃瓶热膨胀系数仪技术参数指标参数温度室温~400℃控温精度±1℃最大升温速率10℃/Min量程0-10mm位移传感器显示分辨率0.0001mm试样尺寸长50-200mm外形尺寸1000x430x460mm功率3KW电源AC 220V 50Hz重量50Kg 参考标准该仪器参考YBB00212003-2015标准 配置标准配置:主机(含测试系统)
    留言咨询
  • 玻璃瓶线热膨胀系数测试仪玻璃瓶线热膨胀系数测试仪适用于安瓿瓶、西林瓶、口服液瓶、输液瓶等药用玻璃制品平均线热膨胀系数的测定测试。广泛应用于制药企业、药用玻璃生产企业、药检机构等单位。 技术特征彩色大液晶显示测试结果,及每次测量值、统计值触摸屏控制,清晰直观,操作方便超大测试空间,满足很多药品玻璃容器直接测试 采用高速处理芯片,运行速度大大提高 满足GMP要求的数据本地存储、自动处理、统计测试数据功能配备测试软件系统,可打印测试结果自动计算膨胀系数、体膨胀系数、线膨胀量、急热膨胀自动计算补偿系数并自动补偿,也可人工修正自动记录、存储、打印数椐,打印温度一膨胀系数曲线。温度间距自由设定 技术特征 试验温度 室温~1000℃ 升温速度 0~20℃/min可调膨胀测量范围 0~3mm膨胀值分辨率 O.1~1µ m,自动校正量程试样范围 Ф6-45mm,长50mm,圆柱形、方形均可系统测量误差 ±0.1 ~0.5% 外形尺寸 650mm*550mm*700mm(长宽高) 重 量 约40 Kg 功 率 1800W 环境要求工作温度 ≤28℃ 相对湿度 最高80%,无凝露 工作电源 220V 50Hz参照标准4022 玻璃平均线热膨胀系数测定法产品配置 主机、触摸液晶屏、测试软件选购件:电脑玻璃瓶线热膨胀系数测试仪此为广告
    留言咨询

超低热膨胀系数相关的试剂

超低热膨胀系数相关的方案

超低热膨胀系数相关的论坛

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    [align=center][b][color=#3333ff]太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案[/color][/b][/align][align=center]Design Proposal of Ultralow Thermal Expansion Coefficient Measurement System for Composite Truss Used in Space Telescope[/align][b][/b]摘要:太空望远镜用各种大尺寸复合材料桁架管件和镜筒普遍要求超低热膨胀系数以保证太空望远镜的热稳定性,传统热膨胀系数测试中的小尺寸试样已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出了大尺寸构件超低热膨胀系数测试系统设计方案。[align=center][img=太空望远镜超低热膨胀系数桁架管件,483,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220048_02_3384_3.png[/img][/align][align=center][color=#ff0000]上海依阳实业有限公司(www.eyoungindustry.com)[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#ff0000]1.需求背景[/color][/b] 在太空中运行的望远镜由于没有大气层保护,其工作温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,太空望远镜在空间环境中,望远镜桁架材料的热膨胀,会引起太空望远镜光学结构的尺寸变化,从而造成望远镜观测精度下降。这样对太空望远镜的某些部件和仪器的技术要求就是热稳定性要好,要求太空望远镜的大尺寸桁架结构在一定的环境温度变化范围内不因热应力产生变形或者变形极小,热膨胀系数达到E-08/K量级,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,无法满足大尺寸构件的超低热膨胀系数测量。为适应太空望远镜制造的要求,特别是对于以米为单位的大尺寸E-08/K量级部件的超低热膨胀系数,需要更加准确的测量。因此,研究太空望远镜用复合材料工程构件的超低热膨胀系数测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出大尺寸构件超低热膨胀系数测试系统设计方案,为管件的设计、生产和质量评价提供技术支撑,并为今后整体桁架结构的尺寸稳定性测试评价奠定技术基础。[b][color=#ff0000]2.超低热膨胀系数测试系统技术要求[/color][/b][color=#ff0000]2.1. 样件形式和尺寸范围[/color] (1)刚性固体复合材料制成的横截面为圆柱形、矩形和T型等形式的管件; (2)样件外径范围为70mm~150mm; (3)样件长度范围为500mm~2000mm; (4)样件端面平整度小于0.05mm; (5)样件两端面平行度小于0.05mm。[color=#ff0000]2.2. 技术指标[/color] (1)测试温度范围:0℃~40℃; (2)测温精度:≤0.01℃; (3)样件温度均匀性:≤0.05℃; (4)变形测量分辨率:0.4nm; (5)变形测量不确定度:≤30nm; (6)测温点数:1个/2℃; (7)热膨胀系数测量不确定度:≤1×10-8/K。[color=#ff0000]2.3. 验收大纲[/color] (1)验收测量长度为1m的2等量块或同等制造精度的碳纤维复合材料管件(其直径为70mm~150mm,长度为1000mm~2000mm)。 (2)以1m的碳纤维复合材料管件为验收样品,在温场均匀度优于0.05℃、测温步长为2℃条件下,5次测量结果的长度变化量优于30nm,热膨胀系数标准偏差优于1×10-8/K。[b][color=#ff0000]3. 整体结构设计[/color][/b] 大尺寸样件超低热膨胀系数测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图3-1所示。[align=center][img=大尺寸管件超低热膨胀系数测试系统,690,269]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220049_01_3384_3.png[/img] [/align][align=center][color=#6633ff]图3-1 整体结构示意图(侧视图)[/color][/align] 针对大尺寸样件,超低热膨胀系数测试系统可以根据激光干涉仪的分布位置设计为单端测量和双端测量布局两种形式。[color=#ff0000]3.1. 单端测量布局[/color] 单端测量布局形式如图3-2所示。[align=center][img=超低热膨胀系数测试系统单端结构,690,439]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图3-2 单端测量结构示意图(俯视图)[/color][/align] 单端测量布局的特点: (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。 (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试样测量。 (3)关键是可以进行空载测量,确定系统误差。[color=#ff0000]3.2. 双端测量布局形式[/color] 双端测量布局形式如图3-3所示。[align=center] [img=超低热膨胀系数测试系统双端结构,690,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_02_3384_3.png[/img][/align][align=center][color=#3333ff]图3-3 双端测量结构示意图(侧视图)[/color][/align] 双端测量布局的特点: (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。 (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。[color=#ff0000][b]4. 分系统设计[/b]4.1. 真空系统[/color] 真空系统为大尺寸样件的热膨胀系统测量提供精确恒定的真空环境,避免激光干涉测量受到气体(气压)波动的影响。[color=#ff0000]4.1.1. 真空腔体及整体布局[/color] 真空腔体及整体布局如图4-1所示。[align=center] [img=,346,200]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220043_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-1 真空腔体布局示意图[/color][/align] 真空腔体为矩形上开盖结构,因真空会使腔体变形不便做成大跨度的多试样整体结构,只能做到长矩形腔体并进行加固,减少腔体对测量影响。 今后扩展采用独立真空腔体形式,至少可在两个方向上扩展,甚至可能在三个方向上扩展。 设计中考虑了激光干涉测量系统光路扩展,留有扩展功能。[color=#ff0000]4.1.2. 光学窗口[/color] 光学窗口是实现真空条件下测量稳定性的关键,其功能是保证真空环境形成过程中对激光光路的影响最小。光学窗口的结构如图4-2所示。[align=center][img=,512,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220044_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-2 光学窗口结构示意图[/color][/align] 光学窗口设计有以下两个特点: (1)采用局部刚性密封避免石英片移动。 (2)采用弹性调节和固定方式,将光学窗口石英片水平面调节和固定在常用真空度恒定时的位置上,同时保证与激光光路垂直。[color=#ff0000]4.1.3. 真空度测量和控制系统[/color] 真空腔体内的真空度(气压)需要长时间的精确恒定控制,采用高精度薄膜电容规测量真空度,采用特制的控制器进行自动控制,真空度精确控制在100Pa,波动率小于±1%,气氛为干燥氮气。 选择真空度为100Pa是为了既能消除气体折射率波动对激光干涉测量的影响,同时还能最大限度利用气体传热能力便于试件温度快速达到热平衡。 采用干式真空泵抽取真空,降低真空泵对光学器件的污染。真空度控制系统结构如图4-3所示。[align=center] [img=,507,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-3 真空度控制系统结构示意图[/color][/align][color=#ff0000]4.2. 试验系统[/color] 试验系统整体放置在真空腔内,用于放置被测试件、加热试件、保证试件受热膨胀形成单方向变形并将试件热变形转换为光程变化。[color=#ff0000]4.2.1. 支撑平台机构[/color] 热膨胀系数测试中,被测试件无论通过什么形式都要与真空腔体底部发生连接关系,真空腔体温度变化及其不均匀性都会造成这些连接关系发生二维形变。支撑平台机构除了给试件与真空腔底部提供连接关系之外,其重要功能是为试件提供一个基准平台,此基准平台只在光学测量方向上产生一维变形。支撑平台机构如图4-4所示。[align=center] [img=,690,234]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-4 被测样件支撑结构示意图[/color][/align] 试件变形测量的基准为导轨板,导轨板水平方向上的变形必然是二维形式。通过固定在真空腔底板和导轨板一端的单向平移机构保证导轨板一维变形,通过导轨板另一端的轴承导轨结构消除掉另一个水平方向上的位移,保证导轨板单向水平移动。[color=#ff0000]4.2.2. 试件支架结构[/color] 试件支架结构如图4-5所示。[align=center][img=,526,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_03_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-5 试件支撑结构示意图[/color][/align] 为使试样尽量处于轴向自由移动状态,整个试样采用两个弧形支架支撑,尽可能减少试样与支架的接触面积。 支架采用铜材料,其中安装测温用热电阻测量试样温度。 采用氟塑料进行隔热,避免试样温度向下传递。 铜支架放置在可调节水平和高度的微调平台上,并能滑动以改变支点位置满足不同长度试件要求。[color=#ff0000]4.2.3. 试样绝对变形量传递装置[/color] 试样绝对变形量传递装置如图4-6所示[align=center] [img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-6 绝对变形量传递装置示意图[/color][/align] 绝对变形量传递装置的核心是将两个平面反射镜设法固定在试件的两个端面上,试件长度方向上的受热变形会使得平面反射镜同步线性位移。 此设计方案并未采用简陋的胶粘方式将两个平面反射镜固定在试件两个端面上,这是因为胶粘后的两个平面反射镜并不能保证相互的平行度,会给激光干涉测量带来很大误差,甚至无法进行测量。 新型绝对变形量传递的基本原理是采用弹簧机构把贴附在试件两端面上的平面反射镜拉紧固定,并采用调整机构使得两个平面反射镜相互平行,从而保证两个平面反射镜随着试件尺寸变化进行单向移动,将试件变形转换成平面反射镜的单向位移。 单端测试时采用一个平移机构,另一端平面镜固定不动。双端测试时采用两个平移机构。[color=#ff0000]4.2.4. 试样加热装置[/color] 根据技术指标要求,在大尺寸试件上要保证温度测量精度达到0.01℃和均匀性达到0.05℃,采用普通电加热和油浴加热方式都很难实现,且实现所需时间非常漫长。试样加热装置如图4-7所示。 采用分段闭合筒式加热结构,便于安装和卸载试样,并满足不同长度试件的加热需要。 加热套外部采用半导体热电器件进行温度控制,0.01℃超高精度温度控制,并通水冷却,最外部覆盖隔热材料。 加热桶壁上开小孔导入铂电阻温度传感器,并粘贴在试件上测试试件温度分布。[align=center] [img=,518,380]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-7 试件加热装置结构示意图[/color][/align][color=#ff0000]4.3. 测量系统[/color] 测量系统包括激光干涉仪测量装置、光路调整装置以及光学测量环境保障装置三部分。[color=#ff0000]4.3.1. 激光干涉仪测量装置[/color] 激光干涉仪测量装置是微位移测量的关键,在激光干涉仪选型中必须要满足以下三方面要求: (1)必须是外差式双频激光干涉仪,这样才能消除环境振动等因素对测量的影响,保证测试系统可以长时间连续运行而不受外界干扰,实现在普通实验室内的操作条件下进行微位移测量。 (2)激光干涉仪温度偏移小,否则很难实现高精度的微位移测量。 (3)外差式双频激光干涉仪抗偏移性能优良,就算测量光和参考光发射一定偏离造成干涉信号强度下降30%以上,照样可以进行测量。[color=#ff0000]4.3.2. 光路调整装置[/color] 在放入试件且抽真空后,整个光路将不能进行调整,再需调整还要充气并打开真空腔。 为了便于真空环境下的光路进一步精细调整,在真空腔内的相应位置上增加压电陶瓷驱动的微位移调节装置,从而保证起始温度下具有稳定的起始位置。[color=#ff0000]4.3.3. 激光干涉仪测量装置的密封和恒温[/color] 密封和恒温装置如图4-8所示。[align=center] [img=,467,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220047_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-8 光学系统密封和恒温结构示意图[/color][/align] 采用半导体热电控温装置对干涉仪恒温套进行恒温控制和测量,始终使干涉仪处于恒温状态避免收到环境温度的影响,减小激光干涉仪温度漂移。 激光器和干涉仪全部放置在密封箱内,通过专门进出气口对激光器通风冷却。[b][color=#ff0000]5. 结论[/color][/b] 太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案借鉴了国内外的成功经验,整个测试系统的硬件设计充分考虑了各个测量不确定度分量对应的工程内容,提出了切实可行的解决方案。 整个测试系统设计考虑了测量的准确性、可靠性、操作便利性和可扩展性,整个实施方案的技术成熟度较高、工程实现性强。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足长度1m以上大尺寸构件的超低热膨胀系数测量,多数航天器用大尺寸构件需要精确测量整个构件的超低热膨胀系数。本文对美国波音公司在太空望远镜大尺寸桁架超低热膨胀系数整体测量方面的研究工作进行了综述,以了解国外技术发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以1m以上长度的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍美国波音公司在太空望远镜桁架超低热膨胀系数测试方法和测试设备方面所开展的工作。2. 波音公司激光干涉法第一代热膨胀系数测试技术 早在1971年波音公司的Bond等人就开始研究一种用于监测大直径天线在空间模拟腔体内动态行为的多通道激光干涉法测试技术【1】,其中采用了可反转条纹计数技术来测量安装在试验箱体外测量装置与安装在腔体内天线上7个光学反射镜之间的距离。 试验腔外测试仪器距离腔体内部天线的距离将近5m,干涉仪采用了Twyman-Green干涉仪,其中参考光束的相位在13.5kHz频率处进行调节以便对每个通道进行可反转条纹计数,每根条纹计数对应的距离变化增量为7.9nm(0.125倍激光波长),整个光学系统结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615105_3384_3.png图 2-1 多通道激光干涉仪光学系统结构示意图 基于上述技术,波音航空公司在1974年至1975年期间针对大型空间望远镜(LST)项目中的石墨环氧测量支架进行了热膨胀系数测试考核【2】。具体测试考核包括了两方面的内容,一方面是测试管状支架和H型支架的热膨胀系数,另一方面是对管状支架热膨胀系数进行了热循环效应考核。 热膨胀系数测试试件为91.44厘米长的截面分别为圆形和H型的管材,被测试件放置在真空腔内并稳定24小时后再进行测试,图 2-2所示为测试装置的结构示意图。如图所示,被测试件悬浮在含有加热套的真空腔内,激光干涉仪的光学部件放置在真空腔外的底部位置,形成立式结构热膨胀系数测量装置,用来测量试件长度变化的聚焦光束垂直进入真空腔底部的光学窗口,整个测量装置实物如图 2-3所示,激光干涉仪测量装置实物如图 2-4所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615106_3384_3.png图 2-2 热膨胀系数测试系统结构示意图http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615107_3384_3.png图 2-3 热膨胀系数测试系统整体照片http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615108_3384_3.png图 2-4 热膨胀系数测试系统激光干涉仪测量装置 每个被测试件上安装了三只测温热电偶和四个角反射镜,如图 2-5所示。激光干涉仪测量得到四个角反射镜的位移变化,由此得到热变形量和监视试件的倾斜。在被测试件的顶部安置一个参考反射镜用来抵消被测试件和干涉仪之间相对运动所带来的影响。 测试中真空腔内部气压低于1Torr以下并使真空度稳定16个小时,然后使试件温度升到37.8℃(100℉)后在冷却下来,整个加热冷却过程中,每隔2.8℃(5℉)测试一次热变形量,每隔14℃(25℉)进行一次30分钟的恒温。整个温度变化过程直到试件冷却到-73.3℃(-100℉)停止。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615109_3384_3.png图 2-5 热膨胀系数测试系统测温传感器和光学器件安装位置示意图 铺层方向为(02±50)s 的管状试件热变形量测试结果如图 2-6所示,整个过程的平均线膨胀系数为 7.2E-08/℃(4E-08/℉)。图 2-7所示为管状构件热膨胀系数测试与计算之间的比较结果,从比较结果可以看出板层方向的有效性,这种特性可以用来设计特殊性能的复合材料。 在进行管件热膨胀系数热循环考核试验中,先沿着试件长度方向上安装两只1英寸宽的电阻加热器以建立起与热真空试验相同的试件状态,在热真空试验中,电阻加热器是用来控制管件的温度,而在管件热膨胀系数热循环试验中,加热电阻器只是实现相同的结构状态,热循环试验的温度控制则是采用真空腔内的加热套来实现。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615110_3384_3.png图 2-6 试件热变形量随温度变化的测试结果http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615111_3384_3.png图 2-7 测试与设计结果的比较 在热膨胀系数热循环考核试验中,反射镜和温度传感器的安装与热膨胀系数测试时完全相同。热循环测试时也是先抽真空使得试件进行一两天的除湿,然后进行+38℃~-78℃(+100℉~-100℉)温度范围内的208次的冷热循环,大约间隔50次循环进行一次测量,在最后一次循环时,测试将电阻加热器取出后的试件热膨胀系数。热循环过程中试件的热膨胀系数随温度变化测量结果如图 2-8所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615112_3384_3.png图 2-8 热循环过程中试件热膨胀系数随温度变化的测量值[/

超低热膨胀系数相关的资料

超低热膨胀系数相关的资讯

  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制