光子晶体光纤

仪器信息网光子晶体光纤专题为您整合光子晶体光纤相关的最新文章,在光子晶体光纤专题,您不仅可以免费浏览光子晶体光纤的资讯, 同时您还可以浏览光子晶体光纤的相关资料、解决方案,参与社区光子晶体光纤话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

光子晶体光纤相关的耗材

  • 空气包层光子晶体光纤
    超大数值孔径(NA0.5)光纤--空气包层光子晶体光纤所属类别: ? 光纤/光纤器件 ? 光子晶体光纤 产品简介超大数值孔径光纤(NA0.5)--大芯径空气包层光子晶体光纤 超大数值孔径光纤(NA0.5)--大芯径(高达100 um)空气包层光子晶体光纤! 石英光纤NA一般为0.12或者0.22, 更大数值孔径的光纤需要加大包层和纤芯的材料的折射率比,但往往也只能做到0.48(聚合物包层,非高功率光纤)。昊量光电公司推出超大数值孔径光纤P-ACF-XX-YYY。这是一款(高达0.6)、低损耗、大芯径空气包层光子晶体光纤,芯径为50、80、100 um;包层直径覆盖80-160 um。主要应用于功率传输、光谱学、仪器设备等领域。 超大数值孔径光纤、光子晶体光纤、大数值孔径光子晶体光纤、低损耗光子晶体光纤、大芯径光子晶体光纤,超大NA光纤 以上产品参数均为标准品,我们可以根据客户的实际需求实现产品定制化服务! 主要特点:l大数值孔径(NA0.5) l低损耗() l大芯径(50、80、100 um 可选) 主要应用:u功率传输 u光谱学;u仪器设备;参数指标:Product referenceP-ACF-XX-YYYCladding diameter(um)80 to 160(+/- 5 um)Core diameter(um)50, 80 and 100 (+/- 3 um)Core materialSilica F300Coating diameter(um)245(+/- 5 um)Coating materialDual coat acrylateNumerical aperture0.5Background losses(d B/km)@1310 nmBackground losses(d B/km)@1550 nmMinimal web thickness(nm)150 相关产品 宽波段单模光纤(350-1750 nm)---无截止单模光子晶体光纤 宽波段超连续谱产生光子晶体光纤(350-1800 nm) 宽温(-60-80 ℃)保偏光纤---保偏光子晶体光纤 高非线性光纤---柚子型光子晶体光纤
  • 光子晶体光纤_微结构光纤(PCF)
    光子晶体光纤/微结构光纤(PCF)所属类别: ? 光纤/光纤器件 ? 其他特种光纤/光子晶体光纤 所属品牌: 产品简介 昊量光电提供各种定制型光子晶体光纤(PCF,微结构光纤)!光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。昊量光电提供各种光子晶体光纤。 关键词:光子晶体光纤,Photonic Crystal Fibers, PCF,微结构光纤,Micro-Structured Fibers, 结构光纤 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。光子晶体光纤(微结构光纤)按照其导光机理可以分为两大类:折射率导光型(IG-PCF)和带隙引导型(PCF)。折射率引导型光子晶体光纤(微结构光纤,PCF)具有无截止单模特性 、大模场尺寸 /小模场尺寸和 色散可调特性等特性。广泛应用于色散控制 (色散平坦,零色散位移可以到800nm),非线性光学 (高非线性,超连续谱产生),多芯光纤 ,有源光纤器件(双包层PCF有效束缚泵浦光)和光纤传感等领域。空隙带隙型光子晶体光纤(微结构光纤,PCF) 具有易耦合,无菲涅尔反射,低弯曲损耗、低非线性和特殊波导色散等特点被广泛应用于高功率导光,光纤传感和气体光纤等方面。光子晶体光纤的发展为光纤传感 开拓了广阔的空间,尤其是在生物传感和气体传感方面为光纤传感技术带来新的发展。昊量光电提供各种光子晶体光纤及光子晶体光纤的定制化服务,昊量可以提供的产品及服务:材料:石英或硫化物提供各种定制服务可提供各种套管,接头及相应光线器件各种解决方案设计及模拟主要产品:1,基于石英的各种有源及无源光纤:保偏型光子晶体光纤,定制色散型光子晶体光纤,光子晶体光纤预制棒空气包层、双包层光子晶体光纤,LMA空心光纤,光子带隙光纤掺杂光子晶体光纤多心光子晶体光纤2,基于硫化物的光子晶体光纤超高非线性光纤(50,000/W*km)中红外光子晶体光纤定制化服务3,各种解决方案基础研究传感激光器光谱学主要应用:高功率低损耗近红外激光传输脉冲整形脉冲压缩非线性光学光纤传感超连续激光产生可调谐光纤耦合器多波长激光器光纤耦合 指标参数: 常规产品: 相关产品 覆盖紫外波段超连续激光器(320~1750nm) FROG 超短脉冲测量仪 啁啾布拉格光栅
  • 大宽带中红外(1.5~10μm)光子晶体光纤
    Microphotons推出一系列适用于中红外波段(1.5~10μm)的光子晶体光纤(PCF),包括单模、高非线性PCF等等,同时我们可以提供定制其他例如多模光子晶体光纤、保偏光子晶体光纤等(在其中,芯径、数值孔径将被改变)。可以加FC/PC连接头,3mm铠甲套管。除以下列出的不同种类光子晶体光纤之外, 我们还可为客户定制不同材料基质不同结构设计的PCF(硫化物、碲化物、硒化物等),例如保偏光子晶体光纤、锥形光子晶体光纤等等。产品特征:工作波段1.5~10μm低传输损耗极好的空间光束质量应用领域:中红外光束传输(QCL, OPO)非线性应用:超连续谱技术参数型号AsSe SM1AsSe SM2玻璃材料As32Se68Refractive Index@1.55μm2.81Nonlinear Refractive Index n2=1.1×10-17(m2/W) (=500×n2silica)工作波段范围(μm)3-91.5-8典型衰减值(dB/m)2.5@1.55μmαα纤芯直径(μm)=13包层直径(μm)=125典型数值孔径@5μm0.4零色散波长点(μm)=5各个波长处衰减度MP-ASSE-SM1 MP-ASSE-SM2订购型号:MP-AsSe-SM1中远红外全波段单模光子晶体光纤参数:工作波段范围(μm)3-9,典型衰减值(dB/m)2.5@1.55μm,α,纤芯直径(μm)=13,包层直径(μm)=125,典型数值孔径@5um:0.4,零色散波长点(μm)=5MP-AsSe-SM2 中远红外全波段单模光子晶体光纤参数:工作波段范围(μm)1.5-8,典型衰减值(dB/m)2.5@1.55μm,α,纤芯直径(μm)=13,包层直径(μm)=125,典型数值孔径@5um:0.4,零色散波长点(μm)=5有意者欢迎咨询我司!

光子晶体光纤相关的仪器

  • NKT Photonics公司于2009年由世界大型的商业化微结构特种光纤供应商Crystal Fibre公司和业界前沿的窄线宽光纤激光器和连续谱白光光源制造商Koheras公司合并成立,隶属于丹麦有名的工业集团NKT Holding。近几年市场地位不断加强,收购Onefive,加快了NKT在快激光器领域的步伐。NKT 快激光器系列可提供从飞秒到皮秒的大范围脉冲长度,输出功率高达100W,提供固定或可调重复频率。NKT Photonics致力于研发、制造商用和工业级特种微结构光纤(光子晶体光纤)、高功率光纤放大器、连续谱白光激光器和窄线宽DFB光纤激光器。这些产品均已在众多领域得以应用,如:生物光子学、计量、光纤传感、相干通信、测试测量、高精度光谱学以及激光雷达等。利用光子晶体光纤技术制做的双包层光纤称为空气包层光纤,特点: 大模场面积单模光纤;可承受很高的峰值功率;高脉冲能量(单模时);高泵浦数值孔径(0.6~0.7);高的泵浦吸收效率(达30dB/m);全硅结构(无聚合物,保证了良好的功率处理能力);良好的温度特性;高可靠性。应用:高脉冲能量光纤放大器;光纤激光器;大模场面积,可以支持高功率水平;具有大数值孔径多模波导,可以有效收集反向散射光或者荧光。产品型号、参数:型号 纤芯直径[μm]内包层直径[μm]外包层直径[μm]涂覆层直径[μm]MFD[μm]纤芯NA@1μm泵浦吸收@976nm[dB/m]泵浦吸收@915nm[dB/m]泵NA@ 950nmDC-135-15-PM-Yb15 ± 1135 ± 5280±10345±2016 ± 10.055± 0.012.8~80.6 ± 0.05DC-200-40-PZ-Yb40 ± 2200 ± 5450±20540±3030 ± 2~0.03~10~30.55± 0.05DC-200-40-PZ-Si40 ± 2200 ± 5450±20540±3030 ± 2~0.03--0.55± 0.05aeroGAIN-ROD-PM55-Power55200 ± 101000±100NA45 ± 5-155 ± 0.5≥0.5aeroGAIN-ROD-PM85-Power85260± 101000±100NA65 ± 5-155 ± 0.5≥0.5
    留言咨询
  • PHOTONIC CRYSTAL FIBER INTERFACING光子晶体光纤(PCF)连接头ALPhANOV是一个光学和激光技术中心,拥有光纤激光设计和熔接光纤组件的丰富经验。ALPhANOV与NKT Photonics合作,提供光子晶体光纤(PCF)的最终处理解决方案。例如光纤的准备,包括PCF接头、密封和PCF切割、端帽PCF 和 带模式适配器的PCF。ALPhANOV可以处理NKT Photonics的整个PCF产品线,范围从双覆层大模式面积光纤(例如DC-200/40-PZ-Yb和棒式光纤“rod-type fibers”)到被动PCF(例如空芯光纤和非线性光纤)。ALPhANOV公司的一个使命是帮助用户开发基于光学和激光的创新的产品。PCF的引入,经常会在性能、紧密度和可靠性方面有一些实质性的优势。通过与NKT Photonics的合作,ALPhANOV可以分享其与PCF使用者的经验,并帮助他们更快的得到创新的和高效的解决方案。 Photonics Crystal Fibers光子晶体光纤(PCF)HOLLOW-CORE FIBERS 空心光纤光子带隙(空芯)光纤在被微结构包围的空隙中传导光。光子晶体光纤(PCF)就是在石英中周期性排布空气孔形成的。光子带隙引导机制跟传统的全部内部反射引导原理是完全不同的。此新技术为无非线性影响和材料损伤的高功率传输提供了基础。 例如: HC-440 HC-532 HC-580 HC-800 HC-1060 HC-1550 HC-19-1550 HC-2000LARGE MODE AREA FIBERS大模式面积光纤大模式面积晶体光纤,涵盖了覆盖了用于衍射极限高功率传输的光纤,可以在一个大的波长范围内用于单模式操作——不停止的单模式操作。大模式面积使高功率能够在光纤中传输,而不会有材料损伤,或由光纤的非线性特性会导致的有害效应。例如: LMA-5 LMA-10 LMA-10-UV LMA-15 LMA-25 LMA-PM-5 LMA-PM-10 LMA-PM-15YTTERBIUM DOPED DOUBLE CLAD FIBERS掺镱双包层光纤掺镱双包层光纤拥有最大的单模纤芯,可以放大到更大的功率水平,通知保证很好的模式质量和稳定性。例如: DC-135-14-PM-Yb DC-200/40-PZ-YbNONLINEAR FIBER非线性光纤优化用于超连续光谱产生和非线性波长转换,非线性光子晶体光纤可实现一种独特的定制色散图形和非常高的非线性系数的组合。例如: NL-PM-750 SC-5.0-1040 (PM)End-capping端帽SMALL END-CAPS小端帽用于所有的PCF光纤纯硅可选不同的直径和长度可选不同抛光角度小的端帽不仅可以保护光纤的微结构避免沾污和湿气,还可以在不改变N.A.的情况下降低输入和输出端的光束影响。S-end-cap S号端帽§ 端帽直径:125 μm§ 端帽长度:≤100 μm§ 抛光角度:0°§ 材料: 纯硅M-end-cap M号端帽§ 端帽直径:从125 μm 到 400 μm§ 端帽长度:≤400 μm§ 抛光角度:0°§ 材料: 纯硅L-end-cap L号端帽§ 端帽直径:从400 μm 到 1.5 mm§ 端帽长度: ≤1.5 mm§ 抛光角度:0°§ 材料: 纯硅端帽选配项目§ 抛光角度 (最大 12°) § 长度§ AR涂层* 特殊的端帽开发可与我们咨询5×5 MM END-CAPS 5×5 mm端帽用于高能量激光束用于LMA 或 DC 光纤锥形几何形状纯硅0°或 5°抛光角度,AR涂层这些端帽用于高能量系统。独特的几何形状可以可以实现光纤的紧密结合,从而提供了把他们容易的固定到支架上的可能性。规格§ 端帽直径: 5 mm§ 端帽长度: 5 mm§ 抛光角度: 5°或0°,AR@800-1300 nm§ 材料: 纯硅(其他AR涂层可与我们咨询)尺寸锥形端帽抛光0°,AR 涂层为800 nm - 1300 nm 锥形端帽抛光5° PCF connectors PCF接头FFC/PC connectorsFC/APC connectorsSMA connectorsSpecifications规格Standard end-cap diameterFiber clad diameterFiber clad diameterFiber clad diameterStandard end-cap length100 μm100 μm100 μmPower limitations500 mW injection loss500 mW injection loss500 mW injection lossFerrule typeCeramicCeramicMetallicFerrule diameter2.5 mm2.5 mm3.2 mmPolished angle0°8°0-12°Options选配项On-demand end-cap lengthFrom 20 μm - 400 μmFrom 20 μm - 400 μmFrom 20 μm - 400 μmOn-demand end-cap diameterFrom fiber size to 400 μmFrom fiber size to 400 μmFrom fiber size to 400 μmPM alignmentFast or slow axisFast or slow axisFast or slow axisDimensions尺寸 SMA-1 connectorsSMA-2 connectorsSMA-6 connectorsSMA-AF connectorsSpecificationsStandard end-cap diameterFiber clad diameterFiber clad diameterFiber clad diameterFiber clad diameterStandard end-cap length100 μm100 μm100 μm100 μmPower limitations1 W injection loss2 W injection loss6 W injection loss200 W injection lossFerrule typeMetallicMetallicMetallicMetallicFerrule diameter3.2 mm3.2 mm3.2 mm3.2 mmPolished angle0-12° ±10-12° ±10-12° ±10-12° ±1OptionsOn-demand end-cap lengthFrom 20 μm - 1.5 mmFrom 20 μm - 1.5 mmFrom 20 μm - 1.5 mmFrom 20 μm - 1.5 mmOn-demand end-cap diameterFrom fiber size to 1.5 mmFrom fiber size to 1.5 mmFrom fiber size to 1.5 mmFrom fiber size to 1.5 mmPM alignmentFast or slow axis
    留言咨询
  • 紫外空心光子晶体光纤 —— 可传输266-355nm紫外皮秒激光脉冲上海昊量光电设备有限公司推出一系列Kagome型中空光子晶体光纤,Kagome光纤是一种不依赖带隙导光的新型空心微结构光纤。UV波段空心光子晶体光纤(无暗化)结构设计灵活、损伤阈值高、损耗低(高透区损耗可低至~40dB/km)、支持宽带传输(100-500nm)。UV波段空心光子晶体光纤(无暗化)可通过改变纤芯所充气体及调节气压实现对光纤色散、非线性效应的有效调制,在强场物理、超强激光技术等领域研究中优势突出。我们的中空光子晶体光纤工作波段包含266nm-3μm范围内的大部分常见波长,主要包括266-355nm、405-450nm、515-532nm、780-800nm、1030-1064 nm、1550nm、2μm波段,具有近单模传输、低色散低损耗、承受功率高(可承受50W或者500μJ&百fs激光脉冲),宽波段传输等特点。主要应用包括激光微加工、激光脉宽压缩、激光频率转换等应用。关键词:紫外光子晶体光纤,UV 光子晶体光纤,Kagome 光子晶体光纤,Kagome光子晶体光纤,Kagome,反谐振,空心光子晶体光纤,空心光纤除了裸纤维,同时我们提供针对该系列空心光子晶体光纤的充气阀门,简化了相关用户的实验方案,如下图所示:下表为传输损耗和光纤色散优化在266nm-355nm波段的空心光子晶体光纤参数,如您需要其他波段,请联系上海昊量光电!PMC-C-UV Hollow-core Fiber optimized for 266-405nm rangePhysical PropertiesCore ContourHypocycloidInner core diameter25μm±1 or 40μm±1Output fiber diameter200μm or 230μm±1%Fiber coating diameter400μm ±30μmOptical Propertiescenter wavelength355nmAttenuation @355nm150dB/kmAttenuation @343nm150dB/kmDISPersion @343nm-355nm-5 5ps/nm.km 关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询

光子晶体光纤相关的试剂

光子晶体光纤相关的方案

  • 飞纳台式扫描电镜为光子晶体光纤发展开辟新路
    光子晶体光纤的生产中对光纤小孔的尺寸控制尤其重要,其严重影响着该光纤的性能。利用飞纳台式扫描电镜和其孔径统计分析测量系统可在生产流程中快速识别光纤中的孔洞,在低倍和高倍下孔洞边缘均可以识别准确清晰,并直接给出孔洞的面积,长轴,短轴,长宽比,平均直径等参数,为得到高质量的光子晶体光纤提供有力保障。
  • 光子晶体的显微光谱角度分辨
    光子晶体样品的显微角分辨谱光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构。光子晶体具有能带特性,其不同方向的光学性质不同,呈现各向异性。研究光子晶体材料的光谱性质必须使用角分辨设备。 复享显微共焦角分辨光谱仪是微纳光子结构研究领域的重大突破,它能够针对微小样品进行角度分辨光谱测量,是研究微纳光学结构、光子晶体纳米纤维的利器。复享为您提供两种规格的配置,一种介于商用显微镜,另一种基于定制显微镜。使用定制显微镜,可以达到更加宽泛的光谱范围,该设备是目前在显微角分辨光谱测量领域唯一的成熟商业化设备。
  • 扫描电镜在光子晶体研究方面的应用
    光子晶体(photonic crystal)的概念起源于 1987 年,由科学家 S.John 和 E.Yablonovitch 提出并定义。光子晶体是一种由不同折射率的介质周期性排列而形成的人工微结构。介电系数在空间上的周期性变化伴随着空间折射率的周期性变化,当介电系数的变化足够大且其变化周期与光波长同步时,光波会产生带状结构,即光子能带结构(photonic band structures)。频率落在光子能带中的电磁波或光是禁止传播的,于是这些频率的光会被反射出来,成为人们观察到的颜色。被禁止的频率区间就被称为光子频率带隙(photonic band gap),也叫光禁带,人工合成的具有光禁带的物质被称为光子晶体,它的颜色通常被称为光子晶体的结构色(structure color)。

光子晶体光纤相关的论坛

  • 光子晶体 reflectance 超过100%,如何解释?

    氧化钛光子晶体测紫外可见反射谱,其中有一个样品reflectance超过100%,在150%附近了,重复了很多次了,不知道如何解释。用硫酸钡做基线,仪器是 Cary 5000 Spectrophotometer 带的 The Praying Mantis accessory上做的。由于是光子晶体,因此样品是块体材料( 2 mm),这个有影响?

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

光子晶体光纤相关的资料

光子晶体光纤相关的资讯

  • 光子晶体光纤与传统光纤差异较大,市场前景具有不确定性——访锐光信通副总经理张涛
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了锐光信通科技有限公司副总经理张涛。据了解,锐光信通主要面向特种光纤领域,属于光纤行业的细分领域。本次展会,锐光信通主要带来了三大解决方案,面向陀螺仪用户的传感光纤、光子晶体光纤以及面向激光制造的的激光光纤。以下为现场采访视频:
  • 3D打印新技术精细“雕刻”光子晶体
    五彩缤纷的蝴蝶翅膀、光鲜靓丽的孔雀羽毛、闪耀着金属光泽的昆虫甲壳……点缀着这些大自然奇妙杰作的并非普通色素,而是光与光子晶体结构发生散射、干涉、衍射等作用后形成的结构色。光子晶体是由不同折射率介质周期性排列而形成的光学超材料,也被称为光学半导体。通过设计和制造光子晶体材料及相关器件来控制光子运动,并在此基础上进一步实现光子晶体材料的各种应用,是人们长久以来的梦想。近日,中国科学院化学研究所绿色印刷院重点实验室研究员宋延林、副研究员吴磊等研究人员组成的研究团队利用连续数字光处理(DLP)3D打印技术,实现了具有明亮结构色的三维光子晶体结构制备,为创新结构色制备方法及扩展3D打印的应用开创了新的途径。创新方法,让光子晶体精准“生长”光子晶体作为未来光子产业发展的基础性材料,其独特的三维光学控制能力使其在集成光学元件、光子晶体光纤及高密度光学数据储存等领域都有广阔的应用前景。3D打印技术近年来的成熟发展,也使其成为最好的光子晶体制备手段之一。宋延林向记者介绍,虽然近年来有一些将3D打印技术应用于多种图案化光子晶体制备的案例,但普通的3D打印技术因为墨水中树脂的光固化速度和纳米粒子组装速度的差异,存在结构色效果较差、打印精度较低、难以实现复杂三维结构等问题。上述方法制备的多种图案化光子晶体具有表面形貌粗糙和保真度较差等缺陷,难以被广泛应用于光学器件中。要实现高精度、高保真的光子晶体结构3D打印,就必须要开拓出新的方法。此次研究中,研究团队使用了连续数字光处理3D打印技术。与常见的将原材料层层挤出、堆叠而成的3D打印技术不同,连续数字光处理3D打印技术基于光敏树脂材料在紫外线照射下会快速固化的特性,利用紫外线光束在光敏树脂溶液中雕刻形成3D结构。此次研究团队所采用的连续数字光处理3D打印方法主要的打印步骤如下:首先,在透明基板上滴上墨水,将墨水上方的成型平面缓缓下降,与墨水进行接触;接下来,通过基板下方的光束将打印图案照射在墨水上;之后,受到紫外线照射的墨水会凝固成预先设计好的形状。一滴滴小小的墨水被“雕刻”为一个3D光子晶体结构,其整个产生的过程仿佛是从基板上“生长”出来。宋延林表示,研究团队所采用的连续数字光处理3D打印技术主要在两方面上取得了重要改进。在打印模式上,市面上的光固化连续数字光处理3D打印技术大都是层层打印,打印速度较慢。研究团队研发出的低黏附光固化界面,让液滴与基底之间的粘附力极低,打印过程没有任何“拖泥带水”,能够实现迅速连续打印成型,极大地提升了打印的速度。在成型方式上,市面上的光固化连续数字光处理3D打印技术通常要采用液槽来盛装大量液态树脂。采用液槽来盛装大量液态树脂的方式导致在连续打印过程中,不该固化的区域因为受到照射而固化,不仅造成原材料的大量浪费,也降低了连续打印过程中的稳定性及分辨率。研究团队摒弃了液槽,而是以单墨滴为成型单元,通过控制固化过程中气、固、液三相接触线,显著减少了液体树脂在固化结构表面的残留。同时,以单墨滴为成型单元还降低了界面粘附,增加了液体内部树脂的流动,显著提高了3D打印的精度和稳定性。克服困难,逐个击破墨水难题除了创新打印方式,此次研究中,研究团队对打印所需的墨水也进行了大胆革新。“我们这次研究中最困难的环节就是打印墨水的开发。”宋延林表示。针对上述问题,研究团队创造性地研发出了利用氢键辅助的胶体颗粒墨水,赋予了打印结构高质量的结构色与光子晶体特性。研究团队研发的墨水由三部分组成:实现三维结构构建的光固化单体和光引发剂、保证结构色的纳米颗粒、减少光散射的添加剂。在单体的选择和引发剂合成上,考虑到环保要求,研究团队合成的墨水为水性体系。但由于目前广泛使用的引发剂大多为油溶性,少数水溶性的引发剂又与3D打印所采用的光波波长不匹配,光引发效率较低。为了能够得到较高光引发效率的水溶性引发剂,团队查阅了大量文献并进行了反复的摸索实验,最终成功合成出了水溶性的光引发剂。除了引发剂,光固化单体的选择更加至关重要。宋延林表示,合格的光固化单体必须满足既能实现三维结构化,又不能在打印过程中引起聚合物和纳米颗粒的相分离的条件。论文第一作者张虞表示,“最终我们找到了丙烯酰胺这种适合的单体。”选定单体后,还需确定光固化单体与纳米颗粒的比例。如果光固化单体较少,就会无法打印。反之,如果光固化单体太多,则会影响纳米颗粒的运动和分散,进而影响结构色的质量。团队经过大量实验,对多种不同的比例组合反复尝试,最终确定了最佳比例。最后,为了减少光的散射对打印过程的影响,尽可能地提高打印结构的色彩饱和度,在添加剂的选择上,团队尝试了包括碳纳米管、碳纳米纤维以及黑色墨水等多种材料。但上述材料均存在种种缺陷,研究团队最终将经过特殊处理的炭黑作为添加剂。前景广阔,让结构色“五彩斑斓”在此次研究中,研究团队发现,视角、胶体颗粒粒径以及打印速度等因素都会影响3D结构色的呈现。当胶体颗粒粒径和打印速度不变时,随着视角增加,结构色蓝移,即从橙色转变为黄绿色,最后转变为蓝紫色。这种视角依赖的特性,使得连续数字光处理3D打印技术在个性化珠宝配饰及装饰、艺术创作等领域有着比较广阔的应用前景。除了视角变化会影响结构色的呈现外,当打印速度固定时,控制固定胶体颗粒粒径、调节打印速度,都可以得到覆盖可见光范围的系列结构色。采用顺序切片、依次投影、分段打印的方式,还可使同一物体结构上呈现出多种结构色。除了实现“信手拈来”般地制备结构色,研究团队利用此种连续数字光处理3D打印技术制备出的多种具有光滑内外表面、低光学损耗及颜色选择性的线性光传输和非线性光传输3D结构,也验证了该方法在制造高效光学传输器件方面的独特优势。宋延林表示,未来研究团队会在光子晶体功能器件的制备方面继续进行新的探索。
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。  英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。  研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。  由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制