光学气体

仪器信息网光学气体专题为您整合光学气体相关的最新文章,在光学气体专题,您不仅可以免费浏览光学气体的资讯, 同时您还可以浏览光学气体的相关资料、解决方案,参与社区光学气体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

光学气体相关的耗材

  • LYDOAS 紫外差分气体测量光学模块
    LYDOAS 紫外差分气体测量光学模块模块介绍崂应LYDOAS超低浓度紫外差分气体测量光学模块(以下简称模块),采用紫外差分吸收光谱(DOAS)技术,SO2、NO、NO2检出限原理特点当紫外-可见连续光谱经过含有被测污染气体的样气时,特定波长光能被样气中的污染气体吸收,光的吸收(吸光度)与污染气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定吸光度和污染气体浓度之间的经验曲线,根据现场被测样气的吸光度实时计算样气中污染气体浓度。在实际测量中,不仅存在气体分子对光的吸收,还存在瑞利散射、米氏散射等对光的衰减作用,差分吸收的基本思想是将气体分子的吸收截面分为两个部分,一是随波长作缓慢变化的宽带光谱结构,即低频部分,二是随波长作快速变化的窄带光谱结构,即高频部分。DOAS方法利用吸收光谱的高频部分计算得出气体浓度。由于DOAS方法分析的是吸收光谱的高频部分,而水汽、烟尘和其他一些成分的吸收光谱均属于低频,因此DOAS技术可以有效地去除水汽、烟尘等对测量结果的影响,使测量结果可以更加准确、稳定、可靠。同时,由于每种气体分子都有其特征吸收光谱,DOAS可以同时测量多种气体组分。产品特点Ø采用紫外差分吸收光谱法,实时检测SO2、NO、NO2、NH3、CS2、苯系物等气体浓度,不受水汽、粉尘干扰;Ø采用自主开发深紫外光谱仪,优化紫外光谱响应性能;Ø采用低功率脉冲氙灯光源,功耗低、寿命长、预热时间短;Ø原创设计多次反射型气室及先进镀膜技术,兼顾长光程和快速响应;Ø气室内壁特殊处理,无气体吸附;Ø气室采用恒温控制,环境适应性更强,保证检测结果的准确性和稳定性;Ø直接检测NO2,无需转化炉;Ø采用模式识别和化学计量学方法,消除交叉干扰,实现一次测量同时获得多种目标分析物浓度;Ø检出限3,量程可定制;Ø体积小巧、重量轻盈,模块化设计,可根据客户应用需求灵活定制机械结构及参数。应用领域Ø环境空气分析Ø室内空气质量监测Ø污染源废气分析Ø移动污染源排气分析Ø工业气体分析Ø过程测量技术技术指标注:表中浓度单位为标准状态(温度为273.15K,压力为101.325kPa)下的质量浓度。技术指标技术参数测量气体SO2NONO2量程0-100mg/m30-100mg/m30-100mg/m30-285mg/m30-134mg/m30-205mg/m3可依照用户需求定制示值误差≤±2% FS检出限≤1mg/m3重复性≤1% FS零点漂移≤±2% FS /24h量程漂移≤±2% FS /24h校准响应时间T90 ≤ 30 s工作温度(-20-45)℃相对湿度≤95%RH通信接口RS232/RS485供电DC12V功率LYDOAS 超低浓度紫外差分气体测量光学模块模块介绍崂应LYDOAS超低浓度紫外差分气体测量光学模块(以下简称模块),采用紫外差分吸收光谱(DOAS)技术,SO2、NO、NO2检出限3,量程可定制;可定制检测NH3、CS2、苯系物、恶臭气体及其他VOCs等有紫外特征吸收的气态污染物,具有测量精度高、测量速度快、多组分同时检测、抗干扰能力强、检测下限低等诸多优点,可广泛应用于固定污染源排放监测、移动污染源排放监测、工业气体分析、过程测量技术等领域。原理特点当紫外-可见连续光谱经过含有被测污染气体的样气时,特定波长光能被样气中的污染气体吸收,光的吸收(吸光度)与污染气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定吸光度和污染气体浓度之间的经验曲线,根据现场被测样气的吸光度实时计算样气中污染气体浓度。在实际测量中,不仅存在气体分子对光的吸收,还存在瑞利散射、米氏散射等对光的衰减作用,差分吸收的基本思想是将气体分子的吸收截面分为两个部分,一是随波长作缓慢变化的宽带光谱结构,即低频部分,二是随波长作快速变化的窄带光谱结构,即高频部分。DOAS方法利用吸收光谱的高频部分计算得出气体浓度。由于DOAS方法分析的是吸收光谱的高频部分,而水汽、烟尘和其他一些成分的吸收光谱均属于低频,因此DOAS技术可以有效地去除水汽、烟尘等对测量结果的影响,使测量结果可以更加准确、稳定、可靠。同时,由于每种气体分子都有其特征吸收光谱,DOAS可以同时测量多种气体组分。LYDOAS 紫外差分气体测量光学模块采用原创设计的新型多次反射型长光程气室,入射光经气室内凹面反射镜多次折返后最终会聚至出光口,由于气室中的光束是通过两端固定的反射镜来反射,气室壁不参与测量光束的反射,可避免传统内壁反射气室随老化而导致信号漂移、灵敏度损失等现象,保证气室长期使用中的光程稳定。采用多次反射技术,可以同时实现小体积和长光程,并可根据应用需求定制光程。产品特点Ø采用紫外差分吸收光谱法,实时检测SO2、NO、NO2、NH3、CS2、苯系物等气体浓度,不受水汽、粉尘干扰;Ø采用自主开发深紫外光谱仪,优化紫外光谱响应性能;Ø采用低功率脉冲氙灯光源,功耗低、寿命长、预热时间短;Ø原创设计多次反射型气室及先进镀膜技术,兼顾长光程和快速响应;Ø气室内壁特殊处理,无气体吸附;Ø气室采用恒温控制,环境适应性更强,保证检测结果的准确性和稳定性;Ø直接检测NO2,无需转化炉;Ø采用模式识别和化学计量学方法,消除交叉干扰,实现一次测量同时获得多种目标分析物浓度;Ø检出限3,量程可定制;Ø体积小巧、重量轻盈,模块化设计,可根据客户应用需求灵活定制机械结构及参数。应用领域Ø环境空气分析Ø室内空气质量监测Ø污染源废气分析Ø移动污染源排气分析Ø工业气体分析Ø过程测量技术技术指标技术指标技术参数测量气体SO2NONO2量程0-100mg/m30-100mg/m30-100mg/m30-285mg/m30-134mg/m30-205mg/m3可依照用户需求定制示值误差≤±2% FS检出限≤1mg/m3重复性≤1% FS零点漂移≤±2% FS /24h量程漂移≤±2% FS /24h校准提供零点校准、量程校准响应时间T90 ≤ 30 s工作温度(-20-45)℃相对湿度≤95%RH通信接口RS232/RS485供电DC12V功率注:表中浓度单位为标准状态(温度为273.15K,压力为101.325kPa)下的质量浓度。
  • Tornado™ 气体池常规系列气体池
    Tornado™ 气体池常规系列气体池用于常温下的日常分析特点:?较宽的光程范围(1m-20m)?真空到15psi?室温下使用?硼硅玻璃主体?镀层组件?金镜(防护)?氟橡胶O形圈密封技术?KBr, ZnSe或CaF2窗片?可清洁的透射光学腔体?Benchmark™ 系列底座Tornado气体池Tornado™ 系列是需要固定的长光程气体池做日常应用的分析者的理想选择。根据反射镜排列间的多个光通道空白池原则,Tornado™ 系列有三个尺寸:?Tornado™ T5光程1m到8m,增量1m?Tornado™ T10光程2.1m到10.6m,增量1.06m?Tornado™ T20光程2m到20m,增量2mTornado™ 系列气体池使用标配的Specac Bench-mark™ 基板适合在现在所有的FT-IR光谱仪上使用。选用主体材料为硼硅玻璃+内部电镀铝/外部组件不锈钢的材料组合方式,可针对多种气体和蒸汽提供优越的耐腐蚀性。氟橡胶O形圈确保在真空和标准常压下无泄漏。可选镍铝涂层,可用在压力高达125psi情况下。最先进的光学设计和金镜结合在一起确保最大光透性,从而得到更高的灵敏度。Tornado™ 系列设计超强的灵活性允许附加反射镜仓室使用在相同的主体外壳上,最大化分析性能,最小化使用成本。选择KBr, ZnSe或CaF2窗片材料允许用户最优化窗片来适合他们的应用,透射光学腔体安装有清洁端口允许在惰性气体条件下使用。一系列可选特征进一步增强Tornado™ 的灵活性。Tornado™ 气体池样品池主体材料:硼硅玻璃压力范围:真空到15psi温度范围:室温反射镜材质:金(防护)窗片: KBr, ZnSe或CaF2气体接口尺寸: 1/4?O形密封圈:氟橡胶内部组件:氧化铝&不锈钢透射光学器件:清洁光学器件盒子中的铝镜样品池安装: Benchmark™ 系列底座Tornado™ T5光程: 1m - 8m光程增量: 1m体积: 1.33 liters样品池主体材料: Borosilicate glass压力范围:真空可达15 p.s.i.温度范围:室温反射镜:金材质窗片: KBr, ZnSe or CaF2气体管接口尺寸: 1/4?‘O’型密封圈: Viton® 内部组件材料:阳极氧化铝以及不锈钢透射组件:可拆卸镀铝镜样品池安装: Benchmark™ 系列底座尺寸(mm): H455 W153 D130Tornado™ T10光程:2.1m – 10.6m光程增量: 1.06m体积: 2.6 liters样品池主体材料: Borosilicate glass压力范围: Vacuum to 15 p.s.i.温度范围: Ambient反射镜: Gold (protected)窗片: KBr, ZnSe or CaF2气体管接口尺寸: 1/4?‘O’型密封圈: Viton® 内部组件材料:阳极氧化铝以及不锈钢透射组件:可拆卸镀铝镜样品池安装: Benchmark™ 系列底座尺寸(mm): H470 W153 D146Tornado™ T20光程:2m – 20m光程增量: 2m体积: 4.7 liters样品池主体材料: Borosilicate glass压力范围:真空可达15 p.s.i.温度范围:室温反射镜: Gold (protected)窗片: KBr, ZnSe or CaF2气体管接口尺寸: 1/4?‘O’型密封圈: Viton® 内部组件材料:阳极氧化铝以及不锈钢透射组件:可拆卸镀铝镜样品池安装: Benchmark™ 系列底座尺寸(mm): H675 W153 D146Tornado ™ 气体池主要尺寸如下样品池ABCDET545538511486153T10470400143113153T20675606143113153样品池基础光程光程范围体积T525cm光程: 1m - 8m增量: 1m1.33LT1026.4cm光程:2.1m – 10.6m增量: 1.06m2.6LT200.5cm光程:2m – 20m增量: 2m4.7LTornado™ 气体池特殊选项特殊选项Tornado™ 系列长光程气体池设计考虑到了严谨的分析人员。这些高性能质量卓越的样品池支持一系列可选升级,可进一步增强他们的性能。抵消型波纹管Tornado™ 系列气体池可使用1对抵消型波纹管。这套配件安装在样品池的光学组件盒和光谱仪之间,允许使用惰性气体例如氮气来实验。这个配件可以消除样品对大气中的H2O和CO2的吸收影响。GS10707抵消型波纹管(1对)干燥保护盖这些盖子用于安装在Tornado™ 系列气体池的光学器件进口和出口处,在样品池不使用时,用来密封透射光学器件。其中的一个盖子包含干燥剂材料,可以在透射光学器件盒中保持干燥,并增加KBr窗片的使用寿命。GS24150干燥保护盖压力表套装压力表套装可以安装在Tornado™ 系列气体池上。仪表可在特殊低压(真空度到15psi)和高压使用(真空度到125psi–仅适用于金属主体样品池)。集成的压力释放阀门确保在过压时样品池能自动减压。Specac推荐在使用气体池升压时使用压力表组件。GS24160压力表套装(1对)(特殊高低压)反射镜舱组件附加的反射镜舱室可指定在单个的Tornado™ 主体中使用。这种特殊配件大大增强了分析灵活性,且大大减少了使用成本。GS24252反射镜舱组件(指定型号和光程)Tornado™ 气体池兼容性图表订购信息GS24205 Tornado™ T51m - 8m长光程气体池GS24210 Tornado™ T102.1m - 10.6m长光程气体池GS24220 Tornado™ T202m - 20m长光程气体池可用的固定光程Tornado™ T5 - 1, 2, 3, 4, 5, 6, 7, 8mTornado™ T10 - 2.1, 3.2, 4.2, 5.3, 6.3, 7.4,8.5, 9.5&10.6mTornado™ T20 - 2, 4, 6, 8, 10, 12, 14, 16, 18 & 20m气体池配置步骤1)选择气体池的尺寸和其零件编号,例如:Tornado T5样品池,P/N是GS242052)从玻璃(G)或金属(M)中选择主体的类型3)从KBr (K), CaF2 (C)或ZnSe (Z)选择窗片材料4)从样品池尺寸中指定固定的光程5)如果需要,请选择安装低(L)或高(H)压仪表套装例子:P/N GS24205GCFV为Cyclone C5样品池,玻璃主体,CaF2窗片,固定光程,氟橡胶O形圈,无压力计。对于所有气体池请指定光谱仪制造厂家和型号,包括合适的Benchmark安装底座。(注意KBr窗片不能用于金属主体的样品池上)可选项GS10707抵消型波纹管(1对)GS24150干燥保护盖GS24152 Tornado™ 系列气体池的反射镜舱(指定型号&光程)GS24160压力表套装适合Cyclone™ 和Tornado™ 气体池(指定型号&高或低压)GS24161真空/气体进口&出口接头用于Tornado™ 系列气体池的自锁接头GS24206 Tornado气体池T5 ESKGS24207 Tornado气体池T10, T20 ESK窗片配件GS24153 Tornado™ 和Cyclone™ 系列气体池的KBr窗片(指定型号)GS24154 Tornado™ 和Cyclone™ 系列气体池的ZnSe窗片(指定型号)GS24155 Tornado™ 和Cyclone™ 系列气体池的CaF2窗片(指定型号)
  • 中红外3米低成本全光纤气体吸收池
    长光程气体吸收池应用于多种谱分析检测。主采具有优良学稳定性的赫里克 特气室( 特气室( Herriot Gas Cell),辅助与高稳定性的光学封装结构,主要由气室腔体、 凹面反射镜),辅助与高稳定性的光学封装结构,标准光纤接头、功率探气体进出口以及防震底座等组成。独特的悬浮路设计,具有优异的震动和温度稳定性,可以在各种复杂环境中工作非常适合气体线实时检测。具备超低系统噪声,可应用于痕量气体分析。COx 气体吸收池应用于CO、CO2 气体光谱分析检测。有效光程3m工作波长20nm技术参数吸收池参数:参数技术规格有效光程3m波长范围740-820nm/15300~1700nm/1900-2400nm透射率>20%输入最大光功率500mW光纤类型长飞 易贝超强弯曲不敏感光纤输出类型长飞 易贝超强弯曲不敏感光纤反射镜介质膜耐压范围≤0.3MPa气体接口φ6 直通气体容积约为 10mL外型尺寸见图 1产品总重约为 450g壳体材质6061工作温度-20℃ ~ +70℃存储温度-40℃ ~ +85℃带宽测试系统损耗测试应用测试图产品特点● 光纤信号输入、光信号输出● 气室结构稳定抗震动,外部挤压对环境温度变化不敏感● 无源控制● 气室体积小、结构紧凑便于携带● 有效光程长,噪声小产品应用● 大气污染物监测● 燃煤烟气排放监控● 垃圾焚烧排放监控● 化工园区污染物监测

光学气体相关的仪器

  • 出色的OGI摄像仪,带给您理想体验快速有效的气体泄漏检测对保障员工、环境和财产安全来说至关重要。EyeCGas 2.0 确保快速找到甲烷和挥发性有机化合物(VOC)的泄漏点,从而进行快速有效的修复,保证安全的同时,节约了大量的时间和成本。专为客户需要和行业需要设计1. 高灵敏度:提高了泄漏检测的灵敏度,拥有EPA OOOOa的第三方认证2. EyeCGas仪器反向兼容性:易于从旧版本EyeCGas 摄像仪升级到EyeCGas 2.0,可维护性更强。3. 视频录制和存储:一体式64Gb固态存储器,快照按钮,高清彩色相机,操作性更强。4. 无线:内置WiFi支持实时视频流和视频下载,连通性更强。5. 适用LDAR:创新型内置LDAR性能,可操作性更强。1)检测路径过程中,集成了先进的LDAR软件2)实时组件标签同步3)内置地理标记4)集成PID/FID Method 21 分析仪数据的专利保护技术,实现智能LDAR6. 安全认证:可用于危险区域,安全性更强1)ATEX Zone 22)ANSI and CSA Class I and Class II Div 27. 热成像测温和调色板,功能更强。EyeCGas OGI 概览OPGAL EyeCGas的应用化工与石化下图为:某石化企业生产装置管道泄漏通过OPGAL EyeCGas光学气体相机的观察可以清晰的看到石化企业生产工艺高温管道中的易燃易爆挥发性物料大量逸散到周边环境中。EyeCGas 2.0 系统套件订货信息:EyeCGas 2.0 其他可选附件:
    留言咨询
  • 气体测量光学模块 400-860-5168转3408
    气体测量光学模块气体测量光学模块基于紫外/红外吸收法,采用模块化设计,集成光源、探测器、气室和算法,测量H2S、NO2、SO2、NO、CH4、CO、CO2、HC化合物等国家限排污染物。模块采用高性能宽谱段光源和原创设计的新型多次反射型长光程气室,实现了高稳定性和低检出限。同类产品、同等指标下,体积更加小巧,方便集成至各种气体分析仪。表1气体测量光学系列模块模块名称实物图原理检测对象重量及尺寸紫外差分气体测量光学模块紫外差分吸收法SO2、NO、NO21.6Kg300*135*115mm非分散红外多组分气体测量光学模块(SO2、NO、CO)非分散红外法SO2、NO、CO0.5Kg130*65*70mm非分散红外单组分气体测量光学模块非分散红外法CO、CO2、HC、NO、CH4、SO20.3Kg105*60*60mm应用领域:?机动车在线排气分析?机动车I /M站分析?便携式尾气分析?PEMS车载排放测试?环境空气分析?室内空气质量监测?污染源气体分析?工业气体分析?过程测量技术?生物气研究?大棚和温室气体监控?建筑物通风系统管理?CO2分压和溶解无机碳分析?大气监测和气象研究
    留言咨询
  • LY-NDUV 非分散紫外O?气体测量光学机芯一、产品概述 LY-NDUV臭氧测量光学机芯(以下简称“机芯”)是以非分散紫外O?气体测量光学模块为核心,集成外围控制气路,性能稳定,体积小巧,便于各种臭氧分析仪开发。二、原理特点 将待测气体抽入测量机芯,通过交替测量待测气体和零气在臭氧特征吸收波长处的光强,获得待测气体中臭氧的吸光度,该吸光度与其浓度成线性关系,通过数学反演计算,得出待测气体中的臭氧浓度。三、产品特点创新采用 UV-LED 作为光源,功耗低、寿命长,无需预热检出限低、测量精度高、量程宽内置自适应滤波算法,响应速度快无任何运动部件,温度、压力实时补偿,在不同的环境条件下均能获得稳定准确的结果仪器体积小、重量轻,机芯重量不超过0.9Kg机械结构可按需求定制四、应用领域 环境空气O?分析
    留言咨询

光学气体相关的试剂

光学气体相关的方案

光学气体相关的论坛

  • 光学仪器水性雾产生原因主要是潮湿气体所致

    [font=微软雅黑]水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。[/font][font=微软雅黑]不管何种原因形成的雾,由于雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象,除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被腐蚀的玻璃表面形成很多微孔,严重的会使玻璃零件报废。[/font][font=微软雅黑]光学仪器起雾不仅在我国东南地区严重存在,就是较干燥的地区,由于温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。[/font]

  • 【原创】红外气体分析仪工作原理

    红外气体分析仪是基于不同气体对红外线有选择性吸收这一原理进行设计的。采用国外先进的相关滤波技术(GFC)。仪器内置两路红外线吸收的信号光谱气路,一路作为参比信号,一路为需要测量气体的信号,通过数字逻辑电路使其相减,得到测量气体的光谱信号,此时信号浓度的大小变化就是气体浓度的变化,将信号转换为电压信号,加以增益放大后,并通过8段线性化电路,最终通过显示屏显示气体准确浓度。 仪器光学部件采用特殊光学器材制造,微量级量程时还增加了一套多次反射装置的光学气室,它通过多次反射光学镜片使得光路信号加长,便可精确检测出最小气体的变化量。

光学气体相关的资料

光学气体相关的资讯

  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • FLIR光学气体成像热像仪,总有一款适合你~
    相信菲粉们都知道,FLIR光学气体成像热像仪(OGI)能够帮助您在无需关闭系统的情况下快速、准确、安全地检测出甲烷、六氟化硫等数百种工业气体。它是如何做到的呢?今天就来给大家详细述说下~可视化“隐藏”气体,避免千万损失大型装置拥有数以千计的接头和配件需要定期检查,但事实上只有很小一部分组件会发生泄漏。使用传统的“嗅探器”进行测试需耗费大量的时间和精力,并且可能将检测人员置于危险的环境中。光学气体成像热像仪给予您发现不可见气体逃逸问题的超凡能力,因此您能够比使用嗅探器更快速、更可靠地发现气体泄漏。借助GF系列热像仪,您能够发现并记录导致产量和收入损失、罚款和安全风险的气体泄漏。从天然气开采到石油化工作业和发电,各公司通过在其泄漏检测和维修(LDAR)计划中使用FLIR光学气体成像技术,每年节约价值超过1000万美元的产量损失。追本溯源,杜绝泄漏FLIR GF系列光学气体成像热像仪能够快速、精确、安全地检测天然气、VOCs、SF6 、制冷剂、氨气和CO2等泄漏,无需关闭系统或接触部件。肉眼不可见的气体泄漏在透过光学气体热像仪观察时呈烟雾状,可从较远距离发现,及时修补泄漏。借助FLIR GF系列光学气体成像热像仪,您可以从安全距离处快速扫描大片区域、检测难以接触的接头和组件、检查油罐的泄漏情况和液位、利用温度测量功能检查机电系统的故障、以及进行环境监察,督促企业遵守环境法规。OGI产品大全,pick你的爱FLIR光学气体热像仪包括FLIR GF77、G300a、GFx320、GF620、GF320、GF300、GF306、GF304、 GF343、 GF346等,不同型号侧重检测不同气体,今天小菲就带大家通过气体梳理一下FLIR GF系列光学气体成像热像仪吧~想要了解产品详细信息,请点击产品名称甲烷和碳氢化合物FLIR GF77:它是FLIR推出的非制冷型红外热像仪,可实时显示甲烷排放,实现更快、更高效的气体泄漏检测。GF77热像仪完美适用于:• 油气田、炼油厂、石化厂• 燃气公司• 天然气发电厂• 天然气供应链沿线的企业FLIR G300a :它是一款制冷型固定式热像仪,可检测对环境有害的甲烷和挥发性有机化合物(VOC)泄漏。它使用户能够连续监测难以进入的偏僻或危险区域中的装置,因此检测人员可以立即采取措施修复危险或代价高昂的泄漏问题。G300a热像仪完美适用于:• 炼油厂• 天然气处理厂• 海上平台• 化学/石油化工联合装置• 生物气发电厂• 石化厂FLIR GFx320、FLIR GF620、FLIR GF320、FLIR GF300:它们是制冷型OGI热像仪,经滤波后可检测石油和天然气石化炼油、化工生产、运输和处理设施中的甲烷和碳氢化合物泄漏。经验证,它们符合美国环保局的OOOOa甲烷法规中定义的灵敏度标准,并且因每幅记录的热图像都标注GPS数据而符合报告要求。GFx320和GF620完美适用于:• 海上平台• 液化天然气运输码头• 炼油厂• 天然气井口和天然气处理厂• 压缩机站• 生物气发电厂六氟化硫与氨FLIR GF306:它可用于检测高压断路器绝缘的六氟化硫(SF6)以及有毒气体和肥料的无水氨(NH3)。通过检测和维修SF6泄漏,能源生产商能够有效避免代价高昂的断路器损坏,同时还能保护环境。GF306热像仪完美适用于:• 公用事业• 氨厂• 工业制冷系统• 化工厂轻松发现SF6泄漏制冷剂FLIR GF304:它可在无需中断运营的情况下检测制冷剂气体泄漏。大部分现代制冷剂都是含氟有机化合物,虽然它们不会消耗臭氧层,但是一些混合物中含有挥发性有机化合物(VOC)。GF304热像仪完美适用于:• 食品生产、存储和零售行业• 汽车生产及维修行业• 空调系统• 医药生产、运输和存储行业二氧化碳FLIR GF343:它让您快速、准确地发现CO2泄漏,无论该气体是生产工艺的副产物,或者是提高石油采收率项目的一部分,还是用作氢气的示踪气体。可靠的非接触式CO2检测使工厂能够在设备仍联网正常运行的情况下对其进行检测,避免非计划停机。该方法既能确保安全运营,同时还可向碳中和捕捉以及存储方向发展。GF343热像仪完美适用于:• 提高石油采收率项目• 氢冷发电机• 碳捕集系统• 乙醇生产商• 工业气密性测试一氧化碳FLIR GF346:它可以从安全距离处可视化无色无味一氧化碳(CO)的泄漏。从排泄烟道和通风管道泄漏的一氧化碳有致命危险,特别是如果泄漏发生在密闭区域中。GF346能够快速扫描大片区域,从数米之外准确检测到极微小的泄漏,从而提升工作人员的安全性,保护环境。GF346热像仪完美适用于:• 钢铁工业• 大宗化学品制造• 包装系统• 石油化学工业FLIR Systems不仅设计了各种类型的产品,还提供了品类齐全的附件,用以定制适合各种成像和测量应用的热像仪。从一系列型号齐全的镜头、液晶显示屏到远程控制装置,皆可用于定制热像仪,以更好适合您的具体应用。FLIR光学气体成像热像仪(OGI)帮助您检测各种泄漏的气体FLIR还将不断设计新的产品和附件满足您更多的需求各位菲粉们可留言告知#你最想要的OGI产品#小菲没准帮你实现愿望哦~
  • 光学气体成像热像仪的十大使用技巧,工程师必备
    光学气体成像热像仪使用中波红外直冷式红外热成像技术,可视化各种气体,如甲烷(ch4)、有机挥发气体(vocs)、六氟化硫(sf6),二氧化碳(co2)和制冷剂。flir制造了多款热像仪,可视化检测各种气体的泄漏。通过光学气体成像技术,石化及环保行业可更安全、更高效地开展“智能ldar(气体泄漏检测与修复)”检测服务。检测人员可以更快地检测气体泄漏,并立即找到泄漏源,帮助快速修复问题,减少气体泄漏,更好地满足管理要求。此外,光学气体成像节省成本,不仅在于效率提高,更重要的是提高了公司人员和资产安全。下面是光学气体成像热像仪的十大使用技巧:一、明白应用场景和需求热像仪检测压缩机阀门等天然气泄漏不同的气体泄漏需要不同的热像仪检测。换言之:一台热像仪可能无法看到所有的气体,所以检测者必须清楚要检测的是什么气体。例如,检测vocs的光学气体成像热像仪无法看到sf6,而检测co的热像仪则看不到制冷剂。二、考虑环境因素热成像检测管道或断路器的sf6泄漏气体。光学气体成像的成功来自于环境条件。背景能量差别越大,热像仪越容易检测到泄漏的气体,找到泄漏点。主动式光学气体成像(使用激光型逆散射法)取决于背景。当检测高空化合物和指向天空时,这个问题尤其突出。还要考虑雨水和强风。三、光学气体成像是一种定性而不是定量方法flir gfx320光学气体成像红外热像仪能够可视化油气工业中大多数碳氢化合物,承担本质安全使命。因为环境不同,背景能量差异,光学气体成像热像仪自身无法确定泄漏气体种类和泄漏量。四、发挥光学气体成像热像仪的全部功能化工厂的压力表泄漏气体掌握光学气体成像热像仪的每一项功能如何工作,如自动增加gps信息或使用图像增强功能。有时即使使用光学气体成像热像仪,也很难发现低浓度气体。高灵敏模式(hsm)可增强图像,即使低浓度气体也能发现。gps功能十分重要,可定位气体泄漏检测的地点。五、测量温度高灵敏模式(hsm)下汽车空调制冷剂泄漏许多光学气体成像热像仪使用者工作中都需要测量工厂装置的问题。它们可用于工业维护检测,因为它们可以测量和记录现场温度,并将数据保存为jpeg或视频。可以使用热像仪在高低压电气设备或机械设备中检测热点或电气问题,或在管道、锅炉等寻找密封故障。光学气体成像热像仪的热成像功能也可以帮助提高气体云与背景之间的视觉对比度。不同于其他热成像应用,检测对象(气体)没有身影。只有在气体云和背景之间渲染辐射对比,才能看到气体云。云本身几乎没有任何辐射。要让气体云可见的关键是提高气体云和背景温差(δt)。六、充分发挥热像仪功能确保安全气体成像热像仪是一种快速、可视化气体泄漏检测方法,可用于危险或难以作业的区域。它们可在几米之外灵敏地检测到细微泄漏,在几百米之外检测到大型泄漏。许多提供高灵敏度增强功能,如hsm,可改善细微或低浓度泄漏检测。因为光学气体成像可在安全距离之外检测气体泄漏,可以充分保护自己。首先在主工作区域之外,初步扫描,确定是否存在任何大型气体泄漏。然后逐步靠近,进行更多定向扫描。务必穿戴正确的安全保护装置,在附带的包装盒内保存和运送光学气体成像热像仪。还有,热像仪的定期维护可确保其本身不会成为安全隐患。七、持证上岗光学气体成像热像是本质安全的,可在石化厂等需要防爆的区域使用。切记,任何顶级光学气体成像热像仪均可从安全区域,即使在设施外围之外,发现大量危险的泄漏。八、保持投资回报在许多情况下,光学气体成像热像仪自购买日起就会有回报。调查表明光学气体成像热像仪一般比传统泄漏检测技术快9倍,而且可以帮助检测嗅探器可能遗漏的泄漏。光学气体成像还是一种非接触式方法,可在不间断工作下进行,因而公司不会因为停机而损失收益。而且,早期发现泄漏并快速修复,公司可避免罚款,保留可赢利出售的气体。九、考虑未来的工业排放法规逃逸气体泄漏会造成全球变暖,并可能对靠近这些设施的人员造成致命的风险。因为flir光学气体成像热像仪可检测数十种挥发性有机化合物,如苯,如果公司遵守现有的工业排放法规,可促进环境改善。这些法规并非一成不变:政府监管机构,如美国环境保护署或欧盟工业排放指令,总是会对逃逸排放采取更严格的规定。运用正确的工具满足这些发挥,可让你公司先人一步。十、正确培训向资深合格的光学气体成像用户学习如何使用热像仪。必须通过正规机构提供的培训课程,如itc红外培训中心。itc红外培训中心为期三天的光学气体成像认证课程覆盖flir gf系列热像仪设置和操作,这些热像仪可以检测的气体种类,环境条件如何影响气体泄漏检测。培训包括教室上课和实验室练习,并获得itc光学气体成像国际认证证书。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制