焦炉煤气

仪器信息网焦炉煤气专题为您整合焦炉煤气相关的最新文章,在焦炉煤气专题,您不仅可以免费浏览焦炉煤气的资讯, 同时您还可以浏览焦炉煤气的相关资料、解决方案,参与社区焦炉煤气话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

焦炉煤气相关的耗材

  • 煤气喷灯 6-464-04
    产品及型号:编号适 合类型RMB(含税)6-464-04旧城市煤气用1带单管活栓¥ 263.006-464-02丙烷用1带单管活栓¥ 263.006-464-05城市煤气13A用2带套管活栓¥ 284.00特点1. 在煤气处理及制作加工中可以很容易使用的喷灯。规格1. 煤气分类:-04/4C・ 4B・ 4A・ 5C・ 5B・ 5A・ 5AN・ 6C・ 6B・ 6A・ 7C、-02/LPG、-05/11A・ 12A・ 13A2. 软管直径:内径/&phi 9.5mm、外径/&phi 15.5mm
  • 人工煤气专用色谱柱
    人工煤气专用色谱柱内径2mm,柱长8-10m常用的不锈钢、玻璃填充柱有:材 质:不锈钢、玻璃固定液:OV-1、OV17、OV101、OV225、SE30、SE52、SE54、PEG-400、PEG-600、PEG-1500、PEG-4000、PEG-6000、PEG-20M、DEGS、EGA、EGS、QF-1、FFAP、DNP、DBP、硅油、阿皮松、角鲨烷、DC系列等。担 体:进口硅藻土(如Chromsorb系列)、国产硅藻土系列、有机载体等。吸附剂及高分子微球:Proasil系列、Porapak系列、GDX系列、HDG系列、DC系列、分子筛、碳分子筛、石墨化碳黑、硅胶等。规 格:内径&phi 2~&phi 4㎜,长度0.5~8米▲ 用户在订做时请注明:色谱仪型号;柱管类型;固定相名称及配比;担体种类及目数;柱内径及长度。
  • 天然气、液化气、煤气、炼厂气热值分析专用色谱工作站
    天然气、液化气、煤气、炼厂气热值分析专用色谱工作站? 自动计算0℃和20℃两种状态下的物化性质参数如平均分子量、相对密度、密度、气化率、高热值、低热值、高热值华白数、低热值华白数、燃烧势等。? 对天然气全组份分析,可实现四通道同步采集。

焦炉煤气相关的仪器

  • 焦炉煤气燃烧器及自动点火装置焦炉煤气燃烧器成为秦川热工较为成熟的产品,每一款都是按照客户需要,量身定做,燃烧效率高。燃烧器采用自动点火控制系统,自动化程度高,操作便捷。点火成功率稳定。焦炉煤气燃烧器针对不是很纯净的焦炉煤气设计有过滤功能。设计合理,火焰刚直,在短暂的时间内迅速提高炉温,达到使用要求。 我们的业务主要包括:系列点火装置、系列火焰探测装置、热工类仪器仪表、各类窑炉点火检测、非标燃烧器烧嘴、放散自动点火控制系统、燃烧控制系统集成、炉膛保护自动控制系统等。
    留言咨询
  • 北斗星焦炉煤气车间煤气六参数分析系统sGas2000-CGC+O2+CO2+H2S,煤气成分及热值在线分析仪器焦炉煤气生产车间 CO/HC/H2/CO2/O2/H2S 六参数分析系统技术参数仪器名称规格专业分析系统重复精度准确度稳定性技术备注煤气分析仪sGas2000-CGC+O2+CO2+H2SCO:0-20% 20-100% H2:0-8% HC:0-100% CO2:0-25% O2:0-30% H2S:0.1-500ppm H2O:100ppm-3%热值范围:±0.1%FS 1%R±0.1%abs±0.1%abs±0.1%abs1%rel ±1%FS5%R2%R±0.25%abs±0.25%abs±0.2%abs±2% 1% in 20s,恒温 -2%/monthIR ECIRIRECECSMC煤气主成分分析合成气分析每检测点煤气热值分析系统单元部件规格型号数量说明热值分析系统sGas2000-CGC+O2+CO2+H2S1套√在线标定系统S-CAL-Sys1成套包含CO/HC/H2/CO2/H2S/N2标准气体各1瓶,共6瓶√采样预处理GS-DW-F021成套√电子除水预处理套件WF-TEC-C&H1成套电子制冷器除水器,加热器,自动梳水器 含主机其它材料√焦炉煤气车间煤气六参数分析系统用途:煤气主成分分析;合成气分析;主要用于混合气体连续分析。在线煤气分析仪功能LCD4x20字符式轮换显示多项参数 越限报警,报警限可设置 RS232/RS485通信接口.可与计算机联机。IEEE1451.2智能变送器协议 用户可增加测试项目配置 可选配串行微型打印机 sGas2000系统功能自动采样处理手动或自动空气在线校准可以增强自动标定系统 自动空气验证, 故障自诊断,声光报警自动高压空气吹洗/超声清洗维护主参数标准信号输出0-20mA, 0-5V, 4-20mA, 1-5V.RS232/RS485串行通信接口 支持STIMcom/ModBus总线仪器网络,
    留言咨询
  • 钢铁焦化等非电领域的大气污染治理,是我们都要重视的事情,陕西科特热力工程有限公司为客户提供专业的工业高空火炬,放散点火装置,火炬放散自动点火装置,焦炉煤气放散点火,高炉煤气放散点火,转炉煤气放散点火,发生炉煤气放散点火,经过我们努力与发展,已具一定的规模及实力,现拥有一支以卓越的服务品质、专业的技术服务实力团队,为不同群体的用户提供更高更优质的服务,我们公司秉承客户至上、服务至上的经营理念,以稳固、发展、忠诚、高效、团结与创新的精神而不懈努力。下面陕西科特热力为大家讲解焦炉煤气放散点火控制系统工作原理。  焦炉自动放散点火控制系统一般一套控制系统控制二根放散管,当集气管压力增加250Pa,首先报警,发出声光报警信号,压力继续增加到300Pa,点火器工作,当压力继续增加到350Pa,系统打开一根放散水封阀,按20%-40%-60%-80%的梯级开度打开,同时打开陇火电动阀,蒸汽喷射参入火炬燃烧,火焰检测装置可检测火炬是否点燃,如没点燃报警并重复电火过程,延时一段时间关闭点火器。此时集气管压力如果继续升高,系统将按梯级方式打开第二根管放散水封阀,压力下降,当压力回到220Pa时,梯级关闭放散水封阀,同时打开防回火电动阀,蒸汽进入放散管中防止回火,延时一段时间,整个放散过程结束。  当然,陕西科特热力的此工艺过程设定参数可以根据用户要求在软件内以及屏上修改过程及参数。
    留言咨询

焦炉煤气相关的试剂

焦炉煤气相关的方案

焦炉煤气相关的论坛

  • 在线焦炉煤气孔板流量计的清扫

    焦炉采用焦炉煤气或高炉煤气加热时,通常选用孔板流量计来计量煤气的用量。由于焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,存在一次取压口与引压管路易堵塞、计量不准确、在线清扫困难等问题。为了保证计量的准确性并降低维修人员的劳动强度,经摸索,制造了一种实用的现场专用设备,并总结出了一种有效的处理方法,较好地解决了上述问题,取得了良好的效果,满足了生产要求。炼焦是将配制好的洗精烟煤通过高温干馏,得到高炉炼铁需要的冶金焦或其他的焦炭及气体燃料——焦炉煤气和有关化工产品。焦炉采用自产并经过精制处理的焦炉煤气或高炉冶炼过程中产生的高炉煤气加热,将配制好的洗精烟煤在炭化室加热到950~1050℃变成焦炭。焦炉炉体的特性,决定了焦炉加热与生产具有长期高度连续性的特点,通过配套回炉焦炉煤气或高炉煤气管道体系来保证加热的连续性。由于高炉煤气热值低,为了保证焦炉加热的要求,需要掺混9%的焦炉煤气进入高炉煤气系统及使用焦炉煤气进行炉头补充加热。每座焦炉加热使用的焦炉煤气约占其自身煤气发生量的45%左右,对于一座65孔,高4.3mm,宽407mm达到设计生产水平的焦炉,其焦炉煤气的使用量约9000m3/h。通常一座焦炉在其一代炉龄里,头几年与zui后的几年都采用焦炉煤气加热,中间可以采用高炉煤气或焦炉煤气加热。由于焦炉生产的能耗较大,为了控制能源消耗,保证加热及方便不同焦炉之间的比较,需要安装计量仪表和参与加热控制的计量仪表。1孔板流量计的使用1.1孔板流量计的工作原理燃气计量仪表有容积式流量计、速度式流量计、差压流量计和涡街式流量计。差压流量计又叫节流流量计,是工业上应用zui广的一种测量流体流量的仪表,根据节流件的不同分为孔板、喷嘴和文丘里管3种。由于孔板流量计结构简单,制造成本与加工精度要求相对较低,安装与使用方便,使用寿命长、适应性较广,已标准化且焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,为了保证计量的准确性并达到计量仪表在管道上的布局要求,通常选用标准孔板作为检测的节流装置。其工作原理是流体在管道中通过孔板时,突然断面缩小,流体的动能发生变化产生一定的压力降,压力降的变化与流速有关,此压力降可通过孔板前后测压点的引压管路(图1),借助差压计测出,经现场变送器转换成标准的电信号传输,经组合仪表处理后可在线显示实际的煤气用量并累积计算。压力差与体积流量的关系式如下。1.2孔板流量计在焦炉上的使用(1)焦炉煤气总管?焦炉煤气加热时,煤气总管上装有显示每小时用量的孔板流量计(图1),其一次取压口一般采用标准的一英寸法兰连接,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。(2)机焦侧混合煤气支管?高炉煤气加热时,显示每小时用量的孔板流量计(与图1原理相同),其一次取压口一般采用标准的角接法,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。此外,还可将测得的煤气量信号反馈现场执行机构控制翻板开度来调节煤气用量。1.3使用中问题由于焦炉煤气中含有焦油、萘、氨、硫和氰化物等杂质,长期使用后,流量检测系统的一次取压口、引压管路极易发生堵塞使其不畅通,导致流量无法准确测量。更令人头痛的是焦炉煤气内的杂质吸附在孔板的刀口上,使孔板孔径变小,造成孔板前后压力降增大而使煤气流量计量值增大甚至不能正常运行,严重影响焦炉煤气计量和用量的调节。由此可知,焦炉煤气孔板流量计存在一次取压口或引压管路易堵塞、在线清洗频繁且困难、仪表维修工作量大、测量不准确等问题。由于焦炉煤气的使用量较大,而发生的周期短,处理又比较困难,而且必须在正常生产时进行,增加了维修人员的劳动强度。为了保证计量的准确性并降低维修人员的劳动强度,必须找到有效的清扫方法。2解决方法2.1孔板清洗方法对于孔板、孔径因积焦油、萘等杂质变小问题,通常的清洗方法是停止加热拆下清洗、更换孔板、从引压管路通入蒸汽清洗,从孔板前冷凝液排放管中用蒸汽管或水管清洗等。该方法使用时需要停止加热,影响了焦炉的正常生产。带气作业时有煤气泄漏影响安全、在线用蒸汽清洗时几千立方米每小时的煤气流量带走了蒸汽热量,中低压冷水不能融化焦油、萘等杂质,故清洗效果不理想。经过长期的摸索后,制造出了一种取材方便、投资少、制造简单、现场安装搬运调试方便的专用设备(图2),并总结了一种有效的处理方法解决了上述问题。使用方法为:将图2所示的设备搬到现场安装好,向铁桶6内注满水,用蒸汽加热到60℃以上,开动增压泵4,待看到高压水枪1侧出口小孔的水流稳定且压力表上显示达到4~8MPa后,关闭图1中计量阀门7,打开计量变送器8上方的平衡阀,拆下丝堵4,将图2中带有比枪管孔径稍大丝堵2的高压水枪1,从图1中冷凝液排放管3伸入,上好丝堵2,打开阀门5,高压水枪喷孔对准孔板上下并小角度转动,将孔板冲洗干净。该方法的优点是设备投资少,搬运、安装、调试方便,操作简单,在线清洗不需停止加热,水流在比枪管稍大的丝堵处起液封煤气的作用,操作安全,高压热水清洗效果好,清洗后的计量准确。2.2一次取压口及引压管路的清扫对于一次取压口及引压管路堵塞问题,通常的方法是用蒸汽或高压氮气清扫。由于通常的蒸汽压力只有0.5MPa左右,一次取压口径又小,堵塞不严重时,该方法是可行的,若堵塞严重,该方法的使用效果不理想。为此,将用于孔板清洗的设备去掉图2中1、2、3后与引压管路连接好清扫,然后用蒸汽清扫,效果较好,保证了生产需要

  • 对于焦炉煤气脱硫方法的比较研究

    煤化行业作为能源消耗比较大、污染排放物比较多的一个行业,在生产运作中势必产生大量的焦炉煤气,因此要对其进行脱硫处理.一方面可以减少其对设备的腐蚀危害及维护成本,同时可以提高脱硫产品的回收质量,以便在循环使用中达到预期的目标.焦炉煤气不同脱硫方法的使用条件和范围上各有差异,这就需要明晰具体脱硫方法的特点,以便科学实效地应用,进而推动企业经济效益的提升.焦化企业在排放的时候对空气与环境的危害非常大,因为其中含有大量的硫化氢物质。近年来,焦化企业所取得的发展有目共睹,尤其是在技术更新和科学化、标准化、规范化管理方面下了很大功夫。此外焦化行业针对环境治理,也取得了很大成效。进而弥补了传统脱硫工艺脱硫效率的不足,而且还可以从煤气脱硫中回收硫氰酸铵、硫酸铵等高附加值的产品。改变了焦炉煤气脱硫产生废液危害物质的现状,实现了变废为宝。焦炉煤气在生成的时候会有很多的因素导致产量和用途的区别,所以焦化企业在对焦炉煤气进行脱硫处理时也要根据实际情况来选择适当的方法。总体来说,煤气的脱硫方法按吸收剂形态划分一般可为干法和湿法两大类。1 焦炉煤气脱硫方法的意义焦炉煤气脱硫处理在实际中的作用值极高,大大降低了煤气中硫化氢和燃烧后生成二氧化硫的含量,有力地减少了有毒物质的污染。而且可以有效保护周围的环境,还有助于企业降低生产成本、提高生产效率。此外还能够促使钢铁企业生产出优质的钢材,并防止设备的腐蚀。另外回收之后的硫磺还可以用到其它的生产领域。因此在实际的应用中要根据煤气脱硫方法的特征选择适当的方式,在保证质量的基础上提高实效。随着社会和行业的发展,也在持续推动着焦炉煤气脱硫方法的不断创新与完善。2 对焦炉煤气脱硫方法的比较研究2.1 干法脱硫的原理简单来讲,干法脱硫的原理是通过利用氢氧化铁或及其合剂作为催化剂来达到脱硫的目的,以脱除煤气中的硫化氢物质,多采用固定床原理,操作相对简单可靠,脱硫精度高,但处理量小。干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中常用的还是以铁系和锌系脱硫剂为主。2.2 干法脱硫的的特点干法脱硫的适用范围相对较窄,但是脱硫精度很高。干法一次脱硫有利于气体中的氢氧化铁的清除。干法脱硫的使用特征包括设备占地面积小,这样就会节约前期投资成本,并且脱硫的效率十分高,只要按照规定的标准进行脱硫就可以满足城市煤气的供需关系。干法脱硫通常又可以分为两种形式:箱式和塔式。两种方式在使用上各有优势,箱式的需要相对大的占地空间,且具体操作起来的环境质量没有塔式的舒适,在脱硫过程中比较容易更换脱硫剂,成本费用也不是很高。而塔式脱硫占地面积比较小,环境也好,但是设备的成本相对高一些。2.3 湿法脱硫的原理湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢,按溶液的吸收和再生性质又分为湿式氧化法、化学吸收法、物理吸附法和物理—化学吸收法。其在,湿式氧化法是采用脱硫催化剂在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]下进行氧化还原反应,使被弱碱溶液吸收的硫化氢随即被氧化成单质硫析出来,同时吸收液得到再生。该法是焦炉煤气脱硫比较普遍使用的方法,其实质就是使硫化氢被氧化生成单质硫;此外,化学吸收法、物理吸附法和物理—化学吸收法这三种方法主要用于天然气和炼油厂的煤气脱硫,不能直接回收硫磺,在焦炉煤气脱硫中较少使用。随着技术的进步,针对湿法脱硫改进及创新方法很多,例如:FRC 法、HPF 法、OPT 法、DDS法、MEA法、AS法、ADA法及改良ADA法、TH法TV法和PDS法等等。

焦炉煤气相关的资料

焦炉煤气相关的资讯

  • 赫施曼助力焦炉煤气中氰化氢含量的测定
    焦炉煤气中含有氰化氢,氰化氢本身有剧毒,其水溶液腐蚀设备和管道,在系统中产生引起管道堵塞的铁盐,因此要进行脱除,并检测其具体含量。其检测标准为YB/T 4495-2015(焦炉煤气 氰化氢含量的测定 硝酸银滴定法)。原理是用氢氧化钾溶液吸收煤气中的氰化氢,加入醋酸镉溶液,使吸收液中的硫化物都形成难溶硫化镉沉淀过滤除去。在pH11条件下,用硝酸银标准溶液滴定,氰离子与硝酸银作用形成可溶性银氰络合离子,过量的银离子与试银灵指示剂反应,溶液由黄色变为橙红色即为终点,根据消耗硝酸银标准溶液的体积计算煤气中氰化氢含量。试验要先对硝酸银标准溶液进行标定(四次滴定),计算出其准确浓度:移取25.00mL氯化钠标准溶液各三份,加50mL水,加入3滴~4滴铬酸钾指示剂溶液,在不断摇动下,用硝酸银标准溶液滴定至溶液由黄色变为砖红色即为终点,记录滴定消耗体积。在标定的同时做空白试验。经计算确定了硝酸银标准溶液浓度后,再进行取样和测定(两次滴定,样品滴定和空白滴定)。标准中特别指出,所用的滴定管是5mL棕色微量滴定管,分度值要达到0.02mL。棕色滴定管,比一般的透明滴定管的观察、读数等更加困难,操控也需多加练习和足够的耐心。赫施曼的光能滴定器和电子滴定器,均有10、20、50mL三个规格,最小分度为0.01mL或0.001mL(电子滴定10mL),对于硝酸银这类需要避光的试剂,换用附带的棕色挡光板即可。均可实现抽提加液、手转/手按控制滴定速度、屏幕直接读数,可解决常规滴定管的三大难点:灌液慢、控速难,读数乱(不同人、不同位、不同次的凹液面读数均有可能出现偏差)。
  • 定制GC课堂系列三丨水煤气、半水煤气、焦炉煤气傻傻分不清楚——岛津煤气分析方案
    我国总体能源格局是“富煤、贫油、少气”,煤炭在我国有着丰富的储备。煤炭从单一燃料向煤化工原料转变已成为高效利用主流方式之一。在煤化工中煤气化工艺占有重要地位,所生产的煤气可作为气体燃料、合成液体燃料、化工品等多种产品的原料。 根据不同加工方法,煤气主要有水煤气、半水煤气、空气煤气、焦炉煤气,它们有什么区别呢?岛津煤气专用分析系统探究不同类型煤气本质区别:组分、浓度。 方案设计● GC主机、双TCD检测器、三阀五柱分析系统。● 满足水煤气、半水煤气、空气煤气、焦炉煤气检测分析。● Nexis GC-2030、GC-2014、GC-2014C多种机型自由选择。 优势● 13分钟内可完成H2、O2、N2、CH4、CO、CO2、C2H4、C2H6和C2H2煤气主要组分分析,可兼顾常量H2S分析。● 双TCD通道,组分全量程分析。● 可选配热值分析软件。● 交钥匙解决方案,出厂设备随机带原厂方法文件、数据等相关资料。 流路图煤气分析流路图 色谱图煤气分析流路图 色谱图TCD2通道色谱图 注:岛津可根据用户需求提供定制化分析方案,具体可联系当地营业。
  • 红外气体分析仪技术之焦炉煤气脱硫为什么要选择负压脱硫?
    国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。某公司焦炉煤气净化一开始采用HPF正压脱硫工艺,但脱硫效率低,且正压脱硫需将煤气冷却,送入脱硫塔进行脱硫、脱氰,经过脱硫后,煤气进入硫铵单元,又需对煤气进行预热,煤气经过冷却、预热存在较大的能源浪费,不利于节能降耗生产,对此该公司将正压脱硫工艺改为负压脱硫工艺,采用红外气体分析仪(防爆型)Gasboard-3500对脱硫效果进行监测,项目运行3年来,脱硫效率提高,节能效果显著,具有良好的经济效益和环保效益。 一、正、负压脱硫工艺对比1、正压脱硫工艺 从鼓风机来的约55~60℃的煤气,先进入预冷塔,用循环水冷却至30℃左右,然后进入脱硫塔。预冷塔用冷却水自成循环系统,从塔底排出的热水经循环泵送往冷却器,用循环冷却水换热后进入预冷塔顶部喷洒用于冷却煤气,预冷循环水定期进行排污,送往机械化澄清槽,同时往循环系统中加入剩余氨水予以补充。 从预冷塔来的煤气进入脱硫塔底部与塔顶喷淋的脱硫液逆向接触,脱除H2S、HCN后由塔顶溢出去往硫铵单元。 从脱硫塔底排出的脱硫液经液封槽进入反应槽,再由脱硫液循环泵送出,一部分经过冷却器冷却后与另一部分未冷却液体混合后经预混喷嘴送入再生塔底部,同时在再生塔底部鼓入压缩空气,使脱硫液在塔内得以再生,再生后的脱硫液于塔上部经液位调节器流至脱硫塔循环喷洒使用,上浮于再生塔顶部扩大部分的硫泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至离心机离心分离,滤液返回反应槽,硫膏装袋后外销。 脱硫所用成品氨水由蒸氨每班送至脱硫反应槽加入脱硫液循环系统。 2、负压脱硫工艺 电捕来的约25℃煤气进入填料脱硫塔底部,与塔顶喷洒下来的再生溶液逆向接触,吸收煤气中的H2S和HCN(同时吸收煤气中的NH3,以补充脱硫液中的碱源)。脱硫后煤气进入鼓风机单元。脱硫塔底吸收了H2S、HCN的循环液,经脱硫液泵进入再生塔底预混喷嘴(脱硫液温度高时,部分进入板框式换热器进行冷却),与压缩空气剧烈混合,形成微小气泡后进入再生塔底部,沿再生塔上升过程中,在催化剂作用下氧化再生。再生后的脱硫液于再生塔上部经液位调节器进入U型管后,进入脱硫塔顶分布器,循环喷淋煤气。 上浮于再生塔顶部扩大部分的硫磺泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至板框式压滤机,滤液进入放空槽后,由放空槽自吸泵送至脱硫塔底继续循环使用,硫膏装袋后外销。脱硫所用成品氨水由蒸氨每班送至脱硫塔底,加入脱硫液循环系统。 3、正、负压脱硫运行指标对比 在同等煤气发生量情况下,采用红外气体分析仪(防爆型)Gasboard-3500对正负压脱硫工艺的脱硫效果进行对比监测,再综合脱硫工艺各方面运行参数,可得出正压脱硫与负压脱硫运行指标如下。 由上表可知,负压脱硫较正压脱硫,脱硫塔入口煤气温度降低了6℃,脱硫液温度降低了5.5℃,脱硫液温度的降低,有利于挥发氨(游离氨)浓度的提高,挥发氨浓度提高了5.2g/L;副盐浓度由300g/L以上降低至250g/L以下,降低了52.8g/L,副盐浓度的降低有利于脱硫效率的提高,脱硫效率由86.3%提高至99.0%,提高了12.7%。 二、正、负脱硫工艺特点对比1、 温度变化 正压脱硫位于鼓风机后,进入脱硫工段的煤气温度约55~60℃,而脱硫反应适宜温度为25~35℃左右,脱硫工段后为硫铵工段,而硫铵工段适宜吸收反应温度为50~55℃,因此煤气经正压脱硫进入硫铵工段需对煤气现冷却再加热,存在较大的能源浪费。 负压脱硫位于电捕后,鼓风机前,进入脱硫工段的煤气约25℃,满足脱硫吸收、再生要求,而经过风机后的煤气直接进入硫铵工段,避免了对煤气冷却和预热,温度变化梯度更加合理,节约了冷能和热能,降低了系统能耗。 2、游离氨浓度 HPF法脱硫是以氨为碱源的湿法氧化脱硫,吸收过程为化学反应,即通过吸收煤气中的氨(或外加氨水),增加氨的浓度提高对硫化氢、氰化氢等物质吸收效率,脱硫液中游离氨的浓度越高越有利于脱硫反应。 正压脱硫经过预冷后煤气温度一般在30℃左右,负压脱硫煤气温度为25℃左右,其脱硫液温度较正压降低5℃左右,脱硫液温度低有利于氨的吸收、溶解,同时避免了正压条件下预冷喷洒液的直接接触吸收煤气中的氨。因此,负压脱硫工艺有效提高了游离氨(挥发氨)浓度,游离氨浓度由正压脱硫的4~6g/L提高至负压脱硫的10~12g/L,达到较高的吸收效率,进而提高了脱硫效率。 3、设备投资 负压脱硫与正压脱硫设备上相比,脱硫工段不再用预冷塔及其配套的循环喷洒泵、换热器等设备,硫铵工段不再用预热器,节约大量设备投资,占地面积减少近80m2。 负压脱硫根据工艺特点,不用反应槽,节省两个约150m3的反应槽,占地面积减少约120m2。 4、环保效益 负压脱硫再生尾气回收至煤气系统内,减轻对大气污染的同时,尾气中的氧气、氨气等有效组分进入脱硫吸收塔内,参与脱硫吸收、解离反应,进一步增强了脱硫效率。 三、负压脱硫经济经济效益 负压脱硫较正压脱硫减少预冷塔、预冷喷洒泵、预冷换热器、反应槽等设备;减少煤气冷却消耗循环冷却水量150m3/h;节省硫铵预热器蒸汽量1t/h(冬季)。因此负压脱硫较正压脱硫节省成本为: 1)降低循环消耗成本:节约循环水量为150m3/h,按0.5元/m3、年运行360天计,则年节约循环冷却水成本为150×24×360×0.5=64.8万元。2)降低蒸汽消耗:节约蒸汽量为1t/h,蒸汽按150元/t、冬季按120天计,则年节约蒸汽消耗成本为1×24×120×150=43.2万元。 3)降低设备投资成本:减少预冷塔、循环泵、换热器、反应槽等设备及工程投资费用约500万元。按设备折旧费用计,年降低投资费用50万元。 则年降低成本为:64.8+43.2+50=158万元。另外,脱硫效率的提高,降低了脱硫后煤气中硫化氢含量,进一步降低燃烧时二氧化硫排放量,环保效益显著。 四、结论 1、负压脱硫较正压脱硫减少预冷系统、反应槽等设备,投资费用低,占地面积小,操作简便。 2、负压脱硫较正压脱硫较好地利用了煤气温度变化梯度,避免煤气经过冷却再加热,降低了循环冷却水及蒸汽消耗成本,经济效益显著。 3、负压脱硫入口煤气温度、脱硫液温度较正压脱硫降低约5℃,挥发氨浓度提高至10g/L以上,提高了对硫化氢的吸收,进而提高了脱硫效率。 4、负压脱硫再生尾气全部并入煤气负压系统,实现了脱硫尾气“零”排放,改善了工作环境,降低了大气污染。 5、负压脱硫较正压脱硫效率显著提高,降低了煤气中硫化氢含量,进而减少燃烧时二氧化硫的排放量,具有显著的环保效益。(来源:微信公众号@工业过程气体监测技术)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制