高集成零像差仪

仪器信息网高集成零像差仪专题为您提供2024年最新高集成零像差仪价格报价、厂家品牌的相关信息, 包括高集成零像差仪参数、型号等,不管是国产,还是进口品牌的高集成零像差仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高集成零像差仪相关的耗材配件、试剂标物,还有高集成零像差仪相关的最新资讯、资料,以及高集成零像差仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高集成零像差仪相关的厂商

  • 贰零壹捌科技(天津)有限公司是一家专业从事纳米颗粒与纳米薄膜制备设备以及复杂真空系统设计、开发、制造、销售的高科技公司。创始人曾在德国和美国的高水平大学学习与工作,致力于团簇束流沉积技术和质谱、能谱等复杂真空系统的研究和设备开发。因此,公司以纳米团簇束流技术见长,拥有雄厚的复杂真空系统设计、制造及研发能力。开发完成的纳米团簇束流源及质量选择和沉积系统设备达到了国际先进水平,拥有研究型和生产型两个系列。擅长纳米团簇束流沉积技术在工业应用领域的方案设计、技术服务与产品代工,尤其适合于纳米光电与传感器件、微机电器件工业制程领域提供系统解决方案。公司采用国际上先进的“设备与工艺相结合”模式进行研发、生产与销售,引领世界先进技术。公司拥有良好的售前服务平台、完善的售后服务体系、广泛的技术支持能力,致力于向广大的国内外用户提供性能高、稳定性强、安全可靠的产品。公司配备了优秀的科研人员,为用户提供售前、售后工艺服务与工艺技术支持,包括:设备选型实验、设备考察实验、项目预研与立项、合作攻关、工艺指导、工艺培训等。 广泛应用在光学、半导体、离子束、真空设备、真空机械、科研仪器及相关控制软件。镀膜、沉积设备、超高真空设备、复杂系统联动控制、低维材料制备、石墨烯传感器及系统集成:v v沉积设备:化学(催化)、材料、新材料、电极材料(新能源)(磁控溅射(单靶或多靶)、热型、电子束轰击型) v复杂真空系统:超高真空环境下,材料制备、原位表征、材料转移、集成LEED,角分辨激光光电子能谱(磁瓶和动量谱仪型)、高分辨质谱、医用质谱、各类离子与团簇源(离子源包括高电荷态ECR、中等离子态强流ECR离子源、磁控溅射强流团簇源、整发型团簇源)、不同功能光谱、质谱、电子能谱的多功能系统集成。 v抛光:荷能纳米颗粒超光滑表面抛光 v超高真空系统设计、超高真空系统相关联动系统软件、超高真空腔体与部件的加工、离子光学系统的设计 v真空部件加工
    留言咨询
  • 北京东方中科集成科技股份有限公司(以下简称"东方集成"或"公司")是在中关村科技园区注册的高新技术企业,于2000年由中国科学院有关单位发起设立,目前已经成为中国电子测试测量领域领先的综合服务商。  “东方集成”总部设在北京,在上海、南京、苏州、深圳、武汉、西安、成都等地设有分支机构,拥有一支超过200人的专业团队。通过与业务伙伴的紧密合作,凭借覆盖全国的营销服务网络,致力于为客户提供专业、方便、快捷的本地化服务。  "东方集成"年销售额在数亿元人民币,为客户提供产品增值销售、应用解决方案、科技租赁、计量校准、维修维护和科技资产外包管理等综合服务。  东方集成AIBU系统集成事业部客户,立足于科研院所、半导体行业, 通过与SENTECH、光焱科技等厂商合作,为客户提供等离子体刻蚀(RIE, ICP-RIE)、等离子化学气相沉积(PECVD, ICP-PECVD)和中红外光谱椭偏仪(SENDIRA)、激光椭偏仪(SE400adv-PV)等,并为客户提供系统集成服务。
    留言咨询
  • 广东高格科技仪器设备有限公司(以下简称高格),自2006年成立以来一直专注于物性、环境、力学类检测仪器的生产和研发,产品符合GB、ISO、ASTM、EN、JIS、TAPPI、CNS、BS、ANSI等多项标准。为每一家企业提供高品质的实验室整体解决方案,机台核心零部件使用进口配件,严格按照ISO标准强化品质管理,以提升客户满意度为己任。
    留言咨询

高集成零像差仪相关的仪器

  • Fergie 零像差光谱仪 400-860-5168转2255
    美国PI 公司作为科学级CCD 相机和光谱仪的领先者,经过数十载技术创新,推出世界首台全焦面零像差成像光谱仪Fergie。它采用内置高灵敏度科学级CCD 芯片的全集成式紧凑设计,最简化光谱实验硬件设置。零像差不仅最大化提高了光谱分辨率,也让成像和光谱的切换轻松自如。辅以Fergie CUBEs 模块化设计,无论是吸收、透射光谱,或是荧光、拉曼光谱,光路搭建都变得易如反掌。 Fergie零像差光谱仪产品特点零像差光学设计,首次实现同等焦长下全波段零彗差、零像散,最小化光谱测量的仪器展宽和非对称性展宽。Fergie CUBE 采用预准直模块化设计,多种光源、样品室、光纤等选件,可轻松快速搭建光谱系统。内置科学级背照式CCD,高达95%的峰值量子效率,半导体制冷,适合长时间曝光,且可进行Binning 提升信噪比。先进的64bit LightField 采集软件,集成强大的在线处理引擎。配合Intellical 灯源可实现波长、强度一键校准,确保光谱数据更准确。光谱动力学读出模式下,高频采集光谱数据,可实现us 级时间分辨。帧转移CCD 芯片,可实现高达34f/s 的快速成像采集。参数型号型号FER-SCI-BRXFER-SCI-BX芯片类型PI 独有的深度掺杂型背照式芯片,镀eXcelon 和UV 膜,帧转移型PI 独有的背照式芯片,镀eXcelon 和UV 膜,帧转移型芯片格式1024×256(含帧转移存储区1024×512)1024×256(含帧转移存储区1024×512)焦长80.8mm80.8mmF/#f/4f/4光谱分辨率全焦面0.20-0.24nm全焦面0.20-0.24nm可用波长范围VIS-NIR: 400-1100nm,UV-NIR: 200-1100nmVIS-NIR: 400-1100nm,UV-NIR: 200-1100nm单次成谱范围295g/mm 光栅540nm, 600g/mm 光栅268nm, 1200g/mm 光栅135nm295g/mm 光栅540nm, 600g/mm光栅268nm,1200g/mm 光栅135nm空间分辨率全焦面38.5 lp/mm @ 50%对比度 (Nyquist Limited)全焦面38.5 lp/mm @ 50%对比度 (Nyquist Limited)光栅安装可更换型单光栅转动塔轮可更换型单光栅转动塔轮像散/彗差全焦面0,任意波长和任意光栅角度全焦面0,任意波长和任意光栅角度狭缝10, 25, 50, 100, 150, 200, 300, 500 μm 3.3mm高,可更换型激光切割狭缝10, 25, 50, 100, 150, 200, 300, 500 μm 3.3 mm高,可更换型激光切割狭缝波长精度0.26nm0.26nm重复精度0.13nm0.13nm最低制冷温度-60℃-60℃系统读出噪声10 e- rms @ 1 MHz10 e- rms @ 1 MHz最大积分时间40 分钟数小时行转移速度5.6 μs/行-35 μs/行软件可调15.2 μs/行-95 μs/行软件可调光谱采集频率292 张/s (FVB)124 张/s (FVB)快速光谱采集频率10000 张/s (10 行合并动力学模式)5000 张/s (10 行合并动力学模式)非线性度1% @ 1 MHz1% @ 1 MHz可选增益1.5 e-/ADU, 3 e-/ADU1.5 e-/ADU, 3 e-/ADU数据接口USB3.0(标配3m USB 线缆)USB3.0(标配3m USB 线缆)I/O 接口3 个MCX 同轴接口(2个触发输出,1个触发输入),内置可编程时序发生器3 个MCX 同轴接口(2个触发输出,1 个触发输入),内置可编程时序发生器应用实例显微成像&光谱90s搭建拉曼光谱系统
    留言咨询
  • 用途 实际光学系统所成的像,都不可能完全符合理想,所谓像差也就是实际光学系统和理想光学系统成像的差别。像差的大小也就代表了光学系统成像质量的优劣。当成像光束孔径角增大或成像范围增大时就会产生球差、慧差、像散、场曲和畸变等单色像差,当光学系统采用白光或者复色光成像时还会产生位置色差和倍率色差等。像差使像变模糊、失真,在光学测量中还会影响测量精度。此外,光学系统像差理论是《工程光学》课程重要章节,也是教学的难点章节,针对此知识点的教学实验产品匮乏。我公司开发的像差测量实验采用专门设计的像差镜头,像差现象清晰;涉及知识点紧贴像差理论的重点内容,是学生掌握像差理论非常理想的教学实验系统。实验内容1. 平行光管的调节使用及位置色差的测量2. 星点法观测光学系统单色像差3. 阴影法观测光学系统像差与刀口仪原理4. 剪切干涉测量光学系统像差实验效果图知识点 光学系统的球差、彗差、场曲、像散、位置色差、畸变、星点法、阴影法、剪切干涉法主要设备参数1. 光源:He-Ne激光器:P>1.5mw,λ=633nm,模式TEM00,安全保护高压插头2. 平行光管组件:光源:白光/三色LED,P>1W,亮度连续可调平行光管:D/F=1:10,L=550mm,Ф50mm,f=500mm星点孔:Ф15μm,精度±0.5μm3. 空间滤波器:40X显微物镜,15μm针孔4. 光学组件:光学平晶:Tc=20mm,光洁度IV像差镜头:球差、彗差、场曲、像散待测透镜:Ф25mm~40mm5. CMOS相机:分辨率:1280 x 1024,像素大小:5.2 μm x 5.2μm,接口:USB2.06. 光学导轨:L x W=1000mm x 80mm,配套滑块、一维移动滑块、调节支座、调节支杆7. 实验软件8. 实验讲义
    留言咨询
  • 尼康公司全新推出更精确,更高效的常规倒置显微镜产品ECLIPSE Ts2 ECLIPSE Ts2常规倒置显微镜是入门级倒置显微ECLIPSE TS100的更新产品,它继承了ECLIPSE TS100极为可靠的光学性能,同时提升了功能性和使用效果。尼康新开发的浮雕反差观察方式使用方便,专为细胞观察设计,提升了该产品在生物医药基础研究领域的用途。 这款产品将在“BMB2015 生物化学与分子生物学大会”(日本神户,12月1日-4日)和“美国细胞生物学社会”(美国加利福利亚州圣地亚哥,12月12日-15日)上进行发布。 产品信息 产品名称:常规倒置显微镜ECLIPSE Ts2 ECLIPSE Ts2 (透射照明型) ECLIPSE Ts2-FL(透射照明和落射荧光照明型) 上市日期:2016年1月 ● 产品介绍 倒置显微镜采用物镜朝上的设计以便从标本的下方进行观察,因此被广泛地应用于生物医药实验室,用于查看培养细胞的生长状态,荧光蛋白的表达情况等,尼康新推出的ECLIPSE Ts2常规倒置显微镜操作简便,光学性能优异。 ● 产品特点 1. 新开发的反差观察方式“浮雕反差” 相差观察是未经染色的透明活细胞最主要的观察方式,浮雕反差作为一种新的反差观察方式,操作更加简单,并且可以呈现较厚样品(如iPS细胞)的三维立体反差效果,传统的相差观察方式则无法做到这一点。 *相差观察技术利用了光的衍射和干涉特性,将不可见的光的相位差转换为可见的光的亮度差,以观察未染色的透明细胞。2. 采用LED照明 ECLIPSE Ts2和ECLIPSE Ts2-FL均采用LED透射光照明,因此,无论是透射照明还是落射荧光照明都无需再进行传统的调节和频繁的更换灯泡。此外,LED照明的零预热时间使得细胞观察更为快速。 新的可选配件遮光板,能够阻挡环境光线,使得在明亮的室内也能进行荧光观察,并得到更高性噪比的荧光图像。3. 提升可操作性 主机前面板上设计了“透射光/反射荧光”开关和切换按钮,ECLIPSE Ts2-FL机身左侧为透射光照明控制,机身右侧为落射荧光照明控制。合理的控制按钮设计提高了操作的便利性。 ● 性能参数 型号Ts2Ts2-FL观察方式明场,相差,切趾相差,浮雕反差明场,相差,切趾相差,浮雕反差,落射荧光光学系统CFI60 无限远光学系统照明LED透射照明LED透射照明落射荧光照明目镜10x(F.O.V.22)物镜转盘五孔物镜转盘聚光镜超长工作距离聚光镜(NA 0.3、W.D.75mm)浮雕反差观察浮雕反差滑块
    留言咨询

高集成零像差仪相关的资讯

  • “土壤详查”解决方案征稿启事
    p  继a href="http://www.instrument.com.cn/zt/tushitiao" target="_blank" title=""strong“/strongstrong土十条”/strong/a后,《全国土壤污染状况详查总体方案》经国务院批准,已于2016年12月27日联合印发,这标志span style="color: rgb(255, 0, 0) "strong计划投资数十亿元全国土壤污染情况的详查正式启动/strong/span。 strong“土壤详查”/strong工作的启动,势必会使土壤样品增多,对实验室的能力、实验人员的专业技能都提出了更高的要求。同时也将为a href="http://www.instrument.com.cn/list/sort/002.shtml" target="_blank" title=""光谱/a、a href="http://www.instrument.com.cn/list/sort/001.shtml" target="_blank" title=""色谱/a、a href="http://www.instrument.com.cn/list/sort/004.shtml" target="_blank" title=""质谱/a、a href="http://www.instrument.com.cn/list/main/03.shtml" target="_blank" title=""样品前处理/a等仪器设备的采购及a href="http://www.instrument.com.cn/application/industry-S02.html" target="_blank" title=""土壤/a检测行业带来巨大的市场前景。a href="http://www.instrument.com.cn/news/20161229/210106.shtml" target="_blank" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《环保部公布全国土壤详查实验室要求(附仪器列表)》/span/aa href="http://www.instrument.com.cn/news/20161229/210106.shtml" target="_blank" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "http://www.instrument.com.cn/news/20161229/210106.shtml/span/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/b04ff5fc-ecc2-4a69-85ee-af34db1b14f1.jpg" title="固体废弃物_副本11111.jpg"//pp  鉴于strong“土壤详查”/strong的发展态势及市场前景,strong仪器信息网/strong特别开设strong“土壤详查”/strong盘点专题,集中展示“土壤详查”涉及的产品、技术、a href="http://www.instrument.com.cn/application/" target="_blank" title=""解决方案/a,以及政策、市场等多方面的信息。/pp  在专题中,特别开辟strong《主流厂商和产品》/strong及strong《典型解决方案》/strong等模块,希望以图文并茂的形式进行展示,现在特别向各大仪器厂商征集相关内容,span style="color: rgb(255, 0, 0) "strong内容可从以下几点出发,但不局限:/strong/span/pp  strong1、贵公司在“土壤详查”或“土壤检测”中提供的仪器产品有哪些?/strong/ppstrong  2、贵公司在“土壤详查”或“土壤检测”方面提供的解决方案/应用方法有哪些?/strong/ppstrong  3、贵公司在“土壤详查”或“土壤检测”方面有哪些具体的计划和新的服务?/strong/ppstrong  4、贵公司对“土壤详查”或“土壤检测”的市场前景有哪些独特的见解?预测哪类仪器将会有爆发性的增长?/strong/pp  strong5、从整个土壤检测行业来看,目前还存在哪些问题?同时有哪些问题亟待解决?/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201705/insimg/6ebf7b8b-c85b-48ac-a8d1-77fa4ecf9174.jpg" title="timg_副本.jpg"//pp  strong文章投递方式(征文指定邮箱)/strong/pp  span style="text-decoration: underline color: rgb(0, 112, 192) "strong请将电子稿件用E-mail附件的形式传至:zhangwei@instrument.com.cn/strong/span/pp  需注明strong“土壤祥查或土壤检测征文”字样/strong,并提供联系人的详细通信地址、电话和E-mail地址。/pp  如有相关问题,请联系张女士,电话:010-51654077-8066;手机:15210061289。/pp  span style="color: rgb(255, 0, 0) "strong附征文撰写建议:/strong/span/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201705/ueattachment/6f76df77-1bb7-4700-885a-58791009a441.doc"“土壤详查”解决方案征稿撰写建议.doc/a/pp style="line-height: 16px "br//p
  • 依托中芯国际,针对集成电路装备零部件国产化需求,相关项目预计明年投产
    仪器信息网获悉,2月19日,由北京亦盛精密半导体有限公司建设的集成电路核心零部件及耗材制造基地项目进行环评公示,资料显示项目位于北京经济技术开发区,预计投产时间为2022年11月。项目所在地(图源 集成电路核心零部件及耗材制造基地项目环境影响报告表)据了解,北京亦盛精密半导体有限公司成立于2015年,注册资本10000万元,位于北京经济技术开发区,是一家高新技术企业,主营业务为硅环、硅电极加工、销售。公司目前具备加工制造刻蚀机使用的单晶硅环、多晶硅环、硅电极等零件的能力,已具备硅环加工、硅电极加工、硅材料清洗及镜面抛光的核心技术工艺。产品主要应用于14nm及以上Logic芯片(可应用于服务器、电脑、手机产品和新兴 AI 及 5G 等行业)和3D NAND、NorFlash存储芯片工艺干法刻蚀制程当中,主要产品单晶硅上电极是蚀刻腔体的重要组成部分,也是晶圆刻蚀工艺中使用的关键气体分配部件,其制造质量和精度直接影响芯片的质量和成品率。公示信息显示,该项目面向全球半导体装备及晶圆制造商,针对关键零部件国产化的需求。依托中芯国际创新中心,建立与中芯国际等国内一流的Fab厂紧密合作,开展核心零部件研发。打造具有国际竞争力的半导体装备零部件产业,实现零部件与装备、Fab 零距离接触的合作模式,建立完整的供应链体系,形成最紧密的协同智能制造新模式,提升全产业链的整体竞争能力。该项目基于企业承担国家02专项已有的核心技术成果,针对集成电路装备零部件国产化需求,新建自动化精密清洗线、高洁净度循环清洗线以及检验中心和仓储中心,并搭建智能信息化管理平台,建成国内一流的半导体装备零部件全工艺智能制造生产基地。本项目建成后,将实现硅、碳化硅和石英等核心零部件规模化制造,预计达产年可生产刻蚀环80000片(包括:硅环、石英环、SiC 环等),电极4000片(包括:硅电极、石英电极、SiC 电极等),达产年可实现新增销售收入4.5亿元。同时,项目建成的高洁净度循环清洗线可承接 3000 件 PVD/CVD 设备器件的清洗。 项目总投资 30000 万元,占地面积 14671.1m2,总建筑面积 19314.23m2。以下为该项目仪器设备清单序号名称规格型号数量(台、套)1加工中心VF-2SSYT;外形尺寸:3053×1884×2900(高)52加工中心VF-4SS;外形尺寸:3077×1900×3000(高)503数控车床SL-30;外形尺寸:3077×1900×3000(高)104精雕机JDHGT600_A10SH155线切割NG63106高洁净度循环清洗线107自动化精密清洗线48六站式超声波清洗机QT-AC0609549两站式超声波清洗机OC2-2830610双槽超声波清洗机QT-MC02097611污水处理设备40m3/h112环保在线监测系统113纯水设备20m3/h214大理石平台1200×800×300215矫正台1200×800×2016空压机110kW317卧式喷砂机1m1018湿式喷砂机1m419电弧喷涂ARC SPRAY220集尘塔121双面研磨机22B-5L-Ⅱ(3M)622双面抛光机ED22B-5P623超声波单槽清洗机6NT-1830-30624打标机TH-CO2LMS30625烘箱1000×1500×8001626高温烘箱627真空包装机1228叉车329检验型三坐标测量机330OGP外形尺寸:1000×1200×1500(高)431轮廓仪外形尺寸:500×800×500(高)532原子吸收光谱nov AA 350133高压测试仪Vitrek 955i134多参数比色仪DR1900135电子天平BSA124S336便携式离子计PXB-286137超声波强度测试仪PB-500238手提式电导率仪SC-110/8-243239手提式 pH测定仪TS-1240实体显微镜141测试检测平台342压力试验仪443仓储设备144ERP 系统145MES 系统146其他软件147服务器6附件:建设项目环境影响报告表.pdf
  • 【自传】像差校正电镜技术先驱之Harald Rose
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【简介】/span/strong/spanbr//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/efc046ba-50b1-4340-87d3-9ae63656c042.jpg" title="Harald Rose.jpg" alt="Harald Rose.jpg"//span/strong/span/pp style="text-align: center "strongHarald Rose/strong/pp style="text-align: justify text-indent: 2em "Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,在1930年代做了一些电子显微镜的开创性工作。/pp style="text-align: justify text-indent: 2em "Harald Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。/pp style="text-align: justify text-indent: 2em "他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。/pp style="text-align: justify text-indent: 2em "自2009年以来,Harald Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖,以及与Maximilian Haider、Knut Urban、Ondrej L. Krivanek一起获得2020年度科维理奖(Kavli Prize)。他还是英国皇家显微镜学会的荣誉院士。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【自传】/span/strong/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "1935年2月14日,我在不来梅出生,是父母Anna-Luise和Hermann Rose的第二个孩子。我的父母在数学上都很有天赋。父亲出生在一个奏乐世家,他本人擅长弹奏钢琴。由于20世纪20年代初的恶性通货膨胀,祖父破产,父亲被迫经商。父亲在商业上非常成功,在1937年成为黑森州著名公司Kaffee-Hag的销售代表。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 322px " src="https://img1.17img.cn/17img/images/202011/uepic/416726c6-966b-4f3b-b7dd-1d5755b7ee9a.jpg" title="图片1.png" alt="图片1.png" width="450" height="322" border="0" vspace="0"//pp style="text-align: center "strong5岁的我(右)、母亲Anna-Luise和7岁的哥哥。/strong/pp style="text-align: justify text-indent: 2em "1937年,我们搬到了达姆施塔特,在那里,父亲在一个名为Mathildenhohe的高档社区里建造了一栋非常漂亮的房子,这是德国新艺术(Art Nouveau)的聚焦点。1939年,我们搬进了这栋房子。span style="text-indent: 2em "一年后,希特勒发动了第二次世界大战,我父亲应征加入了德国军队。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "到1944年止,我只见父亲几次,最后一次有父亲的消息是1944年2月,也就是我9岁生日那天,父亲被报道在东线的行动中失踪,我们再也没有见过他。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "1944年9月11日,由于皇家空军袭击,我们的房屋被摧毁,12,000名平民也因此丧生。幸运的是,母亲和哥哥幸存下来了,并搬到了乡下的一个小村庄。1945年3月,美国士兵抵达这里时,对我们来说,战争结束了。/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "同年年底,我通过了达姆施塔特实科中学的入学考试,母亲在税务局找到了一份工作。由于没有住房,我们不得不搬到房子废墟里潮湿的地下室。每当下雨天,水从楼板上滴下来,母亲就将床移到干的地方。此外,食物很难买到,在二战结束和1948年5月德国货币改革期间,我们经常饿肚子。/pp style="text-align: justify text-indent: 2em "母亲不得不同时工作和照顾两个孩子,因此没有时间帮助我们完成学校作业。幸运的是,和德国其他大多数州一样,母亲不必支付黑森州文理高中(Gymnasium)的费用。在文理高中期间,我对数学越来越感兴趣。因为没钱买昂贵的数学书,所以我经常去达姆施塔特黑森州立图书馆(Hessische Landesbibliothek),该图书馆在指定时间内免费向学生提供科学书籍,学习书籍可以帮助我轻松地理解学校的数学知识。结果,我在学校几乎没有做过任何数学题,但在考试成绩中始终是最好的。1955年初,我以优异的成绩通过了自然科学的期末考试(Abitur)。/pp style="text-align: justify text-indent: 2em "因为成绩优秀,我被录取到达姆斯达特工业大学(现为Technical University Darmstadt)学习。 当时,由于大多数房屋物尚未修复,因此严格限制出入(numerus clausus)。 span style="text-indent: 2em "那时候,由于母亲不得不从银行借钱来重建我们的房屋,家里的财务状况仍然很危急。因为在黑森州读州立大学是免费的,所以我能够上得起大学。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我想报读电气工程课程,但由于电学的基础知识很少被提及,该课程没有达到我的期望。因为对电动力学的基础更感兴趣,所以我决定遵从自己的喜好,在学期结束的时候转到了物理和数学课。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "当时,祖父和母亲对我的决定很不满意。课程的变化对我来说并不容易,因为我错过了第一学期的物理和数学课程,这两门课程一般在4月份开始。为了赶上进度,我学习了大学理论物理学教授Otto Scherzer的力学讲义课程。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "Otto Scherzer是20世纪上半叶最著名的理论物理学家之一Sommerfeld的学生和助手。和他的老师Sommerfeld一样,Scherzer在微积分领域也很出色,并且对物理现象的本质有着深入的了解。在量子力学课程中,他通过将数学的形式主义与对原子世界神秘本质的物理解释相结合,展示出了卓越的教学技巧。由于我正确解答了所有的习题,Scherzer给我提供了一个带薪职位,即作为理论物理习题助手。我非常高兴,因为这给我带来了足够的经济支持来养活自己,而不必在假期从事建筑工作。此外,我可以免费住在母亲的房子里,那里距离学校步行只有几步路。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 450px height: 340px " src="https://img1.17img.cn/17img/images/202011/uepic/6379f81a-a42e-40a5-b9c5-52e65e4615a4.jpg" title="图片2.png" alt="图片2.png" width="450" height="340" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strong我于1997年在达姆施塔特工业大学应用物理研究所的研讨室中介绍六极校正器的功能。/strong/pp style="text-align: justify text-indent: 2em "我很钦佩Scherzer作为老师具有的杰出能力。因此,由于已经加入Scherzer的研究所,我决定在他的指导下完成Diplom论文,课题是找出通过利用电子显微镜不同的角度散射行为来检测不同原子的可能性。结果表明,由于当时的仪器技术水平不足,无法实现这一概念。尽管这令人沮丧,但量子力学散射的深入研究为我以后的电子显微镜成像工作奠定了基础。/pp style="text-align: justify text-indent: 2em "1961年初,我获得了学士学位。那时,大多数学生和科学家都渴望在科学的中心,即美国的一个科学研究机构待上一段时间。因此,我很高兴收到了正在Scherzer研究所休假的Fischer博士的录用通知,在马萨诸塞州贝德福德的空军剑桥研究所担任为期一年的研究顾问。我的研究重点是极短光脉冲半导体光电探测器。虽然这个课题很有实际意义,但并不符合我的兴趣。/pp style="text-align: justify text-indent: 2em "1962年回到达姆施塔特,我很高兴Scherzer同意我再次加入他的研究所攻读博士学位。按照Scherzer的建议,我在自己的论文中详细研究了非旋转对称电光系统的成像特性。目的是研制能够以另一种方式实现补偿球面像差的可行系统,就像在Scherzer-Seeliger校正器中实现的那样,并研制针对圆形透镜不可避免的球面和色差进行校正的系统。这个性质被称为Scherzer定理,它阻碍了电子显微镜在低于原子位移阈值的电压下工作时的原子分辨。/pp style="text-align: justify text-indent: 2em "Scherzer用非相对论近似推导了这个结果,我花了一些时间证明它在相对论下仍然有效。此外,我还证明了在任何光轴为直线的磁性系统中,色差校正是无法补偿的,但附加的电四极子是必不可少的。/pp style="text-align: justify text-indent: 2em "尽管Gottfried Mollenstedt在一个独创性的实验中表明,Scherzer-Seeleger校正器可以补偿球差,但这种校正并没有提高电子显微镜的分辨率,因为它受到了机械和电磁不稳定性的限制,而不是透镜光学缺陷的限制。/pp style="text-align: justify text-indent: 2em "为了能真正的改进,我计算了稳定性标准,必须满足此标准才能使像差校正提高分辨率。如今,不稳定性的影响在对比传递理论中被称为信息极限。计算表明,校正元件的数量必须尽可能少,并且必须机械固定,以最大程度地减少由不稳定性引起的非相干像差。我设计了一个电磁多极校正器,该校正器由四个电磁八极元件组成,每个元件都可以激发四极和八极场以及偶极和六极场的磁场以补偿寄生对准像差,从而避免了机械运动。/pp style="text-align: justify text-indent: 2em "获得博士学位后,Scherzer为我提供了一份薪酬丰厚的助理职位,为德语国家教授资格考试工作,这需要获得“venia legendi”,即在大学任教和成为教授的资格。/pp style="text-align: justify text-indent: 2em "在我题为“球面校正消色差透镜的性能”的“取得在大学授课资格的论文(habilitsschrift)”中,我论述了当时所有已知的校正器都有巨大的离轴昏迷,从而过度地减小了视野范围。因此,这些校正器不适用于常规透射电子显微镜(TEM)。/pp style="text-align: justify text-indent: 2em "为了补偿球差和色差和轴外彗差,并尽可能减少元素数量,我设计了一种利用对称特性的新型五元素校正器。后来证明,在设计高性能的滤光器、单色仪、镜面电子显微镜中的光束分离器以及六极校正器时,引入对称特性是关键。/pp style="text-align: justify text-indent: 2em "校正器是在1972年至1982年由德国研究基金会(DFG)资助的达姆施塔特项目框架内在Scherzer研究所成功制造和测试的。实验表明,该校正器引入了过大的五阶像差。为了充分减少这种像差,于1980年加入我团队的Max Haider用十二极杆元件替代了校正器的中央八极杆元件,该元件是在他的“毕业论文(Diplomarbeit)”中研制的。但是,由于没有计算机控制,他无法在短于光学系统稳定持续的时间内校准系统。结果就是显微镜的分辨率没有得到提高,尽管该项目在1982年Scherzer去世后结束并取得了成功。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 313px " src="https://img1.17img.cn/17img/images/202011/uepic/425afc87-d62b-403e-82d4-661f1809265b.jpg" title="图片3.png" alt="图片3.png" width="450" height="313" border="0" vspace="0"//pp style="text-align: center "strong1998年,我在测试SMART项目的镜像校正器。/strongbr//pp style="text-align: justify text-indent: 2em "在通过教授资格考试一年后,我于1970年被任命为达姆施塔特工业大学(TU)理论物理学的二级教授。1972年,Albert Crewe邀请我到芝加哥大学(University of Chicago)他的小组里待了一年。在此期间,我设计了一个新的探测器,可以在扫描透射电子显微镜(STEM)中实现高效相衬。而且,我计算了由非弹性散射电子形成图像中的非局部性。结果由Mike Isaacson和John Langmore在Crewe实验室使用STEM进行了证实。之后的20年里,我一直致力于解决与非弹性散射有关的相位问题,并与Helmut Kohl合作,他在其博士学位论文中对图像形成进行了深入的量子力学描述。/pp style="text-align: justify text-indent: 2em "1976年初,我离开达姆施塔特移居美国,被任命为纽约州奥尔巴尼市卫生局首席研究科学家以及纽约州特洛伊市RPI物理系的兼职教授。在奥尔巴尼期间,我遇到了辐射损伤问题,这限制了生物样品的电子显微镜图像的分辨率。为了尽可能的降低这种不良影响,电子显微镜小组的主要任务之一就是找到在可耐受电子剂量下提供有关样品最大信息的方法。一种可能性是,许多相同粒子(如核糖体)的低剂量图像的相关性。/pp style="text-align: justify text-indent: 2em "比我早几个月加入该小组的Joachim Fran研究了该方法很多年。他的成功的开创性工作于2017年获得了诺贝尔化学奖。我研究的是寻找方法提高仪器的光学性能,可以让所有散射电子都被利用。在该项目中,我设计了几种新的电子光学元件,如磁单色仪、象限STEM探测器和像差校正的Ω成像滤镜,它们由柏林的Dieter Krahl制造并成功测试,后来被纳入蔡司的TEM中。此外,我提出了STEM中的集成差分相衬成像技术,该技术已在几年前由FEI在商用仪器中实现。我们和同事Jü rgen Fertig首次研究了聚合电子波在STEM中通过厚晶物体的传播,结果表明,如果入射波的锥角超过布拉格角,相邻原子柱之间会发生强串扰。/pp style="text-align: justify text-indent: 2em "1980年,我回到达姆施塔特大学,成为应用物理研究所的全职教授,长期从事像差校正的研究。直到1986年,我每年都要回到奥尔巴尼几个月,以保持与奥尔巴尼的联系。/pp style="text-align: justify text-indent: 2em "回到达姆施塔特后不久,我在1980年夏季发现了一种出乎意料的简单校正器,可用于消除采用对称条件的电子透镜的球差,这是我在达姆施塔特四极八极杆校正器中使用的。众所周知,六极除了有三倍像差外,还有一个小的球差,其符号与圆形电子透镜的相反。因此,如果有可能以某种方式消除大的寄生三倍像差,则该系统可以用作校正器。计算表明,如果系统对近轴射线表现出双重对称性而不受六极场的影响,这确实是可能的。这种最简单的设置可以用作STEM的校正器,它由被两个六极杆包围的两个相同的圆形透镜组成。但是,没有足够的资金来实现这种校正器,因为那时所有高分辨率电子显微镜的分辨率都受到不稳定性的限制,而不是受到透镜缺陷的限制。到1980年代末,仪器的稳定性已不再是阻碍原子分辨的主要限制因素。/pp style="text-align: justify text-indent: 2em "1989年,通过在物镜和六极校正器之间增加另一个圆透镜二倍体,我发现了一个类似光学平面系统,该系统没有球差和离轴彗差。根据这一特性,校正器可以在稳定的TEM中实现大视野的原子成像。由于电子-光学平面的高对称性和简单性,我请教了Max Haider对利用这种新型校正器成功实现像差校正的看法。/pp style="text-align: justify text-indent: 2em "当时,Max正在海德堡的欧洲分子生物学实验室开发和试验用于低压扫描电子显微镜的四极八极校正器的性能,因此,他可以对我观点的可行性做出最好的判断。令我惊讶的是,Max从一开始就坚信校正器可以提供真实的原子分辨率。但是,需要足够的资金才能实现该校正器。/pp style="text-align: justify text-indent: 2em "幸运的是,在1989年9月于萨尔茨堡举行的Dreilä ndertagung会议上,我们与Knut Urban就材料科学成功进行像差校正的前景进行了成果颇丰的讨论。Knut Urban意识到校正像差的重要性,建议向大众基金会提交一个共同的(Rose, Haider, Urban)提案,因为美国暂停了对实现像差校正的资助,其它资助机构都拒绝了该提案。与其它机构做出的令人沮丧的决定相反,大众基金会冒险于1991年开始筹资。这种支持成就了Max Haider在1997年6月成功降低基础(未校正)的点分辨率后,大众基金会有史以来最成功的一个项目。/pp style="text-align: justify text-indent: 2em "1997年,柏林电子同步加速器BESSY II投放市场,并为开发新型光子源功能的新项目提供了资金。SMART项目的组织者Alex Bradshaw和Eberhard Umbach希望我成为致力于开发像差校正电子显微镜的科学家中的一员,该电子显微镜可以作为一个使用反射电子的低能量电子显微镜(LEEM)来工作,还可以作为一个由光子从表层发射的电子来形成图像的光发射电子显微镜(PEEM)来工作。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我团队的任务是设计、构造和测试磁物镜浸没透镜、分离入射和反射电子束的无像差分束器以及补偿透镜球差和色差的镜校正器。四年后,这些任务完成,主要是由我的非常优秀且有远大志向的学生Dirk Preikszas、Peter Hartel和HeikoMü ller实现的。除SMART项目外,我团队还参与了由ManfredRü hle发起的Sub-eV Sub-Angstroem显微镜(SESAM)项目,以开发具有高空间和高能量分辨率的电子过滤电子显微镜(EFTEM)。Stefan Uhleman的博士论文中设计了高性能的MANDOLINE滤光片,该滤光片由Zeiss制造,并结合到SESAM显微镜中。直到今天,显微镜在斯图加特的Max Planck研究所一直以出色的性能在运行。/span/pp style="text-align: justify text-indent: 2em "尽管我所在的团队取得了巨大的成就,在国际上享有很高的声誉,也获得了许多科学家和行业的称赞,但在2000年4月,达姆施塔特技术大学却在我退休后放弃了我的研究领域。由于和美国的许多同事保持良好的联系,应美国同事的邀请,我在橡树岭国家实验室(Oak Ridge National Laboratory)担任了一年的研究员。在这里,我遇到了来自阿尔贡(Argonne)的Murray Gibson,他的目标是研制一种可以进行任何形式原位实验的高分辨率电子显微镜。因为只有大的物镜室才能满足此条件,所以必须校正物镜的球差和色差,以在中压下获得约0.2 nm的高分辨率,这对于减少辐射损伤是必需的。/pp style="text-align: justify text-indent: 2em "我接受了Murray提出进行经校正物镜设计的邀请,于2001年9月移居阿尔贡。但是,2002年4月,因为检查出患有早期前列腺癌,我不得不停止在阿尔贡的工作。幸运的是,癌症尚未扩散,存活的机率很高。在美因兹大学(the University of Mainz)接受手术后,我花了一年多的时间进行康复。与此同时,随着Murray换任高级光子源主任,Lawrence Berkeley国家实验室(LBNL)的Uli Dahmen成为TEAM项目主任。美国能源部改变了该项目的目标,要求使用彩色球面校正的中压电子显微镜提供0.05 nm的分辨率。/pp style="text-align: justify text-indent: 2em "2003年9月,我搬到伯克利,成为LBNL高级光源(ALS)的一名研究员。由于ASL距国家电子显微镜中心(NCEM)仅几步之遥,所以我接受了Uli的邀请成为TEAM项目顾问,该项目始于2004年,并于2009年成功以0.047 nm的分辨率结束,这大约是氢原子的半径。我与CEOS公司合作设计了TEAM校正器,通过用电磁四极八极杆五联体替换六极校正器的每个六极杆,所得校正器通过保持双重对称性来补偿色差、球差和彗差。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ae3742be-568d-4dcb-8b7c-780a1720ceaf.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: center "strong2009年,我在M&M会议上与Hannes Lichte教授讨论问题。/strong/pp style="text-align: justify text-indent: 2em "2007年,乌尔姆大学(University of Ulm University)的Ute Kaiser教授邀请我就像差校正进行演讲,特别是关于六极校正器的设计和功能。该校正器是其新TITAN电子显微镜的一部分,该电子显微镜是FEI公司在2005年提供的第一台商业像差校正TEM。/pp style="text-align: justify text-indent: 2em "Ute Kaiser对二维物体(如石墨烯)的原子结构可视化很感兴趣。然而,在300 kV电压下操作显微镜时,样品立即被破坏。幸运的是,由于进行了像差校正,显微镜能够提供在80 kV(仪器的最低可调电压)下的原子分辨率。由于该电压低于石墨烯中原子位移的阈值电压,因此能够对其原子结构进行成像。该结果证明辐射损伤也限制了材料科学中许多物体的分辨率。由于很多对辐射敏感的二维物体的撞击阈值在20 kV至80 kV之间,因此对像差校正低压电子显微镜的需求很明显。因为在这种低电压下,色差超过了物镜的球差,并且需要大的可用孔径角才能获得原子分辨率,所以有必要开发新型的校正器。高性能SALVE校正器是通过将达姆施塔特四极杆-八极杆校正器的中央多极杆分成两个在空间上分离的元素而获得的。以该系统为起点,CEOS公司成员在由Ute Kaiser发起和领导的Sub-Angstroem低压电子显微镜(SALVE)项目的框架内开发了校正器。SALVE项目于2009年开始,在蔡司终止TEM生产后于2011年中断。2013年,FEI与CEOS公司一起继续了该项目,并于2017年结束,取得了意想不到的成功,显微镜的分辨率比合同所要求的提高了近30%。在SALVE项目开始时,我成为Ute Kaiser团队成员,并于2015年被任命为Ulm大学的高级教授。/pp style="text-align: justify text-indent: 2em "除了和在量子力学基础上设计电子光学组件和发展电子显微镜成像理论外,我对了解电子的基本性质也一直很感兴趣。特别是,我花了20多年的时间尝试了解自旋的起源、电荷和电子的质量。为此,我采用了一种相对论的量子力学方法,其与相对论电动力学和狄拉克理论密切相关。可能是因为我不属于基本粒子领域,所以我解释基本粒子结构的新理论被忽略了,投稿的文章未经审查就被拒绝。不过,2019年12月10日,我可以在乌尔姆大学的一次特殊物理座谈会上发表我的新理论,并希望我的演讲能引发对该主题富有成果的讨论。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/544effa6-64ee-4899-92ad-11a4ff02c2d1.jpg" title="图片5.png" alt="图片5.png"//pp style="text-align: center "strong80岁生日之际,与蔡司的代表一起在乌尔姆大学2015学术研讨会展示半块欧米茄过滤器。/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/646ca763-0f23-4140-b909-ca5cd73c8a0e.jpg" title="图片6.png" alt="图片6.png"//pp style="text-align: center "strong2012年,与网球伙伴聚会。/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 374px " src="https://img1.17img.cn/17img/images/202011/uepic/23d35705-a80e-44f2-b9f4-38127f463ad5.jpg" title="图片7.png" alt="图片7.png" width="450" height="374" border="0" vspace="0"//pp style="text-align: center "strong2012年2月14日,我和Dorothee在一家餐厅庆祝生日。/strong/pp style="text-align: justify text-indent: 2em "在我上学后的所有时间里,我都热衷于打曲棍球、冬天滑雪和秋天在阿尔卑斯山远足。曲棍球是一项非常苛刻的运动,但会有严重受伤的风险,且这种风险随着年龄的增长而增加。因此,我不得不在50岁时放弃这个爱好,并寻找其他活动。/pp style="text-align: justify text-indent: 2em "我选择学习网球是很自然的事,因为我的妻子Dorothee是一位非常有才华的网球运动员,曾在当地一家体育俱乐部的球队中打过球。她愿意给我上网球课,因为没有其他人愿意和初学者一起玩。在她的帮助下,我能够找到合作伙伴并成为团队成员。尽管由于年龄大而不能进行单打,我每周与几个伙伴打双人网球。此外,我和Dorothee每年都会与前曲棍球队友及其妻子一起远足数天。/pp style="text-align: justify text-indent: 2em "在我的科学生涯中,我与世界各地的许多同事都有联系,这些年来,许多联系也变为了友谊。我非常感谢这些友谊,它们是宝贵的礼物。最后,我要感谢我的妻子,多年来在我周末的工作期间所给予的支持和耐心。/ppbr//pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: left text-indent: 0em "span style="color: rgb(0, 112, 192) text-decoration: underline "a href="https://www.instrument.com.cn/news/20200608/540683.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "【自传】像差校正电镜技术先驱之Maximilian Haider/a/span/pp style="text-align: left text-indent: 0em "a href="https://www.instrument.com.cn/news/20201112/564599.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Ondrej L. Krivanek/span/a/pp style="text-indent: 0em text-align: left "a href="https://www.instrument.com.cn/news/20201204/566735.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Knut Urban/span/a/ppbr//p

高集成零像差仪相关的方案

  • 像差科普|是什么在悄悄影响电镜成像
    我们在使用普通光学透镜时,把光作为介质进行成像,通过玻璃透镜的折射偏转把光汇聚成“一点”来聚焦成像。扫描电镜使用的介质不是光,而是电子。虽然介质不同,但是与光学玻璃透镜一样,电镜也普遍存在像差问题,而这些各种各样的像差,正在背后悄悄地影响着电镜成像。
  • 高内涵成像技术在网络集成式细胞内特征的公共数据库(LINCS)项目中的应用-Molecular Devices
    Cellarium(A Live-Cell Microarray for High-Throughput Observation of Metabolic Biosignatures) 技术是以NIH NHGRI(National Human Genome Research Institute)CEGS(Center of Excellence in Genomic Sciences)Microscale Life Sciences Center开发的技术衍生出来的,隶属于上述NIH LINCS项目的一部分。这种技术通过单细胞代谢分析,致力于开发单细胞水平的药物特性的代谢图谱。The LINCS Tech U01 可以支持新一代高通量系统的发展并将数据储存到LINCS数据库中。利用ImageXpress? Micro 高内涵分析系统可实现快速的高分辨率图像采集,以得到单细胞水平上反应细胞各种生物特征的数据分析和处理。在美国NIH LINCS项目中,利用高内涵成像分析技术平台可获得单个细胞水平的各种生物学特征,如固定细胞中蛋白的免疫检测、活细胞凋亡图像分析、蛋白激酶生化分析以及细胞活力相关的生理参数,为研究者和临床诊断医生探测单细胞个体分析和如何用药提供了一个独特的工具。特点:?得到单细胞水平上反映细胞生理功能的各种细胞内特征的海量数据。?采用免洗一步染料标记法,操作简单、实时检测、 结果准确。?使用高通量/高内涵检测的方法,获得海量数据,进行大数据比对分析,建立网络集成式细胞内特征的公共数据库,为人类对疾病的了解、新药研发及个性化治疗提供有力的数据支撑和手段。
  • 海能仪器:微波消解-原子吸收分光光度法测定龟苓膏中的铅
    龟苓膏是一种日常生活中最常见的滋阴补肾的补品,龟苓膏常常被当种一种保健品在食用,龟苓膏含有多种对人体健康有好处的元素,可以促进人体的新陈代谢,提升个人的免疫力,其中氨基酸的含量更是多达七种以上,不管是老人,还是年轻人都是可以服用龟苓膏养生的,由其是对于一些皮肤干燥的朋友来说,龟苓膏更是治疗皮肤干燥,痘痘,口腔溃疡的一个最好的选择。《GB 5009.12-2017 食品安全国家标准 食品中铅的测定》,本标准规定了食品中铅的含量及检测方法。通过微波消解方法对龟苓膏样品进行前处理,有利于后续原子吸收对样品中铅含量的快速准确测定。

高集成零像差仪相关的资料

高集成零像差仪相关的试剂

高集成零像差仪相关的论坛

  • 波高采集系统中集成式智能传感器工作原理介绍

    波高采集系统有32个传感器通道,可以连接不通型号的传感器。主要应用于水工河工物理模型波浪、港池、水槽等试验,能同时对多种试验仪器进行数据采集分析。那么波高采集系统的集成式智能传感器工作原理有哪些呢?  集成式智能传感器是指将多个功能相同或不同的敏感器件制作在同一个芯片上构成传感器阵列,主要有三个方面的含义:一是将多个功能完全相同的敏感单元集成制造在同一个芯片上,用来测量被测量的空间分布信息,例如压力传感器阵列或我们熟知的CCD器件。  二是指对不同类型的传感器进行集成,例如集成有压力、温度、湿度、流量、加速度、化学等敏感单元的传感器,能同时测到环境中的物理特性或化学参量,用来对环境进行监测。  集成化的第三层含义是指对多个结构相同、功能相近的敏感单元进行集成,例如将不同气敏传感元集成在一起组成“电子鼻”,利用各种敏感元对不同气体的交叉敏感效应,采用神经网络模式识别等先进数据处理技术,可以对混合气体的各种组分同时监测,得到混合气体的组成信息,同时提高气敏传感器的测量精度;这层含义上的集成还有一种情况是将不同量程的传感元集成在一起,可以根据待测量的大小在各个传感元之间切换,在保证测量精度的同时,扩大传感器的测量范围。

  • 集成电路的特点

    集成电路一般是在一块厚0.2~0.5mm、面积约为0.5mm的P型硅片上通过平面工艺制做成的。这种硅片(称为集成电路的基片)上可以做出包含为十个(或更多)二极管、电阻、电容和连接导线的电路。一、集成电路中元器件的特点与分立元器件相比,集成电路元器件有以下特点:1. 单个元器件的精度不高,受温度影响也较大,但在同一硅片上用相同工艺制造出来的元器件性能比较一致,对称性好,相邻元器件的温度差别小,因而同一类元器件温度特性也基本一致;2. 集成电阻及电容的数值范围窄,数值较大的电阻、电容占用硅片面积大。集成电阻一般在几十Ω~几十 kΩ范围内,电容一般为几十pF。电感目前不能集成;3. 元器件性能参数的绝对误差比较大,而同类元器件性能参数之比值比较精确;4. 纵向NPN管β值较大,占用硅片面积小,容易制造。而横向PNP管的β值很小,但其PN结的耐压高。二、集成电路的设计特点由于制造工艺及元器件的特点,模拟集成电路在电路设计思想上与分立元器件电路相比有很大的不同。1. 在所用元器件方面,尽可能地多用晶体管,少用电阻、电容;2. 在电路形式上大量选用差动放大电路与各种恒流源电路,级间耦合采用直接耦合方式;3. 尽可能地利用参数补偿原理把对单个元器件的高精度要求转化为对两个器件有相同参数误差的要求;尽量选择特性只受电阻或其它参数比值影响的电路

  • 仪器维修中集成电路的维修经验(大家交流)

    仪器维修中集成电路的维修经验(大家交流) (一)常用的检测方法 集成电路常用的检测方法有在线测量法、非在线测量法和代换法。1.非在线测量 非在线测量潮在集成电路未焊入电路时,通过测量其各引脚之间的直流电阻值与已知正常同型号集成电路各引脚之间的直流电阻值进行对比,以确定其是否正常。2.在线测量 在线测量法是利用电压测量法、电阻测量法及电流测量法等,通过在电路上测量集成电路的各引脚电压值、电阻值和电流值是否正常,来判断该集成电路是否损坏。3.代换法 代换法是用已知完好的同型号、同规格集成电路来代换被测集成电路,可以判断出该集成电路是否损坏。 (二)常用集成电路的检测 1.微处理器集成电路的检测 微处理器集成电路的关键测试引脚是VDD电源端、RESET复位端、XIN晶振信号输入端、XOUT晶振信号输出端及其他各线输入、输出端。在路测量这些关键脚对地的电阻值和电压值,看是否与正常值(可从产品电路图或有关维修资料中查出)相同。不同型号微处理器的RESET 复位电压也不相同,有的是低电平复位,即在开机瞬间为低电平,复位后维持高电平;有的是高电平复位,即在开关瞬间为高电平,复位后维持低电平。2.开关电源集成电路的检测 开关电源集成电路的关键脚电压是电源端(VCC)、激励脉冲输出端、电压检测输入端、电流检测输入端。测量各引脚对地的电压值和电阻值,若与正常值相差较大,在其外围元器件正常的情况下,可以确定是该集成电路已损坏。 内置大功率开关管的厚膜集成电路,还可通过测量开关管C、B、E极之间的正、反向电阻值,来判断开关管是否正常。3.音频功放集成电路的检测 检查音频功放集成电路时,应先检测其电源端(正电源端和负电源端)、音频输入端、音频输出端及反馈端对地的电压值和电阻值。若测得各引脚的数据值与正常值相差较大,其外围元件与正常,则是该集成电路内部损坏。对引起无声故障的音频功放集成电路,测量其电源电压正常时,可用信号干扰法来检查。测量时,万用表应置于R×1档,将红表笔接地,用黑表笔点触音频输入端,正常时扬声器中应有较强的“喀喀”声。4.运算放大器集成电路的检测 用万用表直流电压档,测量运算放大器输出端与负电源端之间的电压值(在静态时电压值较高)。用手持金属镊子依次点触运算放大器的两个输入端(加入干扰信号),若万用表表针有较大幅度的摆动,则说明该运算放大器完好;若万用表表针不动,则说明运算放大器已损坏。5.时基集成电路的检测 时基集成电路内含数字电路和模拟电路,用万用表很难直接测出其好坏。可以用所示的测试电路来检测时基集成电路的好坏。测试电路由阻容元件、发光二极管LED、6V 直流电源、电源开关S 和8脚IC插座组成。将时基集成电路(例如NE555)插信IC插座后,按下电源开关S,若被测时基集成电路正常,则发光二极管LED将闪烁发光;若LED不亮或一直亮,则说明被测时基集成电路性能不良。 集成电路代换技巧 一、直接代换直接代换是指用其他IC不经任何改动而直接取代原来的IC,代换后不影响机器的主要性能与指标。其代换原则是:代换IC的功能、性能指标、封装形式、引脚用途、引脚序号和间隔等几方面均相同。其中IC的功能相同不仅指功能相同;还应注意逻辑极性相同,即输出输入电平极性、电压、电流幅度必须相同。例如:图像中放IC,TA7607 与TA7611,前者为反向高放AGC,后者为正向高放AGC,故不能直接代换。除此之外还有输出不同极性AFT电压,输出不同极性的同步脉冲等[font=Calibr

高集成零像差仪相关的耗材

  • 适用于高功率激光加工的Iris变形镜
    产品信息Iris自适应光学系统Iris分段式可变形镜Alpao自适应光学系统适用于高功率激光加工的Iris变形镜所属类别: ? 调制器 ? 可变形反射镜/自适应光学系统所属品牌:美国Iris AO公司产品简介Iris AO公司针对激光加工应用专门设计的分立镜面MEMS变形镜具有专业的水冷系统与镀膜技术,大幅提高了损伤阈值,适用于高功率激光加工系统,可对光学元件带来的像差予以校正,并有效提高激光的光束质量!关键词:变形镜,DM,deformable mirror,MEMS,分立镜面变形镜,分立式变形镜,分立式MEMS变形镜 ,分离镜面变形镜,Discrete MEMS deformable mirror,Iris变形镜,微变形镜,MEMS变形镜,静电变形镜,像差校正、场镜像差校正、F-Theta Lens像差校正适用于高功率激光加工的Iris变形镜在高功率激光精细加工领域,光束质量对于加工精度与质量至关重要。通常光束质量的影响主要来自激光器本身的光束质量的波动与激光加工系统中光学元器件引入的光学像差。在该领域,所使用的激光器的腔镜会受到激光的直接辐照而产生对激光能量的吸收,特别是随着功率的提高,腔镜吸收的能量也随之增加,腔镜温度升高而产生热变形。腔镜热变形将引起腔内光束的光程发生变化,使得谐振腔的工作参数偏离设计值,从而引起腔内模式发生改变,致使波前相位高频成分及Zernike高阶像差增大,波前畸变程度也将变大,输出光束质量退化,输出功率下降,从而影响激光微加工的精度和质量。而激光加工系统中的光学元器件所引入的光学像差则不可避免地会导致激光光束质量下降。Iris分立镜面MEMS变形镜,采用全球领先的分立镜面混合表面微加工工艺技术,是美国Iris AO公司专门为高功率激光精细加工过程中腔镜热变形和光学器件像差造成的波前畸变进行校正补偿而开发的新型封装变形镜器件,是改善高功率激光精细加工应用中光束质量,提供加工精度与加工质量的有效工具。Iris使用独创MEMS专利技术制造的变形镜采用111个内切孔径3.5或7.0mm的驱动器,37片PTT镜片单元组成蜂窝状阵列。每一个镜面单元可以在三个自由度方向上,伸缩,翻倒,倾斜独立控制。产品特点和优势: 专业介质镀膜可承受高功率激光 配有水冷散热系统,更利于散热并提高产品寿命 配有清除有机物的清洗口,避免水冷系统阻塞 体积紧凑,方便集成 高性价比权威测试结果:1. 全球领先的激光微加工系统制造商使用紫外脉冲激光器(355nm,15W平均功率,ps脉冲)对Iris AO的新型封装并镀膜的PTT111变形镜进行测试显示: Iris变形镜在5W激光功率下测试60小时,10W激光功率下测试70小时,15W激光功率下测试80小时,均没有显示影响光束质量的损坏迹象。在激光功率15W测试时入射到变形镜上的是一束光斑直径大约1mm的激光。测试显示即使在更高的功率强度上,变形镜也没有出现永久损坏的迹象。2. 另一位业内领先的激光加工系统制造商Raydiance Inc.( http://www.raydiance.com/)公司利用平均功率10W的1550nm飞秒脉冲激光器成功对镀金薄膜的PTT111DM和采用新型封装PTT111DM进行测试对比。测试显示这种专为激光应用开发与优化的最新封装,进一步增大镀金薄膜变形镜所能承受的平均功率。3. 测试显示Iris分立镜面MEMS变形镜无需热沉就可以承受300W/cm2平均功率密度,在进行热沉和改善镀膜后,变形镜可以承受3KW/cm2的平均功率密度。对于脉冲激光,变形镜可以承受峰值功率密度1.7GW/cm2。在使用新型封装后,变形镜所能承受的功率密度进一步增大,并且无损连续工作时间显著延长。以上测试均表明专业表面介质薄膜以及为适应恶劣环境进行的新型封装对提高变形镜的损伤阈值与高功率激光下的工作性能非常有效。Iris AO公司下一步将进行1000小时的超长时间测试,来进一步验证和改善这种新型封装镀膜变形镜的承受高功率激光的性能。目前Iris AO由于出色的研发实力,已赢得了美国国家航空航天局的Phase II SBIR项目资金,用来支持其进一步发展变形镜在高功率激光器方面的应用。Iris AO将进一步开发适用更宽波长范围的镀膜技术,适用从288nm到1600nm激光器,(深紫外准分子激光器到ND:YAG激光器),为激光微加工、激光精细加工和激光整形行业应用提供优秀的波前校正与光斑整形方案。分享到 : 人人网 腾讯微博新浪微博 搜狐微博 网易微博
  • 五铃光学元器件定制加工
    1)玻璃非球面透镜 非球面透镜可以解决目前球面镜片所带了的畸变和像差,也可以减少成像系统的体积,提高系统的整体成像质量。已被广泛应用于医疗设备、精密仪器、航空航天、国防科技等重要领域,代表了镜片发展的趋势。 可加工材料包括:融石英、微晶玻璃、碳化硅(陶瓷)、高分子聚合物 晶体材料(锗、硒化锌、氟化镁等) 可加工口径:1,000mm 加工面型精度可达:(P-V)1/20λ 加工表面粗糙度可达RMS:0.3nm 2)金属反射镜 大口径金属反射镜可实现各种光束收集、光束准直和光束聚焦,被广泛应用于天体观测光学装置、光谱检测、天文望远系统、瞄准仪、扩束镜、红外系统、聚光太阳能系统,投影系统以及发射/探测设备等领域。 目前的金属反射镜加工主要集中在6英寸(150mm)以内,我司加工口径达到20英寸(500mm),处于国内领先水平。 可加工材料包括:航空铝、铜、钢(镀镍)、合金 加工口径可达:500mm 加工面型精度可达:(P-V)1/4λ 加工表面粗糙度可达: 2nm 3)奇异光学 传统的光学加工仅能针对平面、球面、部分非球面进行相应面型加工,而奇异光学的发展突破了光学加工的瓶颈,可以针对不同光学表面面型进行高精度、高效率、大尺寸的加工,是目前光学零件的发展方向。 目前,我司生产的奇异光学元器件已被广泛应用于科学仪器、集成电路、天文望远等领域。产品具有大尺寸、高精度、面型复杂等特点。
  • 单片微波集成电路MMIC放大器
    单片微波集成电路放大器是中国制造的GaN MMIC放大器产品的翘楚,具有可与美国同类产品媲美的产品性能,却具有全球竞争力的GaN MMIC Amplifiers价格和单片微波集成电路放大器价格。单片微波集成电路MMIC放大器广泛用于高功率微波放大器系统, 支持非常高的工作电压(比GaAs高三到五倍),并且每单位FET栅极宽度容许的电流大致是GaAs器件的两倍。 这些特性对PA设计人员有重要意义,意味着在给定输出功率水平可以支持更高的负载阻抗,从而获得更大带宽。单片微波集成电路MMIC放大器具有极高的可靠性,适用于高可靠性空间应用,结果表明单个器件的平均失效前时间(MTTF)超过一百万小时。 如此高的可靠性主要是因为GaN具有很高的带隙值(GaN为3.4,GaAs为1.4), 这使得它特别适合高可靠性应用。GaN MMIC amplifiers made by China provide high performance with lower price on market, MMIC output power over the 0.03 to 4.0GHz band. This MMIC is matched to 50 Ohms at the input but un-matched at the output above 0.5GHz.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制