光学特性

仪器信息网光学特性专题为您整合光学特性相关的最新文章,在光学特性专题,您不仅可以免费浏览光学特性的资讯, 同时您还可以浏览光学特性的相关资料、解决方案,参与社区光学特性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

光学特性相关的耗材

  • OLED元件光电特性检测设备
    产品特点: u关键性的光谱仪除采用高感度之高感度分光光谱仪(MCPD-7000)以外,亦可搭配新产品"高感度分光放射辉度计"及其相关套件达到更深度的检测能力。u驱动亮灯用的直流电源,最适合作为辉度、色度、LIV测量、发光效率、外部量子效率等OLED元件光学特性之综合性评估。产品规格: 样品对应尺寸250×250mm手动测量平台XYaxis±50mm(Manual)Zaxis±10mm(Upper),-50mm(Lower)高感度分光光谱仪 (MCPD-7000)波长范围380~780mm感光元件电冷式矩阵型CCD影像感测器512ch波长精度±0.5nm超低辉度分光放射计套件测量角度2o、1o、0.2o、0.1o测量辉度范围0.2~9.7×105cd/m2其它构成配件彩色电视屏幕、LED元件亮灯用电源供应器测量数据处理设备电脑设备(PC/AT互换机)、电脑屏幕、印表机
  • KTP 磷酸氧钛钾(KTiOPO4)非线性光学晶体
    磷酸氧钛钾(KTiOPO4或KTP)是一种优良的非线性晶体。它具有高的光学质量、宽的透明范围、相对较高的有效倍频系数(约为KDP的3倍)、极高的光学损伤阈值、宽的接受角、小的走离(small walk-off)以及宽波长范围内的I型和II型非临界相位匹配(NCPM)。KTP是Nd:YAG激光器和其他掺钕激光器倍频最常用的材料,特别是在低或中等功率密度下。KTP的特性使其作为电光调制器以及光波导器件(包括相位调制器、幅度调制器和定向耦合器)具有优越性。技术参数主要特性复合物KTiOPO4透光率, μm0.35 – 4.5非线性系数, pm/Vd31 = 2.0 d32 = 3.6对称度斜方晶系, mm2 point group晶胞参数, ?a=12.818, b=6.404, c=10.596典型反射系数1064 nm 532 nmnx=1.7381, ny=1.7458, nz=1.8302 nx=1.7785, ny=1.7892, nz=1.8894光学损坏阈值, GW/cm21064 nm (t=10 ns)~1电光系数, pm/Vr13=9.5, r23=15.7, r33=36.3莫氏(Mohs)硬度5 光学元件参数定向精度, arc min 30平行度, arc sec 30平面度546 nmλ/6表面质量, scratch/dig20/10应用近红外区高达4μm的光学参量振荡器(OPO)在高达4μm的近红外区域产生不同频率(DFG)1.064μm辐射产生的二次谐波(SHG) 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。
  • LIS 硫铟锂 (LiInS2) NIR-IR近红外非线性光学晶体
    硫铟锂(LiInS2或LIS)晶体的非线性特性与AgGaS2和AgGaS2相近,但其晶体结构不同。LiInS2是一种热释电材料,其电光参数是将其用作有效电光材料的基础。技术参数主要特性复合物LiInS2透光率, μm0.35– 13.2非线性系数, pm/Vd31=7.25, d24=5.66 @2.3 对称度斜方晶系, mm2 point group晶胞参数, ?a=6.893, b=8.0578, c=6.4816典型反射系数1064 nm532 nmnx=2.1305, ny=2.1668, nz=2.1745nx=2.2353, ny=2.2841, nz=2.2919用于SHG的基频 x-y, Type II, eoe2.35–6.11x-z, Type I, ooe1.78–8.22y-z, Type II, oeo2.35–2.67y-z Type II, oeo5.59–6.11总间隔时间1.617–8.71光学损坏阈值, GW/cm21064 nm (t=14 ns)40 热导率k, WM/M°Ckx=6.1 ± 0.3 ky=5.9 ± 0.3 kz=7.4 ± 0.30.2透明度级别的远红外吸收边缘2.58 THz at 118 μm 光学元件参数定向精度, arc min 30平行度, arc sec 30平面度546 nmλ/6表面质量, scratch/dig30/20 应用Ti: Sappire 激光泵浦的光学参量振荡器(范围 1 – 12 μm)用于使用OPO的可调谐固态激光器,由Nd:YAG和其他1.2-10μm范围内的激光器泵浦中红外(2-12μm)的差频产生 ,将CO2激光辐射图像上转换为近红外或可见光区域• 中红外范围(2-12μm)的不同频率发生器1-12μm泵浦Al2O3:Ti的光学参量振荡器席中红外区频率混频对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。

光学特性相关的仪器

  • 光学斩波器的主要作用是将连续光调制成为有固定频率的光,同时输出调制频率。通常是与锁相放大器配合使用。光学斩波器一般由如下几个部件构成 :控制单元、斩波装置、斩波片和连接线等。Model-300CD 型光学斩波器主要特性■ 5 Hz~3k Hz标准频率范围,可扩展到15m Hz~40k Hz范围■ 开放式的斩波装置■ 频率稳定性:±0.1%■ 斩波片直径:102mm■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-310CD 高速型光学斩波器主要特性■ 100 Hz~120k Hz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:102mm■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-340CD 大盘型光学斩波器主要特性■ 5 Hz~220 Hz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:200mm■ 斩波片经光化学腐蚀(发黑)和消磁处理■ 可选开放式或封闭式结构Model-350CD /360CD 超小型光学斩波器主要特性■ 5 Hz~14kHz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:30mm■ 斩波片经光化学腐蚀(发黑)和消磁处理■ Model-360CD为OEM模块SR540 型光学斩波器SR540 型光学斩波器是美国 SRS 公司的产品,该产品采用内外孔双频设计,并可实现双频按指定模式工作,非常方便应用在双光束光学实验中。SR540 型光学斩波器主要特性■ 频率范围:4Hz~3.7kHz(5/6孔:4Hz-400Hz;25/30孔: 400Hz-3.7kHz)■ 频率输出精度:2%■ 相位稳定度:0.2°-0.5°■ 开放型斩波装置■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-C995 型光学斩波器主要特性■ 带有外控触发功能,TTL,4Hz~5kHz■ 频率范围:4Hz~5kHz(内孔:4Hz-500Hz;外孔:500-5kHz)■ 频率输出精度:0.0025%■ 相位稳定度:0.1-1%■ 紧凑型、开放型两种斩波装置可选■ 斩波片经光化学腐蚀(发黑)和消磁处理■ RS-232计算机控制接口
    留言咨询
  • BRDF/BTDF材料和物质光学特性测试可见红外双向反射/透射分布函数测量仪测量方案根据双向反射/透射分布函数的定义,BRDF测量方法是分别测出入射光谱辐照度和反射/透射光谱辐亮度,两者之比即为BRDF/BTDF。双向反射分布函数的测量平台如图3所示。照明光纤探头和接收光纤探头分别固定在带滑轨的悬臂梁上,测试材料样片放置在样品台上,通过悬臂梁的圆周运动以及照明和接收光纤探头在悬臂梁上的滑动获得不同的光照与观测条件。整个过程在计算机的控制下实现数据的自动采集与处理。整个测量设备包括照明系统、探测系统、测量机械系统和数据处理系统。在测量过程中,通过接口软件将辐射测量软件和测量机械系统的控制软件整合在一起,通过计算机自动控制实验的整个测量过程,使得实验操作起来简便、快速、省时。同时,研制数据采集软件,实时进行数据采集并输出结果。BRDF/BTDF材料和物质光学特性测试服务1、 系统整体结构支架采用铝合金型材搭建,外表美观,结构稳定。2、 光源及探测器支架采用弧形导轨,探测器以导轨做导向实现角度范围的测量;探头部分光纤连接,光纤有*小弯折半径要求,所以要求光纤在弧形导轨上并随弧形导轨一起移动。3、 三个独立的嵌套导轨系统满足各个探测器和光源能独自做旋转调整,光源调整轨道安装在300mm直径转台上,可沿Z轴做水平转动,满足各方向精确角度的检测需求,二个独立导轨系统交于同一圆心(旋台中心),位于转台旋转轴线上,同轴误差0.5-1mm。4、样品台跟随旋转台一起转动,以实现探测方位角相对于样品能360度调整,而照明方位角相对于样品固定。5、 电脑软件操作控制系统电机移动(在一台电脑上的一个软件中,调节方便),实现精确的点位控制,*小角度分辨率0.1°,角度调节速度可控。参数测量光谱参数光谱范围可见光近红外:400-1100nm/400-2500nm光谱分辨率可见光通道分辨率为1nm,近红外通道的分辨率为10nm照明光源调整照明范围自动调整:天顶角:θ=[00;850]方位角相对于样品固定。角解析度天顶角0.50定位精度天顶角±0.50光源光谱范围λ=300-2500nm光谱解析度宽光谱输出, 可配置滤光片调节输出照明光源型号150W卤素灯(Halogen)物体上被照明区域的大小自动调整,10 mm 直径反射观测调整观测范围自动调整:天顶角:θ=[00;300] (90°附近有10°左右观测死角);方位角:φ=[00;3600]。角解析度0.50定位精度±0.50透射观测调整观测范围自动调整:天顶角:θ=[00;300];方位角:φ=[00;3600]。透射观测0.50定位精度±0.50探测器及光谱仪光谱仪380-1100nm /380-2500nm光谱仪附件见附表探测器光谱范围λ=200-2500nm光谱解析度1nm@400-1100nm10nm@1000-2500nm杂散光≤1% 操作软件1. 该软件主要功能包括运动平台控制、光谱仪控制、手动/全自动测量、数据采集保存。2、运动平台共有四个旋转自由度:旋转台(方位0~360°)、照明臂(俯仰0~90°)、反射测量臂(俯仰0~90°)和透射测量臂(60°~90°),对应1~4 轴号。通过该软件能控制这四个轴的运动参数,如移动到目标角度、置零、回原点、停止等,并能显示当前状态,如当前角度等。3. 光谱仪控制:(1)显示已连接的光谱仪通道,可设置测量光谱间隔。(2)选择测量模式为幅度模式或反射/透射模式。在选择反射/透射模式前需进行存白、存黑操作。(3)显示光谱仪默认的测量参数,并可对“平滑像素”、“平均次数”、“积分时间”等参数进行更改。(4)在幅度模式下,在点击“开始测量”按钮得到光谱后,通过点击“存白”按钮保存参考, 点击“存黑”按钮保存暗背景。4. 手动采集:通过软件设置运动平台的角度位置和光谱仪参数,点击“手动测量”可采集一次反射/投射数据。5. 全自动采集:该软件能控制运动平台和光谱仪协同工作,以实现全自动反射/投射数据采集。(1) 设定平台运动方案①、设定旋转台调整角度范围(起始角度和终止角度)、步进角度;②、设定照明臂调整角度范围(起始角度和终止角度)、步进角度;③、设定反射/透射臂调整角度范围(起始角度和终止角度)、步进角度;注:调整角度范围应是步进角度的整数倍;在一个测量方案中,旋转台、照明臂、反射/透射臂的角度可以是固定在某个角度,将该轴的起始角度和终止角度设成某一相同值即可。(2) 设定光谱仪参数(3) 点击“全自动测量”,运动平台各轴跑到起始角度,然后按照先进行三级扫描——反射/透射臂(探测臂俯仰角)扫描,再进行二级扫描——旋转台(探测方位角)扫描,*后进行*扫描——照明臂扫描的顺序运动。(4) 运动平台每跑到一个位置,需稳定一段时间,然后光谱仪再进行测量采集。6. 数据保存光谱仪的每一次测量都输出的一组数据,该数据为两列,*列是波长,第二列是与波长对应的反射/透射比。该数据保存为txt文件,文件名中包含测量序号以及三个角度信息如:“2.12.128_照明臂角度_探测臂方位角度_探测臂俯仰角度.txt”。其中,测量序号的格式为“*扫描序号.二级扫描序号.三级扫描序号”,例如“2.12.128”的含义为照明臂第2个扫描位置. 旋转台第12个扫描位置. 探测臂第128个扫描位置。功能与配置1. 功能各种材料可见光*近红外双向反射分布函数与双向透射分布函数的自动测量。2. 配置(1) 光谱仪:双通道(2) 测量平台:四个旋转自由度(3) 测量仪与转台的接口软件;(4) 光谱测量软件;(5) 控制/测量计算机(为了便于测量,需配置1台高性能笔记本电脑,用于测量数据的采集与存储应用:航天遥感地质测量精密制导目标仿真光学设计VRLED设计化妆品效果测试隐形眼镜缺陷测试
    留言咨询
  • ECC-Opto-Std反射模式光学特性测试模块ECC-Opto-Std反射模式光学特性测试模块反射模式光学和X-ray特性测试模块——电极采用面对面排列-可跟不同光谱仪器配套使用 ECC-Opto-Std测试模块是在反射模式下用光学显微镜等光学方法或者拉曼光谱来检查电极的。相应的光谱仪器通过工作电极背后透窗进行观察和测量。为了达到这个目的,采用工作电极与多孔电流收集器相接触并在电流收集器的中心有一个小洞的设计。这个测量模块包括一个参比电极。不同型号可用于质子或水电解质,并且可以与相应的光学仪器配套使用.样品测试结果在这个实验中,ECC-Opto-Std测试模块已经被用于石墨电极在电化学锂化反应变色可视化的研究。10毫米直径的石墨电极作为工作电极使用。这石墨电极被玻璃纤维分离器和锂金属对电极加在中间。一个有洞的铜箔被用来作为工作电极的电流收集器。显微镜通过铜箔上1毫米直径孔观察到背后的石墨电极。每5分钟拍照片一次。在石墨电极对锂金属电极已经完全放电后一夜到5 mV后, 延时视频开始录制完全锂化状态。接下来的2.5周期所示,从金黄色的完全锂化石墨开始到变成几乎纯石墨的颜色结束。恒流充放电的速度保持在C / 3,紧随其后的是恒压阶段直到下降到C / 30。特点 电极上的机械压力均匀可调整并可重复 使用PE垫圈和三元乙丙橡胶o形环的可靠的低泄漏密封件 电解质填充在组装简单、可靠 快速组装和拆卸电池组件,容易清洁 对于事后分析,很容易查看电极内部 测试模块组件可重复使用的 接触材料是不锈钢和PEEK 特殊材料和方案可定制技术资料 尺寸:46 x 88x 63毫米(高x宽x深度) 电极直径10mm 电解液的体积最小0.1毫升 重量200克与这个测试模块相关的科学文章 Yuan-Li Ding, Bee Min Goh, Han Zhang, Kian Ping Loh, Li Lu, 2013. Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries, Journal of Power Sources, 236, pp. 1-9可选附件ECC-RefLoad参比物质注射器EL-Cut EL-Cut高精度电极切割器ECC-LiPunch锂箔打孔器
    留言咨询

光学特性相关的试剂

光学特性相关的方案

光学特性相关的论坛

  • 尾流的光学特性研究与测量

    【题名】: 尾流的光学特性研究与测量【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-80142-2001008678.htm

  • 新装置可测定OEL的电子和光学特性

    新华社东京8月28日电 日本物质和材料研究机构27日发表新闻公报说,该机构研究人员发明的新装置,能在大气环境中同时测定有机电激发光材料(OEL)的电子特性和光学特性。OEL属当下科研界竞相研究的热门材料。新发明将有助于推动OEL这种新发光材料的研发。 OEL材料是将拥有发光、电子输送和空穴输送等特性的有机半导体层叠加起来,在两侧加上电极构成。当有电流经过时,有机半导体材料被激发而发光。OEL显示器色彩再现能力强,响应时间短至微秒级,这些都是液晶和等离子显示器无法企及的。另外,作为下一代照明装置,OEL装置也正受到越来越多的关注。 公报说,有机半导体材料在很大程度上左右着OEL装置的特性,因此,在有机半导体材料研发过程中,有必要充分掌握材料的电子特性和光学特性等。而以往的测定需要借助多台设备,而且会因为测定环境是否是真空等差异,造成材料的变质以及测定耗时较长等问题。 物质和材料研究机构主任研究员柳生进二郎等人发明的新装置可解决上述问题。新装置用紫外线至近红外线波段的光照射OEL样品材料,然后同时测定反射或透过的光以及光电效应释放的电子,以此测得样品材料的特性,实现了测定的高效和准确。同时,新装置将收集电子的电极设置在样品材料附近,这样电极就不会阻碍反射测定,解决了电子因和大气中的氧分子、氮分子碰撞飞不远的问题,使测定不再非要在真空环境下不可。 公报说,只需把OEL样品材料往测定装置里一装,就能同时得到其电子特征和光学特征,测定精确、快速。有了新装置的帮助,从材料研发到测定的流程将变得更加顺畅,最终将使新材料的研发加速。

光学特性相关的资料

光学特性相关的资讯

  • 半导体所在二维GeSe的偏振光学特性研究中获进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  光在传波过程中振动方向对于传播方向的不对称性叫做偏振,偏振是光作为电磁波的重要特征之一。偏振光探测在线性偏光镜(LPL)、偏振遥感以及医疗诊断治疗等方面已展现出广泛的应用前景。目前,对可见波段的偏振检测研究已比较普及,而对其它特殊波段的偏振探测有待进一步探索。近日,中国科学院半导体研究所超晶格室研究员李京波、魏钟鸣,与天津大学教授胡文平合作,围绕二维GeSe材料在短波近红外波段(700-1100 nm)的偏振光探测取得新进展。/pp  GeSe是一种典型的二元IV-VI硫族化合物,研究显示,GeSe是以高度各向异性的层状正交晶系方式结晶(空间群Pcmn- ,比黑磷的空间群Bmab- 对称性低)。此外,GeSe的带隙范围为1.1-1.2eV,使其适用的二向色性波段分布在1100nm波段以内(可见/短波近红外波段)。在靠近带边处,高态密度直接导致高吸收系数。鉴于上述特性,GeSe在面内各向异性等方面的独特性质有待研究,来实现其在可见/短波近红外波段光偏振探测方面的应用。/pp  在此背景下,该研究员团队利用GeSe材料高蒸气压的特点,采用真空气相沉积法,获得了高质量的GeSe层状单晶。通过XRD以及TEM表征,证实获得的二维GeSe纳米片具有很高的结晶度。同时,通过拉曼光谱、光吸收谱和光探测器件研究,系统分析了GeSe在晶格振动以及光学方面的各向异性(如图)。由于GeSe的几个典型的拉曼振动模的强度随着入射光和散射光的偏振方向以及样品的夹角而变化,拉曼光谱检测为GeSe晶向的确定提供了快速简便的方法。在光学方面,GeSe的各向异性体现在偏振度可分辨的光吸收谱和光电流谱等方面,在532nm激光波长下二向色性比为1.09,在638nm下为1.44,在808nm下为2.16,与吸收谱测试结果基本符合(对应的各向异性吸收比分别是1.09,1.26,3.02),这两种测试方法系统地确定了GeSe最佳的各向异性的光响应在808nm波长附近。结合理论计算的佐证,系统探测显示8-16nm厚度的GeSe有助于实现最优质的光探测结果。该研究成果显示出,二维GeSe在线偏振探测领域有潜在的应用价值。/pp  相关研究成果近期发表在emJournal of the American Chemical Society/em上。研究工作得到中科院和国家自然科学基金委员会的资助。/pp style="text-align:center "img alt="" oldsrc="W020171123391449326616.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/753d9b4e-23b3-45db-b3a8-e7fd4a6082c2.jpg" uploadpic="W020171123391449326616.jpg"//pp style="text-align: center "由GeSe低晶格对称性导致的角度依赖各向异性拉曼信号和808nm激光下的探测性能。/p
  • 蓝菲光学公司的FS2投射灯测量系统用于标定光谱特性
    一种新的投射灯测量标准出现在地平线上,蓝菲光学公司已经开发出FS2投射灯光谱通量测量系统,它可以精确地测量出光辐射度、光度学和色度学等参数。对于商用、海用、军事、头戴式、应急路旁和室内外照明手电筒等投射灯的开发和制造方面,该专用的测试系统是对灯的发光效能进行综合评价的最有效校准仪器。 这种FS2系统可以测量总光谱辐射通量 (Watts/nm)、总辐射通量(Watts)、总光通量(lumens)、色温(CCT)、灯泡性能随时间的变化、峰值波长和主波长、光谱纯度、显色指数(CRI)、色度坐标和有效带宽等参数。该系统具有很大的动态范围,因此可以对各种灯泡,包括LED、钨灯、氙灯、氪灯等灯泡进行测量。 该系统包括一个积分球表面镀有蓝菲光学公司所特有的高漫反射率材料Spectraflect?的反射面,因此空间尺寸非常紧凑。对于测量方向性很强的投射光源来说,可以保证获得一致的、可重复和可再现的测量结果。借助于位于侧面的输入口,可以很方便地测量前向总光谱通量,在积分球的内部,有一个供选用的内部安装平台,可以用它来测量手电筒等投射灯的总光谱通量。 借助于一个吸收校正灯泡,可以对置换误差进行校正,并且提供了前向光谱通量标准,以供用户进行自行校准。灯泡的分布能进一步减少空间置换误差。投射灯专用的光谱通量测量软件MtrX-Flashlight提供了一个用户友好的、直观的平台,通过它可以对系统进行校正和分析测量结果。所有的测量结果都可以立即在图形界面中显示出来,并且能够生成并打印出报告。
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。  激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。  在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。  飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。  谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。  太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。  邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制