巨峰葡萄果实

仪器信息网巨峰葡萄果实专题为您整合巨峰葡萄果实相关的最新文章,在巨峰葡萄果实专题,您不仅可以免费浏览巨峰葡萄果实的资讯, 同时您还可以浏览巨峰葡萄果实的相关资料、解决方案,参与社区巨峰葡萄果实话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

巨峰葡萄果实相关的耗材

  • 蜂蜜专用液相色谱柱(果糖和葡萄糖), 柱长250×外径4.6 mm, 填料直径5 μm, PH 2-7.5
    蜂蜜专用液相色谱柱(果糖和葡萄糖), 柱长250×外径4.6 mm, 填料直径5 μm, PH 2-7.5
  • 葡萄糖半定量测试条91348
    葡萄糖半定量测试条91348德国MN葡萄糖测试条,可以检测溶液中葡萄糖的含量,测试过程既简单又快速,30秒钟就可以测出结果。产品编号91348类型QUANTOFIX® 葡萄糖测试条测量范围0 50 100 250 500 1000 2000 mg/L 葡萄糖测试次数100次保质期2.5 年颜色变化黄 → 蓝绿色
  • EE一次性葡萄糖-谷氨酸安瓿瓶
    Environmental Express® 一次性葡萄糖-谷氨酸安瓿瓶免去移液和稀释步骤– 无需再担心样品污染问题– 准备的稀释剂专为 300 mL 的 BOD 瓶制作– 使用简单每小瓶含有 6 mL APHA(美国公共卫生协会)规定浓度的葡萄糖谷氨酸(150 mg/L 葡萄糖和 150 mg/L 谷氨酸)。只需将小瓶彻底摇匀,去除密封打开瓶盖,倒出内容物,用 BOD 水冲洗空瓶两次至供检查的标准溶液。产品有 24 个月的保质期,并提供 SDS。一次性 GGA 标准瓶D1243,24 x 6 mL

巨峰葡萄果实相关的仪器

  • 新一代葡萄酒分析解决方案已经推出布鲁克在葡萄酒领域专家的帮助下,研发出运用核磁共振(NMR)波谱的葡萄酒分析的创新解决方案。该方法的原理是基于每一个样品独特的核磁共振指纹图谱。利用多变量统计法将样品的指纹图谱与真实葡萄酒样品的大型数据库进行比较。采用NMR的葡萄酒筛选分析(Wine Profiling)以一种独特的方式兼具质量控制、特定安全问题和样品真实性测试的功能。 特色:全面的葡萄酒筛选分析基于FoodScreener平台,是一个自动按键式、简单易学且性价比高的NMR解决方案;自动生成分析报告;基于一次NMR采样,就能提供靶向和非靶向分析的可靠筛选方法;56种代谢物的定量结果;代谢物的定量结果与官方参考值比较,所有化合物的浓度结果与真实样品的浓度分布比较,从而为结果的解析提供支持;通过聚类分析预测诸如葡萄品种、原产地和酿造年份等真实性参数;通过模型验证的方法,将样品与真实葡萄酒参考数据库进行比较,从而完成样品一致性的非靶向验证。 葡萄酒筛选分析3.0版新特色提供欧洲葡萄酒主要生产国的原产地验证;区域产地验证,包括法国、意大利和西班牙的相关区域;延伸的聚类分析现已涵盖22个葡萄品种;欧洲白葡萄酒酿造年份的验证;快速检测特定品种的葡萄酒是否兑水。定量和统计模型列表上的详细信息可以在葡萄酒筛选分析规格表中找到。
    留言咨询
  • FTIR 葡萄酒分析仪:Lyza 5000 Wine葡萄酒分析的优选Lyza 5000 Wine 是用于葡萄酒生产、葡萄酒实验室和灌装工厂进行快速葡萄酒分析的高级解决方案。将傅里叶变换红外 (FTIR) 光谱与化学统计模型结合使用,可同时测定葡萄酒必要参数,包括酒精含量、糖和有机酸。与现有测量系统连接、自动化和短测量时间可保证立即得到结果。通过创新型集成软件,可立即操作 Lyza 5000 Wine,无需经过任何培训。Lyza 5000 Wine:安东帕专为葡萄酒市场定制的 FTIR 仪器。安东帕是您在葡萄酒行业可信赖的仪器提供商。创新点:适用于葡萄酒的FTIR多参数分析仪——测量参数包括乙醇,葡萄糖+果糖,果糖,葡萄糖,滴定酸度,酒石酸,挥发性酸,苹果酸,乳酸,甘油,浸出物,密度,pH,酵母可吸收氮,葡萄汁重量等葡萄酒市场上的高精度测量仪器——经过12次反射的ATR测量池(高强度,受浊度影响小);密封的测量单元;精确的测量池温度控制(± 0.03°C)连接自动进样器——通过Xsample520(可选24位进样盘)实现自动化,测量过程中样品顺序可调主要特点Lyza 5000 Wine 兼具操作简单和功能强大的特点直观设置和不到 1 分钟的最短测量时间,可获得即时结果使用受现代智能手机界面外观启发的用户界面浏览您的日常操作通过最直观的 Xsample 设置复杂测量程序参考值测量和仪器运行状况综合测定的指导工作流程可确保结果始终可靠Lyza 5000 Wine 配备 10.1 英寸高分辨率触摸屏,无需外部电脑,可自动执行所有数据分析用途最广的葡萄酒分析系统手动进样使其可以在小型葡萄酒实验室快速轻松地进行独立操作。通过 Xsample 进样器实现的自动化,提高样品处理量。Lyza 5000 Wine 可连接到葡萄酒实验室的基准仪器上:从 DMA M 密度计到全套 Alcolyzer Wine 分析系统。由于这些设置可同时进行测量,因此可获得超过 15 个参数,而不延长总体测量时间。将一份显示所有连接仪器结果的综合报告导出到 LIMS 或直接从 Lyza 5000 Wine 中打印出来。专为葡萄酒市场设计Lyza 5000 Wine 的 ATR 样品槽专为葡萄酒市场进行的质量控制而量身定制。与常用的传输单元相比,12 跳设计提供的信号强度较少受到混浊或气体样品的影响,可达到理想状态。对任何葡萄酒分析仪均可实现最准确的测量池温度控制 (±0.03 K),为您提供优佳再现性。密封的 FTIR 光谱仪核心将环境影响降低,实现无与伦比的重复性。检查和校正只需要水和二元乙醇溶液 – 无需专门的专用参考标准物质。通过遵循指导工作流程,可将全球实施的有效葡萄酒模型轻松适应于您的本地需求 – 这使所有用户组都可进行模型校正。
    留言咨询
  • 葡萄酒的色泽千变万化,不仅给人带来视觉上的享受,同时也是评价葡萄酒整体质量的重要参考。国内对葡萄酒颜色的评定尚无统一、客观的标准方法。现有技术中,葡萄酒颜色的评定方法依然依靠目视法,专业评酒员组成的感官评审组,根据目视感觉,用相近的描述性语言给出近似的结果,受到环境、人感官和心理影响很大,在现代社会,已不能满足检测行业、加工酿造行业检验的需要。 高标准的测量精度 ●自我鉴定仪器的精度●自动进行波长校正、暗电流校正●全密封结构及所有光学镜面有Si02保护膜,全面减少光学元器件受外界气体和环境的影响 数字化显示 实现葡萄酒颜色信号的“三维数字坐标”值,其优点有:●实现测定、表示、传递的数字化;●色空间方法的坐标值,可以实现葡萄酒颜色特征的复原;●实现异地、远程的颜色特征量值传递,消除信息交流障碍;●避免实验人员因颜色视觉的差异,提高了分析精度;●实现了数字化的量值溯源。 科学的控制系统●控制系统对光源的使用寿命进行实时监控●光源插座式设计,换灯时免光学调试省时省力●专用葡萄酒颜色分析软件,实现测定、表示、传递的数字化技术参数测量范围190-1100nm光谱带宽1.8nm波长精度±0.3nm(D656.1±0.1nm)杂散光0.03%T220nm,360nm测量项目L* ,a* ,b* ,c* ,h*,ΔE检出限L*0.03,a*0.031,b*0.045;色差ΔEab<1.5光源原装进口氘灯、钨灯工作方式电脑软件操作电源220VAC +10% 50Hz尺寸596*445*150mm总之,葡萄酒颜色分析仪测量精度高,测试步骤简单,可以实现自动化、批量化、规模化的检测。
    留言咨询

巨峰葡萄果实相关的方案

巨峰葡萄果实相关的论坛

  • 【原创大赛】小气候对酿酒葡萄果实质量的影响

    [align=center][b]小气候对酿酒葡萄果实质量的影响[/b][/align][b]摘要:[/b]本试验研究了陕西省铜川市耀州区三个不同海拔高度葡萄园的温度、湿度、日照时数和降雨量等小气候因子及葡萄浆果质量状况,并在不同海拔高度之间进行了分析比较,结果表明:所设三个小区(A小区海拔1152m,B小区1096m,C小区818m),其中,日照时数以B小区葡萄园最长,C小区最短。降雨量山地大于平地,在山地上随海拔的升高而递增。相对湿度从5月~9月呈递增趋势,各小区间差异不明显。空气温度、各土层土壤温度和≥10℃活动积温均为平地高于山地,在山地上随海拔的升高而递减。各小区葡萄浆果含糖量以B小区最高,A小区最低;含酸量山地高于平地,山地上随海拔的升高而增加,糖酸比山地小于平地,在山地上随海拔的升高而递减;单宁含量以B小区最高,C小区最低。初步得出了有利于酿酒葡萄栽培的地形特点。[b]关键词[/b]:山地;海拔;小气候;葡萄浆果质量近年来,随着社会的发展和人们生活水平的提高,优质葡萄酒逐渐成为消费热点。现代研究认为:酿酒葡萄是酿造优质葡萄酒的基础和关键,葡萄原料质量在决定葡萄酒质量方面起着举足轻重的作用。葡萄质量主要决定于葡萄品种及相应的生态条件,葡萄的品种可以通过品种选育和引种而改变,是可变的,而生态条件是某个地区水、热、光、温等因素的综合表现,它是相对稳定的,气候条件作为其中最活跃的因素,对葡萄质量浆果具有决定性作用。国外关于海拔高度对葡萄与葡萄酒品质影响的研究较多,并且也较深入[sup][/sup],但国内在这方面的研究还很少。陕西地处我国西北地区东部,以其具备发展葡萄酒独特的气候条件和地域特点而受到国内外葡萄、葡萄酒专家的瞩目。尤其是渭北高原,被公认为葡萄的优生区,但是这些地区沟壑纵横,由于不同的坡度、坡向、海拔高度等形成局部山地小气候,对葡萄的生长发育、品质及葡萄酒的品质有很大的影响[sup][/sup]。为了合理开发利用山区气候资源,提高栽培管理水平,经济而有效的发展酿酒葡萄及葡萄酒生产,有必要对不同山地的小生态环境特点及其与葡萄生长发育间的关系进行研究。本研究选取陕西省渭北高原不同海拔高度的三个葡萄园,对葡萄园的小生态环境特点、及葡萄浆果质量状况等进行了初步调查研究,为山区丘陵地发展葡萄与葡萄酒产业提供理论依据。[b]1材料与方法1.1试验地点[/b]试验于2014—2015年在陕西省铜川市耀州区小丘镇进行。寺坡村葡萄园为山沟地形,坡面面向西南方向;原党村葡萄园为丘陵平地地形。在寺坡村选取同一坡地不同海拔两个典型的酿酒葡萄园(A,B),其中A小区28亩,B小区32亩。在原党村选取一处典型的酿酒葡萄园(C)为试验观测点,C小区面积38亩。经用GPS测定,三小区海拔及经纬度见表1-1。[align=center] [/align][align=center] [/align]表1-1 试验点基本情况[align=center]Table 2-1Introduction of test site[/align] [table][tr][td] [align=center]试验点[/align] [align=center]Test site[/align] [/td][td] [align=center]海拔[/align] [align=center]Altitude(m)[/align] [/td][td] [align=center]经度(东经)[/align] [align=center]East longitude[/align] [/td][td] [align=center]纬度(北纬)[/align] [align=center]North latitude[/align] [/td][/tr][tr][td] [align=center]A[/align] [/td][td] [align=center]1152[/align] [/td][td] [align=center]108°43′53″[/align] [/td][td] [align=center]34°59′02″[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]1096[/align] [/td][td] [align=center]108°43′49″[/align] [/td][td] [align=center]34°58′58″[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]818[/align] [/td][td] [align=center]108°50′20″[/align] [/td][td] [align=center]34°50′26″[/align] [/td][/tr][/table][b]1.2试验材料[/b]供试品种为赤霞珠(Cabernet Sauvignon),1999年定植,南北行向,株行距为1.3×2.0m,单干双臂整形,栽培管理措施相同。[b]1.3试验方法[/b]1.3.1小气候的观测(1)温度及空气湿度观测从5月开始至果实采收,每日记录空气温度,空气最高、最低温度,空气湿度(每日8:00、14:00、20:00记录,计算日平均值)。最高、最低温度分别用空气及地表最高、最低温度表测定,地下温度用曲管地温表测定,空气湿度用天津气象仪器厂生产的DHM-2型通风干湿表测定。(2)日照时数及降雨量的测定 从5月开始至果实采收,每日测定葡萄园日照时数和降雨量,日照时数采用上海气象仪器厂成产的FJ2型暗筒式日照计测定,降雨量采用天津气象仪器厂生产的SDM6A型雨量器进行测量[sup][/sup]。1.3.2果实质量分析自果实进入转色期以后,用手持测糖仪每隔7d在标记果穗上随机取30个果粒测定可溶性固形物含量,达到14%以后每隔3d取一次样,测总糖、总酸、可溶性固形物含量,分别绘制糖、酸含量的变化曲线。果实采收时,随机采200粒浆果进行果实理化分析。主要测定:出汁率:称出果粒重量,取汁后算出汁液重量,用汁液重量除以果粒重量得出汁率;可溶性固形物:手持测糖仪测定;还原糖(以葡萄糖计):斐林试剂滴定法; 总酸(以酒石酸计):指示剂法(国标法);单宁:福林-丹尼斯试剂法; pH值:酸度计法[sup][/sup]。[b]2统计分析方法[/b]试验数据采用SAS6.0及DPS3.01数据分析软件进行统计分析[b]3结果与分析3.1小气候[/b]由于地形复杂、海拔的差异,加上坡向、坡度等的影响,使得山区各气象因子在不同海拔高度葡萄园的分布情况较复杂。3.1.1温度(1)土壤温度对各点葡萄园土壤温度观测(表3-1, 表3-2, 表3-3)得出,地面及5~20cm各土层温度均为C小区最高,基本上呈现出随海拔升高而递减的趋势。在同一海拔相同月份,不同土层的温度变化规律不同,在海拔最高的A小区表现为10cm土层温度最低,在B小区和C小区则为20cm土层的温度最低,并且在C小区随着土层深度的增加温度呈递减的趋势。地面最低温度总体上为B小区最低,C小区最高。地面最高温度在5~7月随海拔升高而降低,在8、9两个月则为B小区处最高。在各海拔内,最低温度均有在5~7月逐渐升高,7~9月逐渐降低的规律;最高温度则表现为从5~9月逐渐递减。从整体上看,地温资源山地低于平地。[align=center][b]表3-1 A小区葡萄园5~9月各土层土壤温度(温度:℃)[/b][/align][align=center][b]Table 3-1 May to September soil temperature indices of test site A[/b][/align] [table=98%][tr][td] [align=center]月份Month[/align] [/td][td] [align=center]平均0cm地温[/align] [align=center]Mean soil surface temperature[/align] [/td][td] [align=center]平均5cm地温[/align] [align=center]Mean temp. in 5cm depth soil layer [/align] [/td][td] [align=center]平均10cm地温[/align] [align=center]Mean temp. in 10cm depth soil layer[/align] [/td][td] [align=center]平均15cm地温[/align] [align=center]Mean temp. in 15cm depth soil layer[/align] [/td][td] [align=center]平均20cm地温[/align] [align=center]Mean temp. in 20cm depth soil layer[/align] [/td][td] [align=center]平均最低地温[/align] [align=center]Mean minimum temp. of soil surface[/align] [/td][td] [align=center]平均最高地温[/align] [align=center]Mean maximum temp. of soil surface[/align] [/td][/tr][tr][td] [align=center]5月[/align] [align=center]May[/align] [/td][td] [align=center]21.5[/align] [/td][td] [align=center]19.8[/align] [/td][td] [align=center]19.3[/align] [/td][td] [align=center]19.5[/align] [/td][td] [align=center]19.6[/align] [/td][td] [align=center]11.9[/align] [/td][td] [align=center]44.3[/align] [/td][/tr][tr][td] [align=center]6月[/align] [align=center]Jun.[/align] [/td][td] [align=center]24.0[/align] [/td][td] [align=center]21.8[/align] [/td][td] [align=center]21.4[/align] [/td][td] [align=center]21.5[/align] [/td][td] [align=center]21.7[/align] [/td][td] [align=center]15.5[/align] [/td][td] [align=center]42.0[/align] [/td][/tr][tr][td] [align=center]7月[/align] [align=center]Jul.[/align] [/td][td] [align=center]23.7[/align] [/td][td] [align=center]22.8[/align] [/td][td] [align=center]22.5[/align] [/td][td] [align=center]22.9[/align] [/td][td] [align=center]22.9[/align] [/td][td] [align=center]17.7[/align] [/td][td] [align=center]36.3[/align] [/td][/tr][tr][td] [align=center]8月[/align] [align=center]Aug.[/align] [/td][td] [align=center]22.1[/align] [/td][td] [align=center]21.6[/align] [/td][td] [align=center]21.4[/align] [/td][td] [align=center]21.7[/align] [/td][td] [align=center]21.7[/align] [/td][td] [align=center]17.3[/align] [/td][td] [align=center]30.3[/align] [/td][/tr][tr][td] [align=center]9月[/align] [align=center]Sept.[/align] [/td][td] [align=center]17.0[/align] [/td][td] [align=center]17.2[/align] [/td][td] [align=center]17.7[/align] [/td][td] [align=center]18.1[/align] [/td][td] [align=center]18.2[/align] [/td][td] [align=center]12.7[/align] [/td][td] [align=center]26.8[/align] [/td][/tr][tr][td] [align=center]合计[/align] [align=center]Total[/align] [/td][td] [align=center]108.3[/align] [/td][td] [align=center]103.2[/align] [/td][td] [align=center]102.3[/align] [/td][td] [align=center]103.7[/align] [/td][td] [align=center]104.1[/align] [/td][td] [align=center]75.1[/align] [/td][td] [align=center]179.7[/align] [/td][/tr][/table][align=center][b]表3-2 B小区葡萄园5~9月各土层土壤温度(温度:℃)[/b][/align][align=center][b]Table 3-2 May to September soil temperature indices of vineyardtest site B[/b][/align] [table=98%][tr][td] [align=center]月份Month[/align] [/td][td] [align=center]平均0cm地温[/align] [align=center]Mean soil surface temperature[/align] [/td][td] [align=center]平均5cm地温[/align] [align=center]Mean temp. in 5cm depth soil layer [/align] [/td][td] [align=center]平均10cm地温[/align] [align=center]Mean temp. in 10cm depth soil layer[/align] [/td][td] [align=center]平均15cm地温[/align] [align=center]Mean temp. in 15cm depth soil layer[/align] [/td][td] [align=center]平均20cm地温[/align] [align=center]Mean temp. in 20cm depth soil layer[/align] [/td][td] [align=center]平均最低地温[/align] [align=center]Mean minimum temp. of soil surface[/align] [/td][td] [align=center]平均最高地温[/align] [align=center]Mean maximum temp. of soil surface[/align] [/td][/tr][tr][td] [align=center]5月[/align] [align=center]May[/align] [/td][td] [align=center]21.0[/align] [/td][td] [align=center]20.2[/align] [/td][td] [align=center]19.4[/align] [/td][td] [align=center]19.8[/align] [/td][td] [align=center]18.6[/align] [/td][td] [align=center]12.2[/align] [/td][td] [align=center]43.7[/align] [/td][/tr][tr][td] [align=center]6月[/align] [align=center]Jun.[/align] [/td][td] [align=center]23.5[/align] [/td][td] [align=center]22.8[/align] [/td][td] [align=center]22.3[/align] [/td][td] [align=center]22.4[/align] [/td][td] [align=center]21.1[/align] [/td][td] [align=center]15.2[/align] [/td][td] [align=center]42.1[/align] [/td][/tr][tr][td] [align=center]7月[/align] [align=center]Jul.[/align] [/td][td] [align=center]24.4[/align] [/td][td] [align=center]24.7[/align] [/td][td] [align=center]23.3[/align] [/td][td] [align=center]23.5[/align] [/td][td] [align=center]22.7[/align] [/td][td] [align=center]17.4[/align] [/td][td] [align=center]38.7[/align] [/td][/tr][tr][td] [align=center]8月[/align] [align=center]Aug.[/align] [/td][td] [align=center]22.6[/align] [/td][td] [align=center]22.0[/align] [/td][td] [align=center]22.0[/align] [/td][td] [align=center]22.0[/align] [/td][td] [align=center]21.6[/align] [/td][td] [align=center]17.1[/align] [/td][td] [align=center]34.2[/align] [/td][/tr][tr][td] [align=center]9月[/align] [align=center]Sept.[/align] [/td][td] [align=center]17.1[/align] [/td][td] [align=center]18.4[/align] [/td][td] [align=center]18.5[/align] [/td][td] [align=center]19.0[/align] [/td][td] [align=center]18.8[/align] [/td][td] [align=center]12.5[/align] [/td][td] [align=center]31.0[/align] [/td][/tr][tr][td] [align=center]合计[/align] [align=center]Total[/align] [/td][td] [align=center]108.6[/align] [/td][td] [align=center]108.1[/align] [/td][td] [align=center]105.5[/align] [/td][td] [align=center]106.7[/align] [/td][td] [align=center]102.8[/align] [/td][td] [align=center]74.4[/align] [/td][td] [align=center]189.7[/align] [/td][/tr][/table][align=center] [/align][align=center][b]表 3-3 C小区葡萄园5~9月各土层土壤温度(温度:℃)[/b][/align][align=center][b]Table 3-3 May to September soil temperature indices of test site C[/b][/align] [table=98%][tr][td] [align=center]月份Month[/align] [/td][td] [align=center]平均0cm地温[/align] [align=center]Mean soil surface temperature[/align] [/td][td] [align=center]平均5cm地温[/align] [align=center]Mean temp. in 5cm depth soil layer [/align] [/td][td] [align=center]平均10cm地温[/align] [align=center]Mean temp. in 10cm depth soil layer[/align] [/td][td] [align=center]平均15cm地温[/align] [align=center]Mean temp. in 15cm depth soil layer[/align] [/td][td] [align=center]平均20cm地温[/align] [align=center]Mean temp. in 20cm depth soil layer[/align] [/td][td] [align=center]平均最低地温[/align] [align=center]Mean minimum temp. of soil surface[/align] [/td][td] [align=center]平均最高地温[/align] [align=center]Mean maximum temp. of soil surface[/align] [/td][/tr][tr][td] [align=center]5月[/align] [align=center]May[/align] [/td][td] [align=center]25.6[/align] [/td][td] [align=center]21.4[/align] [/td][td] [align=center]20.5[/align] [/td][td] [align=center]20.5[/align] [/td][td] [align=center]19.9[/align] [/td][td] [align=center]11.8[/align] [/td][td] [align=center]46.5[/align] [/td][/tr][tr][td] [align=center]6月[/align] [align=center]Jun.[/align] [/td][td] [align=center]28.1[/align] [/td][td] [align=center]23.8[/align] [/td][td] [align=center]22.7[/align] [/td][td] [align=center]22.3[/align] [/td][td] [align=center]21.8[/align] [/td][td] [align=center]16.0[/align] [/td][td] [align=center]46.3[/align] [/td][/tr][tr][td] [align=center]7月[/align] [align=center]Jul.[/align] [/td][td] [align=center]27.7[/align] [/td][td] [align=center]24.6[/align] [/td][td] [align=center]24.5[/align] [/td][td] [align=center]24.1[/align] [/td][td] [align=center]23.5[/align] [/td][td] [align=center]17.9[/align] [/td][td] [align=center]42.8[/align] [/td][/tr][tr][td] [align=center]8月[/align] [align=center]Aug.[/align] [/td][td] [align=center]23.2[/align] [/td][td] [align=center]22.7[/align] [/td][td] [align=center]22.3[/align] [/td][td] [align=center]21.8[/align] [/td][td] [align=center]21.6[/align] [/td][td] [align=center]18.8[/align] [/td][td] [align=center]32.0[/align] [/td][/tr][tr][td] [align=center]9月[/align] [align=center]Sept.[/align] [/td][td] [align=center]19.7[/align] [/td][td] [align=center]18.4[/align] [/td][td] [align=center]18.8[/align] [/td][td] [align=center]18.7[/align] [/td][td] [align=center]18.6[/align] [/td][td] [align=center]13.6[/align] [/td][td] [align=center]30.4[/align] [/td][/tr][tr][td] [align=center]合计[/align] [align=center]Total[/align] [/td][td] [align=center]124.3[/align] [/td][td] [align=center]110.9[/align] [/td][td] [align=center]108.8[/align] [/td][td] [align=center]107.4[/align] [/td][td] [align=center]105.4[/align] [/td][td] [align=center]78.1[/align] [/td][td] [align=center]198.0[/align] [/td][/tr][/table]各点葡萄园地面温度日较差可以反映出地面最高与最低温度差值的变化情况。由图3-1可以看出,C小区从6月10日~7月20日地面温度日较差明显高于其它两点,而从7月31[img=,417,200]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]日~9月20日B小区又高于A小区和C小区。[align=center][b]图3-1 各点葡萄园地面温度日较差[/b][/align]Figure 3-1Soil surface temperature daily range of different test site(2)气温各点葡萄园5~9月空气平均温度(表3-4)在16.1~24.7℃之间变化。平均温度最高的月份均为7月,分别为A:22.3℃,B:23.0℃和C:24.7℃。平均最低气温变化范围为11.4℃~18.8℃,平均最高气温在22.9℃~37.0℃之间变化。5~9月≥10℃活动积温山地低于平地,分别为A:2960.4℃,B:3007.2℃和C:3297.8℃。以上各温度指标变化趋势基本相同,即5~7月呈增加趋势,7~9月呈降低趋势。[align=center] [/align][align=center][b] [/b][/align][align=center][b]表3-4 各小区葡萄园5~9月各温度指标(℃)[/b][/align][align=center][b]Table 3-4 May to September temperature indices of different testsite[/b][/align] [table=100%][tr][td=1,2] [align=center]温度指标[/align] [align=center]Temperature indices[/align] [/td][td=1,2] [align=center]试验点[/align] [align=center]Test site[/align] [/td][td=5,1] [align=center]月份 Month[/align] [/td][td=1,2] [align=center]合计 Total[/align] [/td][/tr][tr][td] [align=center]5月May[/align] [/td][td] [align=center]6月June[/align] [/td][td] [align=center]7月 July[/align] [/td][td] [align=center]8月 August[/align] [/td][td] [align=center]9月 September[/align] [/td][/tr][tr][td=1,3] [align=center]平均气温[/align] [align=center]Mean temperature[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]18.1[/align] [/td][td] [align=center]20.9[/align] [/td][td] [align=center]22.3[/align] [/td][td] [align=center]20.4[/align] [/td][td] [align=center]16.1[/align] [/td][td] [align=center]97.8[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]21.1[/align] [/td][td] [align=center]23.0[/align] [/td][td] [align=center]20.8[/align] [/td][td] [align=center]20.0[/align] [/td][td] [align=center]102.9[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]19.8[/align] [/td][td] [align=center]23.5[/align] [/td][td] [align=center]24.7[/align] [/td][td] [align=center]22.1[/align] [/td][td] [align=center]17.7[/align] [/td][td] [align=center]107.8[/align] [/td][/tr][tr][td=1,3] [align=center]平均最低气温[/align] [align=center]Mean minimum temperature[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]11.4[/align] [/td][td] [align=center]15.4[/align] [/td][td] [align=center]17.8[/align] [/td][td] [align=center]16.9[/align] [/td][td] [align=center]12.5[/align] [/td][td] [align=center]74.0[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]11.7[/align] [/td][td] [align=center]14.6[/align] [/td][td] [align=center]18.6[/align] [/td][td] [align=center]14.7[/align] [/td][td] [align=center]12.2[/align] [/td][td] [align=center]71.8[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]13.2[/align] [/td][td] [align=center]15.6[/align] [/td][td] [align=center]18.2[/align] [/td][td] [align=center]18.8[/align] [/td][td] [align=center]13.4[/align] [/td][td] [align=center]79.2[/align] [/td][/tr][tr][td=1,3] [align=center]平均最高气温[/align] [align=center]Mean maximum temperature[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]27.2[/align] [/td][td] [align=center]30.6[/align] [/td][td] [align=center]30.6[/align] [/td][td] [align=center]27.0[/align] [/td][td] [align=center]23.0[/align] [/td][td] [align=center]138.4[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]26.7[/align] [/td][td] [align=center]30.1[/align] [/td][td] [align=center]30.9[/align] [/td][td] [align=center]27.0[/align] [/td][td] [align=center]22.9[/align] [/td][td] [align=center]137.6[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]28.4[/align] [/td][td] [align=center]37.0[/align] [/td][td] [align=center]32.1[/align] [/td][td] [align=center]28.4[/align] [/td][td] [align=center]23.9[/align] [/td][td] [align=center]149.8[/align] [/td][/tr][tr][td=1,3] [align=center]≥10℃活动积温[/align] [align=center]≥10℃ Active accumulated temperature[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]545.2[/align] [/td][td] [align=center]625.3[/align] [/td][td] [align=center]691.5[/align] [/td][td] [align=center]632.0[/align] [/td][td] [align=center]466.4[/align] [/td][td] [align=center]2960.4[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]549.9[/align] [/td][td] [align=center]632.7[/align] [/td][td] [align=center]706.5[/align] [/td][td] [align=center]627.3[/align] [/td][td] [align=center]490.8[/align] [/td][td] [align=center]3007.2[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]613.2[/align] [/td][td] [align=center]704.6[/align] [/td][td] [align=center]764.8[/align] [/td][td] [align=center]684.2[/align] [/td][td] [align=center]531.0[/align] [/td][td] [align=center]3297.8[/align] [/td][/tr][/table](3)气温日较差各点葡萄园气温日较差由于海拔和坡度的影响而表现出不同的变化。由图3-2可以看出,C小区从6月10日~7月31日气温日较差明显高于其它两点,而从8月10日~9月20日B小区又高于A小区和C小区。这可能是B小区的浆果含糖量高于其它两点的原因之一。[img=,372,207]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][b]图3-2 各点葡萄园气温日较差[/b][align=center]Figure 3-2 Air temperature daily range ofdifferent test site[/align]3.1.2相对湿度各点葡萄园相对湿度(图3-3)均从5月的50%左右增加到8月的80%以上,5~8月呈现逐渐增加的趋势,而9月又低于8月。从图中可以看出,C小区5月相对湿度明显高于A小区和B小区,6~9月相差不大,这与各月份的日照时数和降雨量有关。 [table][tr][td][img=,356,255]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][b]图3-3 各点葡萄园5~9月相对湿度[/b][align=center]Figure3-3 May to September relative humidity of different test site[/align]3.1.3日照时数三点葡萄园日照时数(图3-4)均为5月最高,分别为A:223.2h,B:247.2h和C:243.8h;8月最低,分别为A:112.6h,B:120.7h和C:94.4h。5~9月日照时数在各点葡萄园大体上呈降低的趋势。5~9月总日照时数以1096m处最高为898.1h,818m处最低为813.8h,1152m处居中为827.3h。 [table][tr][td][img=,385,234]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][align=center][b]图3-4各点葡萄园5~9月日照时数[/b][/align][align=center]Figure3-4 May to September sunshine duration of different test site[/align]3.1.4降雨量三点葡萄园的降雨量(图3-5)在8.3mm至163.4mm之间,变化幅度较大,大都集中在7~9月,均在100mm以上,而5、6两个月则较少。A、B两点降雨量在5~8月均呈递增的趋势,到9月又有所下降,最大值均出现在8月,分别为A:163.4mm,B:153.1mm;而C小区降雨量从5~9月基本上呈递增趋势,最大值出现在9月,为140.3mm。总降雨量山地大于平地,分别为A:497.2mm,B:481.7mm和C:397.0mm。 [table][tr][td][img=,420,212]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][align=center][b]图3-5各点葡萄园5~9月降雨量[/b][/align][align=center]Figure3-5 May to September precipitation of different test site[/align][b]3.2葡萄浆果质量[/b]3.2.1果实成熟过程中含糖量和含酸量的变化由图3-6、图3-7可以看出,各试验点葡萄果实还原糖变化趋势基本一致,呈上升趋势,含酸量变化也基本一致,呈下降趋势。含糖量在8月14日至8月30日增长缓慢,可能是由于此期间降雨较多所致。9月14日以后,果实含糖量和含酸量趋于稳定,可以确定采收期在9月14日前后。 [table][tr][td][img=,499,279]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][align=center] [/align][align=center][b]图3-6各点葡萄含糖量的变化[/b][/align][align=center]Figure3-6 The variation ofgrape reducing sugar content of different test site[/align] [table][tr][td][img=,528,278]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][b]图3-7 各点葡萄含酸量的变化[/b][align=center]Figure3-7 The variation ofgrape total acid content of different test site[/align]3.2.2成熟果实理化指标由各试验点果实品质的分析结果(表3-5)可以看出,三点间还原糖含量、含酸量、糖酸比和单宁含量间差异均达到极显著水平。糖酸比在18.12~21.93之间,均较酿酒的最佳糖酸比偏小,没有达到最好的成熟度。B小区还原糖含量最高,为178.00g/L;A小区最低,为170.50g/L;A小区酸度最高,为9.41g/L。单宁含量以B小区最高,为1.001g/L;C小区最低,为0.942g/L,即海拔较高的山地高于海拔较低的平地,在山地上又以海拔较低处含量高。pH值山地低于平地,三点分别为A:3.22、B:3.28和C:3.29,且B、C两点与A小区间的差异达到显著水平。出汁率山地低于平地,并三点间差异达到显著水平。造成三个点葡萄浆果糖酸等质量指标不是很好的原因可能是由于雨季比较集中且雨量大,在这种条件下,由于湿度大、光照不足、病害严重,使得葡萄浆果成熟度没有达到最佳。[align=center][b]表3-5 各点葡萄浆果理化指标[/b][/align][b]Table 3-5 Grape quality of different test site[/b] [table=100%][tr][td] [align=center]试验点[/align] [align=center]Test site[/align] [/td][td] [align=center]可溶性固形物含量[/align] [align=center]Soluble solids content (%)[/align] [/td][td] [align=center]还原糖含量[/align] [align=center]Reducing sugar content (g/L)[/align] [/td][td] [align=center]含酸量[/align] [align=center]Total acid content (g/L)[/align] [/td][td] [align=center]糖酸比[/align] [align=center]Sugar acid ratio[/align] [/td][td] [align=center]单宁[/align] [align=center]Tannins (g/L)[/align] [/td][td] [align=center]pH[/align] [/td][td] [align=center]出汁率[/align] [align=center]Juice extraction (%)[/align] [/td][/tr][tr][td] [align=center]A[/align] [/td][td] [align=center]17.2[/align] [/td][td] [align=center]170.50[sup]**[/sup][/align] [/td][td] [align=center]9.41[sup]**[/sup][/align] [/td][td] [align=center]18.12[sup]**[/sup][/align] [/td][td] [align=center]0.965[sup]**[/sup][/align] [/td][td] [align=center]3.22[sup]*[/sup][/align] [/td][td] [align=center]74.5[sup]*[/sup][/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]178.00[sup]**[/sup][/align] [/td][td] [align=center]8.57[sup]**[/sup][/align] [/td][td] [align=center]20.77[sup]**[/sup][/align] [/td][td] [align=center]1.001[sup]**[/sup][/align] [/td][td] [align=center]3.28[sup]*[/sup][/align] [/td][td] [align=center]75.6[sup]*[/sup][/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]17.6[/align] [/td][td] [align=center]175.00[sup]**[/sup][/align] [/td][td] [align=center]7.98[sup]**[/sup][/align] [/td][td] [align=center]21.93[sup]**[/sup][/align] [/td][td] [align=center]0.942[sup]**[/sup][/align] [/td][td] [align=center]3.29[sup]*[/sup][/align] [/td][td] [align=center]76.0[sup]*[/sup][/align] [/td][/tr][/table]注:*,**分别表示在0.05和0.01水平上显著。Note:Significance is shown at * [i]P0.05[/i] and ** [i]P0.01[/i]经相关分析得出(表3-6),浆果含糖量与9月份15cm地温、20cm地温之间呈显著正相关,相关系数均为0.99718,与9月份地面温度日较差之间的相关性达到极显著水平,相关系数为1.00000,说明9月份的地表和地下温度对葡萄浆果糖分的积累十分重要。糖酸比与8、9月的10cm地温之间均呈显著正相关,相关系数分别为0.99949,0.99940。浆果单宁含量与7月地面最低温度呈显著负相关,相关系数为-0.99985。[align=center][b]表3-6 葡萄浆果理化指标与各气象因子间的相关系数[/b][/align][align=center][b]Table3-6 Correlation coefficients between grape quality indicesand climatic factors[/b][/align] [table][tr][td] [align=center]指标[/align] [align=center]Indices[/align] [/td][td] [align=center]7月平均地面[/align] [align=center]最低温度[/align] [align=center]Jul. mean minimum temp. of soil surface[/align] [/td][td] [align=center]8月气温[/align] [align=center]日较差[/align] [align=center]Aug. air temp. daily range[/align] [/td][td] [align=center]8月平均10cm[/align] [align=center]地温[/align] [align=center]Aug. mean temp. in 10cm depth soil layer[/align] [/td][td] [align=center]9月地面温度[/align] [align=center]日较差[/align] [align=center]Sept. Soil surface temp. daily range[/align] [/td][td] [align=center]9月平均10cm[/align] [align=center]地温[/align] [align=center]Sept. mean temp. in 10cm depth soil layer[/align] [/td][td] [align=center]9月平均15cm[/align] [align=center]地温[/align] [align=center]Sept. mean temp. in 15cm depth soil layer[/align] [/td][td] [align=center]9月平均20cm[/align] [align=center]地温[/align] [align=center]Sept. mean temp. in 20cm depth soil layer[/align] [/td][/tr][tr][td] [align=center]含糖量[/align] [align=center]Reducing sugar content[/align] [/td][td] [align=center]-0.50000[/align] [/td][td] [align=center]0.70896[/align] [/td][td] [align=center]0.73704[/align] [/td][td] [align=center]1.00000[sup]**[/sup][/align] [/td][td] [align=center]0.78034[/align] [/td][td] [align=center]0.99718[sup]*[/sup][/align] [/td][td] [align=center]0.99718[sup]*[/sup][/align] [/td][/tr][tr][td] [align=center]糖酸比[/align] [align=center]Sugar acid ratio[/align] [/td][td] [align=center]0.18549[/align] [/td][td] [align=center]0.07777[/align] [/td][td] [align=center]0.99949[sup]*[/sup][/align] [/td][td] [align=center]0.75791[/align] [/td][td] [align=center]0.99940[sup]*[/sup][/align] [/td][td] [align=center]0.80507[/align] [/td][td] [align=center]0.80507[/align] [/td][/tr][tr][td] [align=center]单宁含量[/align] [align=center]Tannin content[/align] [/td][td] [align=center]-0.99985[sup]*[/sup][/align] [/td][td] [align=center]0.96969[/align] [/td][td] [align=center]-0.19960[/align] [/td][td] [align=center]0.51558[/align] [/td][td] [align=center]-0.13402[/align] [/td][td] [align=center]0.44932[/align] [/td][td] [align=center]0.44932[/align] [/td][/tr][/table]注:﹡表示在0.05水平上显著;Note:Significanceis shown at * [i]P0.05[/i].[b]4讨论:4.1小气候的变化[/b]4.1.1光照在山区由于地形复杂,海拔差异悬殊,加上坡向、坡度等影响,使得山区日照时数分布情况十分复杂。据王宇[sup][/sup](1993年)对云南山区日照时数的垂直分布研究可知,高黎贡山在海拔较低处(1400m)东西坡全年日照时数接近,但各月日照时数差异较大,东坡干季各月(11月~4月)均多于西坡,雨季各月(5月~10月)则少于西坡。从本研究结果也可以看出,日照时数的变化趋势与降雨量的变化趋势基本上相反,即在日照时数最多的5月降雨量最少,日照时数最少的8月降雨量最多。4.1.2温度影响山区温度条件的因素较多,但从气候上说,主要还是宏观地理条件(测点经、纬度;离大水体远近;所在大山系走向以及宏观的气候背景条件等),测点海拔高度、地形(地形类别、坡向、坡度、地平遮蔽度等),和下垫面性质(土壤、植被状况等)等四种。其中尤以海拔高度和地形的影响最显著。刘玉洪[sup][9[/sup][sup],10][/sup](1992年,1993年)对哀牢山山地土壤温度的垂直分布特征进行研究得出:哀牢山地地积温资源丰富,在整个山地垂直剖面上全年均能通过≥0℃的界限温度。地表温度垂直分布是随着海拔升高而降低,但降温的递减率不均匀,是上大下小。冬季(1月)地表温度在山地的垂直分布是东坡小于西坡,夏季(7月)则相反。不同层次的地温均随海拔升高而降低,递减率是上大下小。地温随土层深度的垂直分布,冬季由浅层向深层增温,夏季则相反。本研究也得出各小区葡萄园的各温度指标基本上为海拔较高的山地高于平地,山地上随海拔的升高呈递减的趋势。4.1.3降水在山区,海拔高度和地形是影响降水分布的决定性因素。山地降水量的垂直分布,国内外学者已作了很多研究工作。据我国南方山地大量观测研究表明,不同山区,不同坡向,每上升100m,降水增加24.9~144.9mm,也就是说,根据降水随高度变化规律的分区,可基本确定山地不同方位和坡向对降水的影响。在太行山和冀北辽西山区的迎风坡最大降水量高度多发生在暖湿气流开始被迫上升的高度范围内,而且空气越潮湿,最大降水高度越低,反之则高,在最大降水高度上,也是暴雨多发生地区[sup][/sup]。据张克映等[sup][/sup](1994年)的研究,在哀牢山,无论迎风西坡或背风东坡的降水量均随海拔高度呈良好的线性分布,山顶为最大降水高度所在。坡地降水梯度(mm/hm)西坡略大于东坡,雨季又远大于干季。本研究得出,降雨量海拔较高的山地高于平地,即随海拔的升高呈递增趋势符合一般的规律,4.1.4空气湿度据刘玉洪等[sup][/sup](1996年)的研究,在哀牢山(西南季风山地),水汽压是西坡高于东坡,并且严格随海拔高度升高而递减;相对湿度也同样是西坡大于东坡,只是在雨季期间,随海拔高度升高而递增,干季则另具特征:东坡是随海拔升高而递减,西坡与海拔高度无关。无论是水汽压还是相对湿度随海拔高度基本上呈线性分布,水汽压在各季节与海拔高度相关性较好;而相对湿度只是在雨季与海拔高度有线性相关,在干季则与海拔高度相关性差。本研究得出,相对湿度大体与降雨量的变化趋势相似,只是变化幅度不如降雨量的大,三小区间的差异也不明显。[b]4.2山地小气候对葡萄浆果质量的影响[/b]地形对果实品质的影响也主要是通过对各生态因子的影响而起间接综合的重要作用,以海拔高度、地形形态、坡度、坡向或沟(谷)向影响最显著。张军翔等研究得出,≥10℃活动积温和葡萄的成熟特性有较大相关性,可以反映品种特性[sup][/sup]。最热月平均温度对葡萄及葡萄酒的质量也是一个重要的因素,它决定当地葡萄酒的潜在质量[sup][/sup]。在葡萄牙的viseu地区,葡萄酒的质量与5月和12月的最低气温有显著的相关性[sup][/sup]。另据李记明等研究可知,采收前45d的昼夜温差是造成陕西丹凤、杨凌和甘肃武威三地区间葡萄含糖量、糖/酸差异的主要气象因素之一[sup][/sup]。温度对含糖量的升高与含酸量的降低均有促进作用,≥10℃的有效积温是决定含糖量增加的主要气象因素,日最高气温≥30℃的日数、平均温度和≥10℃的有效积温是决定含酸量降低的主要气象因子[sup][/sup]。据李记明等研究可知,萌芽至采收的日照时数是造成陕西丹凤、杨凌和甘肃武威三地区间葡萄含酸量差异的主要气象因素之一,日照时数可以引起含酸量的降低,还是决定含糖量增加的主要气象因素之一[sup][/sup]。大多数植物的生长过程都直接或间接的受水分供应状况的影响,但葡萄植株必须承受一定程度的水分胁迫才能获得最佳质量的葡萄[sup][/sup]。李记明等和王华等研究得出,采收前20d降水量和采收前45d的降水量分别是造成陕西丹凤、杨凌和甘肃武威三地区间葡萄含糖量、糖/酸差异和含酸量差异的主要气象因素之一[sup][/sup]。陈在新等的研究得出,山地和平地园艺场砂梨的果实品质差异明显,山地砂梨可溶性固形物、总糖、总酸和水分含量明显高于平地的,而糖酸比与维生素C含量则显著低于平地的[sup][/sup]。本研究得出,果实含酸量山地高于平地,山地上随海拔升高而增加,糖酸比山地低于平地,山地上随海拔上升而下降,只是还原糖含量平地低于海拔较低处的山地。山地上海拔越高,其气温、有效积温越低,直接影响葡萄糖分积累,果实糖度相对较低;海拔低的地区果实糖度相对较高。魏钦平等在1999年研究了不同生态区乔纳金苹果果实品质,探讨了主要苹果产区的乔纳金果实品质与气象因子的关系,建立了主要气象因子与苹果品质关系的回归方程,求出果实品质优质的主要气象因子指标体系和最适值为:9月降雨量85mm,5、9月相对湿度为65%和68%,5月平均温度12.2℃,5、8、9月平均气温日较差10.0℃、10.5℃、11.0℃,9、10月平均最高气温22.5℃、21.5℃,9、10月平均最低气温8.5℃,≥10℃活动积温3214℃,5、8、9月日照时数213h、235h、209h[sup][/sup]。杨振伟(2000)对气象因子与国光苹果品质关系的研究得出,影响可溶性固形物、可滴定酸、硬度及糖酸比的主要气象因子分别是7月下旬~9月中旬的日照时数,7~8月的降水量,6月下旬~7月上旬的日均温以及7月中下旬的日均温[sup][/sup]。本研究得出,浆果含糖量与9月15cm地温和9月20cm地温之间呈显著正相关,与9月地面温度日较差之间呈极显著正相关,说明9月份的地表和地下温度对葡萄浆果糖分的积累十分重要。糖酸比与8、9月份10cm地温之间均呈显著正相关。浆果单宁含量与7月地面最低温度呈显著负相关。[b]5结束语[/b]在本试验条件下,初步得出了陕西省铜川市耀州区不同海拔高度的三个葡萄园的小气候特点及葡萄浆果质量状况,其中,A小区的浆果质量最优,总体上海拔较高的山地高于海拔较低的平地,在山地上又以海拔较低处优于海拔较高处。目前,为了进一步促进山区丘陵地葡萄与葡萄酒产业的发展,还有待于进行葡萄光合理化指标的测定及酿酒实验等方面的深入研究。[b] [/b]

  • 美国是白葡萄酒的第二大市场国

    美国是白葡萄酒的最大消费国,2000--2021年的消费量增长了65%。俄罗斯,澳大利亚和英国是白葡萄酒表现良好的其他几个国家,而意大利的消费则很稳定,它是白葡萄酒的第二大市场国。

  • 我国是葡萄主要起源地之一

    我国作为葡萄属植物的主要起源地之一,我国也是葡萄种质资源最为丰富的国家之一,已知野生葡萄种类约占世界葡萄属植物的60%。[img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407031125314971_7024_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407031125329386_2102_1642069_3.png[/img]

巨峰葡萄果实相关的资料

巨峰葡萄果实相关的资讯

  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 一串葡萄的“数字秘密”生长记-浦江超级农场的数字秘密
    春花烂漫,又到了浦江乡村最美的季节。从空中俯瞰,浦阳江两岸分布着成片的钢架大棚,大棚里葡萄的藤蔓刚抽出嫩芽。3个月后,这些嫩芽上结出的一串串甜蜜果实,将销往全国各地,甚至走出国门。  葡萄是浦江农业第一大产业,已有500多年种植历史。目前,浦江有超过1.2万户葡农,葡萄种植面积7万亩,年产量12.7万吨,年产值超11.4亿元。如何让葡农更轻松地种出优质葡萄,浦江建设了“超级农场”项目,通过人工智能技术的创新应用,服务产、供、销全环节,并在岩头镇十里阳光葡萄园展开试点。  据农场负责人何志刚介绍,超级农场由托普云农参与建设分为一期和二期,现已建成以图像识别等人工智能技术为核心,实现生产、加工、仓储、销售一体化数字管理模式,探索打造智能生产、智能修剪/采摘、智能分拣、智能冷藏等智慧场景,为葡萄从生长到销售的全产业链提供数字化、智能化加持,提高生产管理效率。  全过程监控一屏管理  作为智慧农业的升级版本,“超级农场”项目对生产经营管理等每一个环节,都进行了严格的监管,数据采集,实时监测。通过无人机的航拍,实现了对整个农场的3D建模,把整个农场分成A—K,差不多11个区块,然后进行区块的数字化监控。一块电子显示屏就可看到农场的所有状况,葡萄园11个钢架大棚所有环境信息,包括温度、湿度、土壤酸碱值、光照等情况都呈现在屏幕上。另外,葡萄园里各处分布了多少摄像头,有多少在职人员,多少外来人员,也都能一目了然。  最重要的是,“超级农场”里设有一个智能辅助决策系统——“农事AI专家”,基于物联网设施与智能检测装备,可实时监测葡萄园中的土壤温湿度、光照强度、空气温湿度等植物生长要素,并将数据传输至云端。大棚中的环境信息如果临近系统设定数值,屏幕上就会有橙色、红色、绿色的分级预警,绿色的表示区块的数据是正常范围,红色代表着已经超出了预警,橙色表示已经濒临预警,这位AI专家还会根据综合分析给出农事建议。通过智能管理措施,目前已实现通风、保温、补光、消毒杀菌、灌溉施肥等智能化控制,节约了综合人工90%以上。除此之外,这个辅助决策系统还有学习功能,可以根据日常农事操作进行校准优化管理。  品质数字化一码溯源  传统农业只有溯源到生产基地、联系电话等文字信息的溯源码,数字化农业提供的是集生产、加工、仓储、销售于一体的数字管理模式,溯源码有了更多可能性。“超级农场”基于区块链的技术,对所有葡萄进行了一串一码的赋码,做到数据一次都不落的区块链全程溯源,保护葡萄的品质安全。  大棚里所有装置的操作,还有员工进行的所有农事行为,甚至有几个人摸过这串葡萄,都会用视频的形式记录下来,实时上传到基于区块链技术的云端服务器,不可篡改。等到葡萄成熟的时候,每串葡萄标准化生长过程中的各种信息,会形成一个基于“区块链”技术的专属二维码,智能分级,用于品质追溯。  十里阳光葡萄园的负责人何志刚说,正是因为“超级农场”,葡萄园种出来的葡萄品质好,价格也可以卖得更高,消费者还抢着买。  AR测产一体化助收  在葡萄大棚里安装相应数量的轨道车,车上设置传感设备对葡萄串进行自动检测,包括果粒重、数量、单穗重等数据。轨道车的另一个重要用处就是配合大棚里的摄像头实现AR测产。以前人工采摘葡萄,每个大棚的葡萄产量只能估算。有了轨道车以后,葡萄放到轨道车上可以自动称重,葡萄园的产量一目了然。每个大棚确定产量后,再配合摄像头确定的葡萄串数和串型,经过AR学习,系统就可以实现AR测产。以后,葡萄园内的葡萄一旦结果,“超级农场”就可以测算出本季葡萄会有多少产量,对葡萄的后期销售起到指导作用。  当然,超级农场里的葡萄不仅要产质高,还要销量好!浦江正积极推动葡萄产业农业供给侧改革,从产量品质、冷链保鲜、数字营销等环节优化,提升葡萄销量。对于销往远处的葡萄会先进入智能冷库进行降温处理,从而保障葡萄在长途运输之后依旧能保持新鲜品质,另外,浦江还积极推动线上直播、线下葡萄节等新型销售方式,促进葡萄的产销一体化转化,从而为种植主体带去实实在在的好处。  据悉,“超级农场”试点成熟后,将应用于浦江所有葡萄园。“AR测产三年内会在全县50亩以上规模葡萄园进行全面推广应用。”浦江农业局信息中心主任潘青仙说,以后浦江全县葡萄产量如何,他们可以更快更精准地掌握数据,为销售环节提供参考,助力葡农增收。  十里阳光葡萄园的负责人何志刚表示,超级农场通过数字化改造完成以后,极大地提高了工作效率,获得了更高的经济效益,使我们的产品在市场上脱颖而出。  托普云农技术负责人向我们透露,作为超级农场的技术支持者,托普云农将打造更多创新应用模式,持续推动农业单品全产业的数字化转型升级,提高农产品的附加值,为乡村振兴产业数字化出一份力。
  • 葡萄酒原料成隐忧 标准细则亟待出台
    俗话说,“七分原料,三分工艺”,葡萄酒原酒与基地,一直是葡萄酒企业争夺的焦点。  日前,有消息称,张裕在2009年出资1亿元收购了位于新疆天山北麓的天珠酒业,此举使得长城、威龙等企业失去了一条在新疆采购原酒的渠道。  天珠酒业原董事长奚基武很清楚自己的优势,“葡萄酒对葡萄含糖量和酸度的要求很高,内地一些省区葡萄的糖分不足150克/升,病虫害比较严重,烂果较多,而石河子葡萄的糖度平均为240克/升。内地企业到石河子来购买原酒,不仅为生产优质成品酒提供了原料,还大大降低了生产成本。”  由于“病虫害比较严重”,内地一些葡萄产区在葡萄生长期间大量使用农药,如今,这一“农残悬疑”正悄然成为影响葡萄酒质量的隐忧。  农药“催熟”葡萄  从中国经济时报记者获得的一份资料上可以看出,在东部某些酿酒葡萄产区,一亩地的葡萄一年至少要“吃”20多公斤农药。  竖立在田间地头的“葡萄病虫害关键防治时期及防治方案”公告栏上明确标示着:第一次,花前3—4叶期,劲彪1000倍+世高2000倍,预防绿盲蝽、炭疽、白腐、黑痘、白粉、穗轴褐枯病……第七次,生长中后期,秀特3000倍,预防炭疽、白腐病等。以上用药是生长期关键用药时期,并不代表全部用药。整个生长期至少喷药13次以上,每次喷药间隔期不超过15天。雨后及时喷药也很重要!  曾在某葡萄园打过工的葛大妈告诉本报记者,“每年6—9月是葡萄的‘药季’,从花期一直到成熟采摘,防治得当就能换来好收成。葡萄一旦发病并引起落叶掉果,就得使用‘敌敌畏’、‘乐果’等厉害药抢救,而波尔多液主要是防病。”  “波尔多液是从国外引进的,现在国外早就不用了,西方国家更强调靠天收。”尊赢(广州)市场研究机构首席顾问朱玉增在接受本报记者采访时表示,“中国葡萄酒产业还刚刚起步,目前主要采取公司+农户这一产销分离的模式。很多果农为了提高产量,往往喷洒很多农药,这种现象在山东产区特别明显。”  曾任蓬莱市委书记、现任烟台市委常委、副市长的刘树琪,今年就在博客上自曝家丑:“蓬莱市除几个企业紧密型基地能达到无公害标准外,其他松散型基地远远达不到要求。特别是在农药使用、采摘时间上的问题尤为突出。有的使用化学农药,农药残留时间可达1年,严重影响了葡萄及葡萄酒的品质。”  “除了果农片面追求产量导致大规模使用化学农药外,当地的气候也是很大因素。”朱玉增解释。  充沛的雨水,适宜的土壤,为东部产区葡萄的生长速度提供了保障。可是,雨量充足,也带来了问题:葡萄的根、茎、叶、果实易生病害。  中国农业大学烟台研究院葡萄酒博士孔维府分析说,东部产区在葡萄生长的中后期,即七八月,降雨量较多,夏季雨水占全年的一半以上,是一个易发霜霉病、白粉病、褐斑病的病害期。因此,生长的葡萄需要依赖农药。  “葡萄还是生长在干旱或半干旱的区域好。”朱玉增表示,“在西部,雨水稀少,日照充足,昼夜温差大,不仅保证了葡萄的糖份,而且降低了病虫害发生概率,几乎能做到不打农药。葡萄好,葡萄酒才好。”  这也使得国内多家葡萄酒企业将目光转向了西部。在收购天珠酒业之后,张裕的西部原料计划已在新疆、宁夏和陕西布点。到2010年底,张裕在全国的葡萄基地将达到25万亩,占国家规划的酿酒葡萄种植面积的1/4。除了张裕,王朝、长城也在宁夏、新疆等产区大面积圈地自建葡萄基地。  “农残” 标准亟待出台  从葡萄酒生产的流水作业上看,克杀病害的农药,并没有在一层层的检测中被彻底隔离。  在葡萄种植区,每到9月份的采摘期,酒企就会上门收购。专业人士告诉本报记者,在葡萄酒的酿制过程中,几乎不对原料作任何处理,果梗与葡萄皮也都不能去除,因为它们里面所含的多酚类化合物单宁及色素成分,在葡萄酒的发酵中可以发挥关键作用。“如果清洗就会带进水份冲稀原汁。不过尘土一般可在后期通过自然沉淀过滤掉。”  那么,农残哪里去了?  烟台一家国有葡萄酒厂的负责人表示,在后期工艺中,不会也无法再针对葡萄的农残进行处理,“很难保证这些农药残留成分不会进入葡萄酒中”。  “在国外,关于农药残留的标准有严格的法律规定,但在国内,目前还没有办法去处理。长期饮用带有农残的葡萄酒一定会对人体有影响。”朱玉增表示,“我国葡萄酒产业起步太晚,技术、法律等相关标准跟不上,出现目前的状况是必然的。”  2008年1月1日,国家标准“葡萄酒GB15037-2006”(简称“新国标”)正式实施。这是在1994年“旧国标”基础之上,对葡萄酒行业标准的又一次升级。“新国标”内容包括从葡萄种植、葡萄酒生产到贮存、运输各过程的管理标准,对葡萄酒概念的内涵和外延的要求更加严谨。可是,一个关键的问题是,对“农残标准”方面并未提及。  此前有消息称“葡萄酒农残检测标准有望在2013年之前出台”,但是农业部农产品质量监督检测中心主任潘灿平接受本报记者采访时却予以了否认,“没有明确的时间表。”  “目前,葡萄酒在我国整个酿酒行业饮料酒总产量中只占到很小的份额,但未来发展潜力巨大,所以一定要把好原料关。”朱玉增说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制