菌丝蛋白

仪器信息网菌丝蛋白专题为您整合菌丝蛋白相关的最新文章,在菌丝蛋白专题,您不仅可以免费浏览菌丝蛋白的资讯, 同时您还可以浏览菌丝蛋白的相关资料、解决方案,参与社区菌丝蛋白话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

菌丝蛋白相关的耗材

  • 蛋白组学 SISPROT 试剂盒
    蛋白组学 SISPROT 试剂盒产品介绍:SISPROT,全称Simple and Integrated Spintip-based Proteomics Technology.该技术于2016年首次报道,是一种基于独特的离心移液枪头“Spintip”的集成式蛋白质组学前处理技术,可实现从原始样品出发一站式完成蛋白质组学样品前处理所有步骤,处理后的样品可直接用于色谱质谱检测。蛋白组学样品前处理从“毫克时代”迈入“纳克时代”。蛋白组学 SISPROT 试剂盒产品步骤:一站式样品前处理:集成提取、酶解、脱盐为一体的蛋白组组学样品前处理。蛋白组学 SISPROT 试剂盒产品特点:1、极高效,传统前处理方法需要16h,SISPROT法缩短至2h。2、高灵敏度,最低样本初始量可低至10个细胞或1ng,组织样本低至1mm2组织切片,鉴定能力与处理常规毫克级样品相当。3、结果具有很好的稳定性;蛋白组学 SISPROT 试剂盒适用领域:该试剂盒适用于低微克甚至纳克蛋白质样品;适用于科学研究领域如干细胞、蛋白质复合物、蛋白质翻译后修饰;临床样品检测行业如组织活检、液体活检、肠道微菌群;植物研究如经济作物、菌菇类、水果类等。蛋白组学 SISPROT 试剂盒产品图片:
  • 食品微生物学检验—沙门氏菌检验 缓冲蛋白胨水(BPW)/四硫磺酸钠煌绿(TTB)增菌液/亚硒酸盐胱氨酸(SC)增菌液
    食品微生物学检验&mdash 沙门氏菌检验 缓冲蛋白胨水(BPW)/四硫磺酸钠煌绿(TTB)增菌液/亚硒酸盐胱氨酸(SC)增菌液 北京绿百草提供乳品安全标准第60条沙门氏菌检验的设备:缓冲蛋白胨水(BPW),四硫磺酸钠煌绿(TTB)增菌液,亚硒酸盐胱氨酸(SC)增菌液,亚硫酸铋(BS)琼脂, HE 琼脂,木糖赖氨酸脱氧胆盐(XLD)琼脂,沙门氏菌属显色培养基,三糖铁(TSI)琼脂,蛋白胨水、靛基质试剂,尿素琼脂(pH 7.2),氰化钾 (KCN) 培养基,赖氨酸脱羧酶试验培养基,糖发酵管,邻硝基酚&beta -D 半乳糖苷(ONPG)培养基,半固体琼脂/丙二酸钠培养基,沙门氏菌O 和H 诊断血清和生化鉴定试剂盒。 本标准规定了食品中沙门氏菌(Salmonella)的检验方法,本标准适用于食品中沙门氏菌的检验。 需要详细的信息请联系北京绿百草 010-51659766 登录网站获得更多产品信息:www.greenherbs.com.cn
  • His标签蛋白纯化介质
    His标签蛋白纯化介质His标签蛋白纯化介质专为His-tag融合蛋白的纯化而设计,采用该产品可快速从细胞破碎液/培养液中捕获His标签融合蛋白。依据表达系统的不同,可选择具有不同螯合配基种类的产品:IDA、NTA以及 TED,其中,IDA和NTA适用于纯化大肠杆菌胞内表达的His蛋白,TED适用于纯化昆虫细胞、哺乳动物细胞等真核细胞胞外表达的His融合蛋白。His标签蛋白纯化介质(GP-IDA)以超大孔聚丙烯酸酯微球作为基质,以亚氨基二乙酸(IDA)作为螯合配基,常规螯合Ni2+。该产品传质阻力低,适用于从大肠杆菌破碎液上清等粘度较大的原液中捕获His蛋白。His标签蛋白纯化介质(CP-NTA)以大孔聚丙烯酸酯微球作为基质,以次氨基三乙酸(NTA)作为螯合配基,可以耐受蛋白溶液中添加的低浓度β-巯基乙醇或者二硫苏糖醇(DTT)等还原剂组分。His标签蛋白纯化介质(HP-TED)以聚丙烯酸酯微球作为基质,采用金属螯合配基乙二胺三乙酸(TED),即使在含有EDTA的溶液中Ni2+亦能稳定吸附而不脱落;同时该产品进行CIP清洗时不用重新挂Ni2+,可直接用NaOH溶液进行清洗。该产品能大幅节省样品前处理和填料后处理时间,尤其适用于昆虫细胞、哺乳动物细胞等真核细胞分泌表达的His标签蛋白的纯化。 产品特性产品His标签蛋白纯化介质(HP/CP/GP-IDA)His标签蛋白纯化介质(HP/CP/GP-NTA)His标签蛋白纯化介质(HP/CP/GP-TED)基质聚丙烯酸酯硬胶聚丙烯酸酯硬胶聚丙烯酸酯硬胶配基IDANTATED平均粒径70μm70μm70μm动态载量mg/mLHP-IDACP-IDAGP-IDAHP-NTACP-NTAGP-NTAHP-TEDCP-TEDGP-TED≥35≥25≥20≥20≥15≥10≥20≥15≥10流速上限1500cm/h1500cm/h1500cm/h耐压上限1MPa1MPa1MPa储存4-30°C(20%乙醇)4-30°C(20%乙醇)4-30°C(20%乙醇)还原剂耐受性不耐受β-Me≤100mM DTT≤5mMβ-Me≤100mM DTT≤5mM;5mM TCEP≤5mM特点蛋白载量高金属离子脱落率低对于10 mM乙二胺四乙酸(EDTA)、0.5MNaOH和6M胍-HCl耐受24小时;对于500mM咪唑、100mM 乙二胺四乙酸(EDTA)耐受2小时博进生物可以根据客户需求提供不同孔径的不同配基的金属螯合介质。His标签蛋白纯化介质针对 His蛋白结合力和过渡金属离子选择性的不同,还可提供未螯合金属离子的IMAC产品,用户可以自行选择螯合Cu2+、Ni2+、Fe2+、Zn2+, Co2+等过渡金属离子。 产品特性产品His标签蛋白纯化介质 (HP/CP/GP-IMAC)His标签蛋白纯化介质 (IMAC)基质聚丙烯酸酯硬胶琼脂糖软胶配基NTA NTA平均粒径70μm90μm 流速上限1500cm/h 500cm/h耐压上限1MPa 0.3MPa储存4-8℃(20%乙醇) 4-8℃ (20%乙醇)特点金属离子脱落率低可自由选择金属离子种类 应用实例纯化His标签蛋白谱图从大肠杆菌破碎液上清中纯化His标签蛋白柱尺寸: 5.0cm ID x20 cm流速:100 mL/min检测波长:280nm样品:细胞粗提液3L纯度:90%收率:85%

菌丝蛋白相关的仪器

  • 蛋白组学样本前处理工作站是一款具备高通量、高回收率、安全性能强、抗干扰能力强,适用范围广等优势,适用大队列样本的高通量处理设备,可实现质谱蛋白样本前处理的全自动化和标准化操作。蛋白组学样本前处理解决方案适用于血浆、血清、尿液、细胞、组织等类型样本从蛋白到多肽混合物的质谱检测前处理工作,试剂盒利用新型固相烷基化试剂SPA材料与蛋白的特异性共价反应,实现蛋白质的高效捕获,通过清洗磁珠表面,快速去除干扰物质,并进行原位固相酶解,获得蛋白酶解产物,仪器整合制冷模块、磁吸附模块、加热振荡模块、抓扳手,进而实现蛋白质组提取、还原、烷基化、酶解等流程自动化操作,提高蛋白质样品的处理效率和回收率。 优势特点高通量■96通道移液头,一次可处理最多96个样本,高效完成实验流程中吸废等步骤;■兼具8通道移液功能,可以实现试剂的精准分装;■ 全流程4-5小时可完成96个蛋白样本的前处理(具体时间根据具体实验流程);自动化程度高■ 整合抓板手,用于对标准SBS板子的转移;■ 整合蛋白前处理所需的试剂制冷模块、磁吸附模块、加热振荡模块等功能模块;■均一化操作,减少实验过程中的误差,提高准确性和稳定性;灵活性强■ 盘面包含18个SBS标准盘位,除功能模块外,有15个盘位放置试剂和耗材;■开放式平台,配有多样化适配器,可适配多种不同品牌试剂耗材;■软件界面人性化设计,拖拽式布局,操作简单,每个步骤可独立进行参数设置,实验流程可进行存储,按键式启动运行;安全性■可配置避光外罩,搭配紫外消毒灯;■可根据实验需求选配正、负压HEPA过滤系统,有效避免交叉污染; 数据测试样本批内测试数据材料:293T 细胞实验方法:手工操作3 组,仪器操作3 组Q Exactive质谱结果如下:表1:手工操作和仪器操作后蛋白数及零漏切率对比图1 Venn diagram(蓝色:手工;绿色:仪器)试验总结手工操作和仪器操作蛋白样本预处理后可检测到的蛋白数及零漏切率基本一致,达到预期要求;手工操作与仪器操作蛋白种类皮尔斯相关系数大于0.97,与预期一致;样本批间测试数据图2 96孔板检测示意图如图2所示共处理96个样品,分三组进行实验,随机选取36个样品进行Q Exactive质谱检测,结果如下:图3 36个样本检测蛋白数(个)图4 36个样本零漏切率(%)图5 随机样品日间比较实验总结36个随机样本检测蛋白数3074±89个,零漏切率78.32±2.66%,样本预处理的结果正常且稳定;36个样品的皮尔斯相关系数及日间随机样品皮尔斯相关系数均介于0.955-0.989之间,达到指标要求,具有较好的均一性。 应用领域临床诊断/用药指导/病理机制研究/疾病标志物的发现/药物机理研究
    留言咨询
  • 蛋白质和核酸是生命个体的基本组成单位,也是当前基因组学、蛋白质组学主要的研究对象。而紫外可见定量测定方法则是蛋白质和核酸浓度定量研究中最常用、最基本的分析方法。我公司新研发出的超微量核酸蛋白测定仪,是专用于测定核酸和蛋白质的仪器。它可以进行核酸的定性和定量测量,蛋白质的直接测量和比色法测定,细菌细胞的密度测定,在此基础上,本仪器还具有全波长扫描功能,可进行单波长、多波长、动力学测定和标准曲线法四种测量模式。所有的这些测试方法和测试参数都以测定程序的方式汇编在仪器的软件中,用户只需选择相应的程序并设置相关的参数后就可以直接得到测试的结果。同时,本仪器兼容超微量比色皿Traycell,使测量的样品用量降至0.7-5ul,克服核酸样品量少而测量不准确的特性,大大提高了生物分光光度计在生物领域的应用。
    留言咨询
  • 技术规格长玻璃板面积(W×L):101×82(mm)短玻璃板面积(W×L):101×73(mm)(与伯乐公司电泳玻璃及预制胶兼容通用)凝胶面积(W×L):81×73(mm)凝胶厚度: 1.0(mm)/可选配0.75(mm),1.5(mm)凝胶数量:1~4(块)样品通量: 11、15齿; 缓冲液容积:~1200(ml)外形尺寸(L×W×H): 175×172×100(mm)净重:2.5(kg) 性能特点高透明聚碳酸酯材料注塑一次成型,耐冲击、耐高温、耐腐蚀;可容纳1~4块手灌胶或预制胶,可根据科研需要灵活选择;采用扳手紧固方式,使制胶、上板的过程更加轻松快捷;配原位制胶器,省去使用密封条的繁琐操作,免除电泳玻板从“制胶”到“电泳”的二次移动,便于从玻璃两侧全面观察凝胶配制是否正常,大大简化了实验过程;玻璃边条经特殊处理,确保制胶不渗漏;配有正电极防护条,既能防止出现气泡、形成均匀导电,又能保护铂金丝不易受损。开盖时自动切断电泳电场,确保操作安全。 产品用途适用于生物学研究中,对核酸、蛋白样品的分离、纯化、制备等,分析型蛋白电泳满足纯度鉴定、复杂蛋白样品的分析,同时也适用于核酸电泳。
    留言咨询

菌丝蛋白相关的试剂

菌丝蛋白相关的方案

菌丝蛋白相关的论坛

  • 【原创大赛】农药对食用菌菌丝生长的影响

    【原创大赛】农药对食用菌菌丝生长的影响

    农药对食用菌菌丝生长的影响 食用菌的农药残留问题受到更多的社会关注,目前造成农药残留超标的的主要原因有一是施药技术不到位,设备落后,施用农药过程中操作不规范,污染环境和作物;二是选用农药的种类、剂量、安全间隔施药不合理,滥用高毒、高残留农药;三是不在安全间隔期收获农作物,从而威胁食用菌产品质量安全。本文研究了农药对食用菌菌丝生长影响,探索了安全使用农药的方法,对食用菌安全生产有一定的指导作用。1 材料和方法1.1 试验材料1.1.1 农药种类 德国拜耳作物科学有限公司的2.5%溴氰菊酯乳油 江苏扬农化工集团有限公司的10%氯氰菊酯乳油 山东圣鹏农药有限公司的10%联苯菊酯乳油 浙江威尔达化工有限公司的20%甲氰菊酯乳油 江苏苏州佳辉化工有限公司的480克/升毒死蜱乳油 南通江山农药化工股份有限公司的77.5%敌敌畏乳油 江苏龙灯化学有限公司的70%可湿性粉剂 江苏扬农化工有限公司的70%甲基托布津可湿性粉剂和50%多菌灵可湿 性粉剂1.1.2 菌种试验食用菌有5种,分别为真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇,均为福建省主栽食用菌的品种,菌种由*******菌物研究中心提供。1.2 方法1.2.1 PDA培养基的配制去皮切块处理马铃薯,称取200 g,加蒸馏水1L煮沸,滤去土豆残渣,再加20 g葡萄糖和15~20 g琼脂煮沸,趁热充分溶解后纱布过滤定容,分装三角瓶,冷却后贮存备用。1.2.2未灭菌的农药对五种食用菌菌丝的影响农药浓度配置:农药对真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇生长影响的试验中,每种农药设5个浓度处理(表3-1),共21个处理,包括一个空白对照。每个处理水平设3个重复。所用的农药在实验室预先配好母液,存放备用。农药对真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇的生长影响:将农药(农药在高温下会分解,故而不高温灭菌)经过滤菌器后(粉剂不过滤)添加至已灭菌的PDA培养基的三角瓶中,按照表2的处理水平配置成含有农药的培养基后倒平板,冷却待用。用直径为1 cm的无菌打孔器打孔母种的培养基,挑取统一生长情况的母种块接种于上述农药浓度水平处理平板中,以纯PDA平板作为空白对照组,置于23-25℃下培养,待空白对照组菌丝生长至平板的三分之二,结束实验观察,测量各个处理水平菌落半径的大小。[img=,622,434]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301423_01_2903169_3.png[/img]2 结果与分析2.1农药对五种食用菌菌丝的影响2.1.1 九种农药对真姬菇的菌丝生长影响[img=,660,511]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301423_02_2903169_3.png[/img]从表2可知,敌敌畏与溴氰菊酯对真姬菇的菌丝有抑制作用。高浓度和低浓度有极显著差异,在浓度为0.2mg/kg时候,菌丝生长速度和0.1mg/kg、0.4mg/kg相比有显著差异。在0.1 mg/kg~0.4 mg/kg真姬菇生长速度增加,在浓度0.4mg/kg时,生长速度达到最大,在0.6 mg/kg~1.0 mg/kg真姬菇生长速度减小。百菌清在0~0.4mg/kg浓度范围内,菌丝生度速度显著差异随着浓度繁升高,真姬菇生长速率不断减慢。甲基托布津添的空白组与高浓度有显著差异,其他浓度之间在5%水平无显著差异,即在0.1 mg/kg~1 mg/kg之间,真姬菇菌丝生长速度无明显差异。氯氰菊酯在0.1 mg/kg~1 mg/kg之间会促进真姬菇生长,甲氰菊酯在0.4mg/kg浓度与其它处理有极显著差异(除1.0 mg/kg的水平浓度外)。联苯菊酯浓度为0.1mg/kg与空白组、中、高浓度有极显著差异,且菌丝生长速度最大,随后生长速率逐渐降低。毒死蜱的添加浓度不断增加时,真姬菇的菌丝先增加后减小,在添加浓度为0.01mg/kg与0.1mg/kg时,生长情况有极显著差异,浓度为0.05mg/kg时,真姬菇菌丝生长最快。2.1.2 九种农药对黑木耳的菌丝生长影响 [img=,624,474]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301424_01_2903169_3.png[/img]由表3可知,敌敌畏、溴氰菊酯以及联苯菊酯对黑木耳的菌丝有抑制作用,联苯菊酯在浓度高于0.1mg/kg时会抑制黑木耳生长。多菌灵在浓度高于0.2mg/kg时会抑制黑木耳生长。百菌清在浓度为0.2mg/kg与1mg/kg水平浓度有极显著差异,与其他浓度无极显著差异。甲基托布津在浓度为0.2mg/kg与空白组无极显著差异,与其他处理的浓度有极显著差异,甲基托布津浓度为0.2mg/kg时,黑木耳菌丝生长最快。当氯氰菊酯的添加浓度由低升高时,黑木耳的菌丝生长先增大后减小,当浓度是0.2mg/kg时,与其这处理的菌丝生长速度有极显著差异。不同浓度的甲氰菊酯处理,结果有极显著差异,甲氰菊酯浓度是0.2mg/kg,黑木耳菌丝生长最快。不同浓度的毒死蜱对菌丝生长情况不相同,当浓度为0.2mg/kg时,菌丝生长速率达到最大,同时和其他浓度的生长有极显著差异。2.1.3九种农药对双孢蘑菇的菌丝生长影响 [img=,636,476]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301424_02_2903169_3.png[/img]从表4可以发现,敌敌畏与溴氰菊酯抑制双孢蘑菇的菌丝生长。多菌灵在添加浓度为0.6mg/kg时候,菌丝生长最快。百菌清六个处理培养双孢蘑菇,所有处理水平之间无极显著差异。百菌清的在0.2mg/kg时,双孢蘑菇的菌丝生长速度最快。甲基托布津、甲氰菊酯的添加浓度为0.2mg/kg与添加浓度为0.4mg/kg的处理组分的结果之间有极显著差异,说明甲基托布津、甲氰菊酯的添加浓度是0.2mg/kg时,双孢蘑菇的菌丝生长率达到最大。在氯氰菊酯添加浓度不断增变大的过程中,双孢蘑菇生长先变大后减小,在浓度达到0.4 mg/kg时,生长速率最快,同时该组分处理与其他组分处理呈极显著差异。联苯菊酯浓度为0.2mg/kg~0.4 mg/kg与空白组和最高浓度的结果有极显著差异,在0.2mg/kg浓度水平,双孢蘑菇生长达到最大。毒死蜱的浓度为0.01mg/kg时,双孢蘑菇生长达到最大,与空白组无极显著差异性,与其他组分处理有极显著差异。2.1.4九种农药对平菇的菌丝生长影响 [img=,628,459]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301424_03_2903169_3.png[/img] 由表5可以看出,敌敌畏与溴氰菊酯对平菇的菌丝有抑制作用。对平菇在多菌灵的六个浓度中生长速度进行显著分析,0.2mg/kg~0.4 mg/kg的处理水平对空白组分、0.1 mg/kg的处理组份有极显著差异,说明在浓度0.2mg/kg~0.4 mg/kg时候,菌丝生长速度达到最大。百菌清在0.2mg/kg处理组份与其他组份有极显著差异,当百菌清添加浓度由低至高时,平菇生长速度先增加最大后减小。甲基托布津在浓度为0.2mg/kg~0.4 mg/kg时的结果与其他处理水平有极显著差异,在甲基托布津在浓度为0.2mg/kg时,平菇生长最快。随着氯氰菊酯的浓度不断变大,平菇的生长速度不断减小,中、低浓度组份生长情况与高浓度的有极显著差异。低浓度处理组份的甲氰菊酯对平菇生长无明显影响,高浓度处理组份抑制平菇菌丝生长。在联苯菊酯的处理组份为0.2mg/kg~0.4 mg/kg与空白组、高浓度处理组份有极显著差异,故而在0.2mg/kg浓度时,平菇生长达到最大。在毒死蜱处理水平不断增加时,菌丝生长先增大后减小,在0.01mg/kg~0.05mg/kg生长到最大,且与其他组份浓度生长情况有极显著差异。2.1.5九种农药对白灵菇的菌丝生长影响 [img=,636,441]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301425_01_2903169_3.png[/img] 由表6可知:敌敌畏、溴氰菊酯以及联苯菊酯对白灵菇的菌丝有抑制作用。当联苯菊酯的添加浓度大于0.1mg/kg时对白灵菇有抑制作用。多菌灵在浓度为0.2mg/kg时(除空白组外)与其他水平处理有极显著差异,菌丝生长速度先增大都减小。当甲基托布津、百菌清添加浓度为0.4mg/kg时,试验结果与其他水平处理有极显著差异,即菌丝生长速度先增大都减小。从表可以看到低浓度对白灵菇生长情况有促进作用,在浓度0.1mg/kg之后生长速度减慢。在甲氰菊酯在0.2mg/kg时,与其他水平处理有极显著差异,说明在0.2mg/kg浓度白灵菇生长速度达到最大值,生长趋势是先增大后减小。当毒死蜱的浓度有小变大的过程中,白灵菇的生长速度先变快后减慢,当浓度为0.5mg/kg时,生长速度与其他水平处理有极显著差异。3小结与讨论采用PDA平板法,研究了9种农药对5种食用菌菌丝生长的影响。在实验操作过程中由于农药会在高温中消解,故农药直接加入PDA培养基,具有强烈的毒性和气味,可以清晰观察到添加的农药种类的不同时,对五种食用菌的生长菌丝的生长影响明显不同。当PDA培养基中所添加的农药浓度不断增加的过程中,部分菌丝生长所受到影响也越来越明显实验结果表明敌敌畏以及溴氰菊酯对菌丝的抑制作用最大,敌敌畏对真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇这五类食用菌的菌丝生长抑制率达到100%,联苯菊酯使得平菇、双孢蘑菇的生长减慢,当联苯菊酯浓度大于0.5mg/kg时,黑木耳和白灵菇不生长。毒死蜱的浓度增加时,黑木耳、平菇、双孢蘑菇的菌丝生长逐渐减慢。对照空白组分,当甲基托布津的浓度不断变大时,白灵菇、黑木耳、平菇、双孢蘑菇的生长趋势均是先增大后减小,同时对真姬菇菌丝生长影响不大,所以在真姬菇菌丝生长过程中,可以使用该农药。多菌灵、氯氰菊酯对平菇、黑木耳生长有抑制作用。而百菌清对真姬菇和白灵菇生长有抑制作用,故而在食用菌菌丝生长过程中慎用对应的农药。

  • 【原创大赛】食用菌菌丝对铅、镉、汞、砷的吸收规律

    【原创大赛】食用菌菌丝对铅、镉、汞、砷的吸收规律

    [b]食用菌菌丝对铅、镉、汞、砷的吸收规律[/b]重金属会富集于食用菌的子实体内。故此,人们对食用菌吸附重金属的能力越来越关注,食用菌吸附重金属的能力大小是由食用菌生长环境以及其本身相关的生物特性决定。研究食用菌菌丝吸附重金属的能力,对降低食用菌产品的重金属含量奠定了一定的基础。[b]1材料与方法1.1 试验材料1.1.1重金属的种类[/b] 硝酸铅(PbNO[sub]3[/sub]):1x500 g 国药集团化学试剂有限公司 氯化隔(CdCl[sub]2[/sub]):1x100 g 国药集团化学试剂有限公司 氯化汞(HgCl[sub]2[/sub]):1x250 g 国药集团化学试剂有限公司 三氧化二砷(As[sub]2[/sub]O[sub]3[/sub]):1x500 g 国药集团化学试剂有限公司[b]1.1.2菌种[/b]试验食用菌有6种,分别为真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇,这些菌种是福建省主栽食用菌的品种,取自于******菌种研究中心。[b]1.1.3仪器[/b] AA-6300C 岛津石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计 AA-7000 岛津原子荧光分光光度计[b]1.2 方法[/b]重金属药液浓度配置:铅、镉、汞、砷对真姬菇、黑木耳、双孢蘑菇、平菇、白灵菇的菌丝吸附规律的研究试验中,每种重金属设5个浓度处理(表5-1),以不添加任何重金属为空白对照。每个处理设3个重复,每个重复20瓶三角瓶。所用的重金属药液是预先配好的母液。铅配成20 g/L离子浓度的母液,镉、汞配成2 g/L离子浓度的母液,砷配成1.5 g/L离子浓度的母液,存放备用。先将配置好的液体培养基分装至250mL的三角锥形瓶中,每瓶150mL,再将重金属母液分别添加至各个瓶液体培养基中,于灭菌锅中高温灭菌。取出待冷却后后,在无菌的条件下分别加入3~4块母种块(取已生长好的菌种培养皿,用直径1cm打孔器打出的菌种块),再将三角瓶置于24℃、120r/min的摇床中,均匀振荡培养15-~20d,取出过滤菌丝球,检测菌丝中铅、镉采用石墨炉原子分光光度法,测定汞和砷采用原子荧光光度法测量。[img=,690,638]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301539_01_2903169_3.png[/img][img=,452,633]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301540_01_2903169_3.png[/img]注:富集系数=菌丝中重金属含量/培养基中重金属浓度,下同。Note:Enrichment coefficient=heavy metalscontent of fruit body/concentration of compost.Here in after注:本章节所有生长影响图单位(mg/L)与液体培养基的体积相对应[align=left] 从表5-2中可知:不同食用菌对铅的吸附能力不同,当铅浓度较低时(0~10 mg/kg)5种食用菌菌丝对铅的富集系数较大,双孢蘑菇和平菇的富集系数最大,分别为59.79和50.62;随着培养基中的铅添加浓度增大,5种食用菌菌丝的富集系数逐渐减小。当培养基中的铅添加浓度为0~10 mg/kg时,5种食用菌对铅的吸附能力大小为:双孢蘑菇、平菇>黑木耳>白灵菇>真姬菇;当培养基中的 铅添加浓度为25mg/kg~200mg/kg时,5种食用菌菌丝吸附重金属的能力大小为:平菇>黑木耳>白灵菇>真姬菇>双孢蘑菇。[/align][align=left] 培养基中铅的添加量(x)与菌丝中重金属含量(y)之间的关系用DPS分析后建立罗杰斯特曲线数学模型,通式即为:y=c/(1+e[sup]a-bx[/sup])。结合图5-1与表5-2发现,5种食用菌菌丝中铅的含量和培养基添加的铅浓度具有良好的拟合效果,R[sup]2[/sup]都在0.99以上。从图5-1可以发现当培养基中铅的添加浓度达到200mg/kg时,五种食用菌菌丝对铅离子的吸附量已近趋近饱和状态。[/align][align=left][img=,668,389]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301542_01_2903169_3.png[/img][/align][align=left][img=,495,618]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301542_03_2903169_3.png[/img][/align][align=left][/align][align=left][/align][align=left]由表5-3得出不同浓度处理下五种食用菌,菌丝所吸附的镉含量。当培养基中镉的添加浓度不同时候,双孢蘑菇和平菇菌丝对镉的富集系数不断增加,真姬菇和白灵菇菌丝对镉的富集系数先增加后较小,而黑木耳菌丝在镉添加浓度为1mg/kg之后几乎不变。当镉的添加浓度为2mg/kg时,双孢蘑菇的菌丝富集系数达到最大是319.7。当添加浓度为0.5mg/kg时,平菇菌丝对镉的富集系数达到最大为520.6。[/align][align=left][/align][align=left]当浓度为0.1mg/kg和2mg/kg时,对培养基中镉的吸附能力大小比较是:平菇>双孢蘑菇>黑木耳>白灵菇>真姬菇;当浓度为0.5mg/kg时,5种食用菌菌丝吸附能力比较是:平菇>真姬菇>双孢蘑菇>黑木耳>白灵菇。[/align][align=left][/align][align=left] 结合图5-2与表5-3发现,5种食用菌菌丝中镉的含量以及培养基添加的镉浓度相关性的拟合度不错,R[sup]2[/sup]都在0.99以上(只有真姬菇和平菇的罗杰斯特曲线相关系数在0.9以上)。通过分析可以得到用这种数学罗杰斯特曲线数学模型可以说明培养基中重金属与菌丝中镉含量具体的相关关系。从图5-2可以发现当培养基中镉的添加浓度达到10mg/kg时,五种食用菌菌丝对铅离子的吸附量已近接近饱和状态,而双孢蘑菇以及平菇在镉的添加浓度为2mg/kg以后,菌丝不生长,说明吸附能力已经达到饱和的状态。[/align][align=left][/align][align=left][/align][align=center]表5-4 不同浓度处理下五种食用菌菌丝中汞的含量及罗杰斯特方程[/align][align=left][/align][align=center]Table 5-4 The concentrations of Mercury in five mushrooms treated byheavy metals and Roger Lancaster equation[/align][align=left][/align][align=left][img=,660,391]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301544_01_2903169_3.png[/img][/align][align=left][img=,527,623]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301545_02_2903169_3.png[/img][/align][align=left]由表5-4得出不同浓度处理下五种食用菌,菌丝所吸附的汞含量。当培养基中汞的添加浓度增加时,平菇和双孢蘑菇的菌丝对汞的富集系数不断减小,而黑木耳、真姬菇菌和白灵菇的菌丝丝对汞的富集系数先增加后减小。真姬菇菌丝富集汞的系数在汞的添加浓度为0.5mg/kg时达到最大是610.3,真姬菇和白灵菇菌丝富集汞的系数分别在1mg/kg和2mg/kg时达到最大为100.5和159.7。五种食用菌对汞的吸附能力不相同。但总体上来说,培养基中添加不同汞离子浓度,真姬菇菌丝相对其他四种菇菌丝(双孢蘑菇、平菇、黑木耳、白灵菇)对汞的吸附能力强。[/align][align=left] 结合图5-3与表5-4发现,培养基添加的汞浓度与5种食用菌菌丝中汞的含量的数学罗杰斯特曲线相关系数R[sup]2[/sup]都在0.9以上,通过分析可以知道用该数学模型可以说明培养基中重金属与菌丝中汞含量的相关关系。从图5-2可以发现当培养基中汞的添加浓度达到10mg/kg时,五种食用菌菌丝对铅离子的吸附量已近趋近饱和状态,而双孢蘑菇以及白灵菇在添加浓度为2mg/kg以后,菌丝生长缓慢,说明对汞的吸附能力已经达到饱和的状态。[/align][align=left][img=,681,454]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301547_01_2903169_3.png[/img][/align][align=center]表5-5 不同浓度处理下五种食用菌菌丝中砷的含量及罗杰斯特方程[/align][align=center]Table 5-5 The concentrations of Arsenic in five mushrooms treated by heavy metalsand Roger Lancaster equation[/align][align=center][img=,519,616]http://ng1.17img.cn/bbsfiles/images/2017/09/201709301549_01_2903169_3.png[/img][/align][align=center][/align][align=center][/align][align=center][/align][align=left]由表5-5得出不同浓度处理下五种食用菌,菌丝所吸附的砷含量。当添加砷的浓度不同时,五种食用菌对砷的吸附能力不相同。另外当砷的添加浓度不断增加时,五种食用菌菌丝对砷的富集系数都随之减小。当砷的添加浓度为0.1mg/kg和1mg/kg时,五种食用菌对砷吸附能力大小比较是:双孢蘑菇>黑木耳>真姬菇>白灵菇>平菇;当浓度为5mg/kg和10mg/kg时,5种食用菌菌丝吸附能力比较分别是:真姬菇>黑木耳>白灵菇>平菇=双孢蘑菇、黑木耳>白灵菇>真姬菇>平菇,双孢蘑菇。[/align][align=center][/align][align=left]结合图5-4与表5-5发现,建立添加的砷离子浓度与5种食用菌菌丝吸附砷的含量的罗杰斯特方程。结果分析可以得出,该方程曲线的相关性均达到0.99以上,说明罗杰斯特方程可以较好说明添加的砷离子浓度与5种食用菌菌丝吸附砷的含量关系的拟合程度。[/align][align=center][/align][b]3 小结与讨论[/b][align=center][/align][align=left]在液体发酵培养基中添加不同重金属离子的浓度与菌丝中相对应的重金属含量作图(图5-1~5-4),从这几个图可以得出五种食用菌的菌丝对重金属残留吸附量与培养基中重金属的添加浓度的相关性,图中大多数表现为“S”型曲线的关系。当添加在培养基中的重金属的浓度不断增加时候,不同的菌丝对重金属的吸收大多数有小变化到大,最后趋于某个上限值。对曲线方程y=c/(1+e[sup]a-bx[/sup])的数学进行可以得到,当x值为0时候,y值为c/(1+e[sup]a[/sup]),而当x趋近无穷大时,y值也无限接近于c,即培养基中重金属量的添加浓度达到最大时,食用菌菌丝对重金属的吸附趋于一个极限值,即最大可能吸附量(只是一个纯理论值,在实际生产中要考虑食用菌菌丝生长环境的重金属污染及抑制作用)。[/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align]

  • 加热蛋白溶菌酶能杀灭诺如病毒

    加热蛋白溶菌酶能杀灭诺如病毒日本东京海洋大学的一个研究小组日前宣布,在实验中发现,加热处理鸡蛋蛋白含有的溶菌酶,能灭活诺如病毒。这是由于溶菌酶能破坏包裹诺如病毒基因的外壳。诺如病毒会引发急性肠胃炎和食物中毒。这种病毒具有强大的感染力,只要有10至100个病毒体进入人体,就会导致感染,目前还没有有效的抗病毒剂。研究小组利用实验鼠的诺如病毒替代人类诺如病毒进行了实验。他们将蛋白中含有的溶菌酶在100摄氏度下加热40分钟,使其变性。接下来,将含有1%加热处理过的溶菌酶的溶液与实验鼠诺如病毒混合在一起,并观察了1分钟之后的变化。溶菌酶是蛋白等含有的一种能水解致病菌中黏多糖的碱性酶。研究人员发现,诺如病毒基因量大幅减少,以致无法检出,并观察到病毒体出现膨胀。他们认为这是由于包裹病毒基因的外壳被破坏导致的。研究人员指出,实验鼠诺如病毒和人类诺如病毒从遗传学上来看非常类似,所以这种加热变性处理的蛋白溶菌酶对人类诺如病毒应该也有效果。他们希望将其制成消毒喷雾剂,在下一年度达到实用化。

菌丝蛋白相关的资料

菌丝蛋白相关的资讯

  • 冷冻电镜揭示了细菌和人类膜蛋白之间惊人的相似之处
    简单生物体的细胞,如细菌,以及人类细胞,都被一层膜包围着,它可以完成各种任务,包括保护细胞免受压力。在一个联合项目中,来自美因茨约翰内斯古腾堡大学 (JGU)、德国于利希研究中心(Forschungszentrum Jülich) 和海因里希海涅大学杜塞尔多夫 (HHU) 的研究人员在细菌中发现的一种膜蛋白与一组负责重塑和重建人体细胞膜。根据研究人员的说法,这两个蛋白质组之间没有联系之前是已知的。然而,此次研究过程中,通过冷冻电子显微镜,发现细菌和人类的膜蛋白惊人地相似。细菌应激反应大约 30 年前,噬菌体休克蛋白 (Psp) 系统在细菌中被发现。“今天,我们知道 Psp 系统会响应多种类型的膜应力而被激活。然而,一些分子细节仍然令人费解,” 美因茨约翰内斯古腾堡大学膜蛋白组负责人德克施耐德(Dirk Schneider) 教授解释说。 “这就是为什么我们决定仔细研究 Psp 系统的核心蛋白。”施耐德及其同事最近发现了 Psp 代表 IM30 如何在细胞膜上形成保护性地毯状结构以应对膜应力。在他们的最新工作中,他们仔细研究了噬菌体休克蛋白 A (PspA),它在 Psp 系统中起着关键作用。 人类 酵母 细菌不同膜蛋白之间的结构相似性 [Benedikt Junglas、Dirk Schneider、Carsten Sachse]冷冻电子显微镜显示 PspA 形成长的螺旋形管,可以将生物膜包裹在内腔中。高分辨率图像首次显示了 PspA 如何局部溶解单个膜,然后将它们重塑为更大的单元,甚至介导新膜结构的形成。PspA 的原子低温电子显微结构:细长的分子是螺旋纳米棒的基本构建块(左)。灰度低温电子显微照片和示意图模型显示了掺入脂质的 PspA 管。“数千个 PspA 构建块可以组装成大型螺旋结构。因此,它们是我们冷冻电子显微结构分析的理想研究对象,”来自 Forschungszentrum Jülich 和 HHU Düsseldorf 的 Carsten Sachse 教授说。“在显微镜下,我们意识到 PspA 具有类似于 ESCRT-III 蛋白质的结构,我们的实验室已经在研究它,”他补充道。“这完全出人意料,表明阐明蛋白质结构是多么重要细节......数十亿年后,这两组蛋白质在遗传上已经发生了分歧,以至于只能根据它们的结构来检测它们的相似性。”“基于 PspA 和真核 ESCRT-III 蛋白的相似结构和功能特性,我们已将 PspA 鉴定为进化上保守的 ESCRT-III 膜重塑蛋白超家族的细菌成员,”作者在 Cell 中写道。研究发表在Cell 《细胞》上。符斌 供稿
  • Science | 细菌中Gasdermins蛋白揭开细胞死亡的进化起源
    Gasdermin蛋白是人类细胞中在细胞膜上打孔,释放免疫因子并诱导细胞死亡的关键因子。Gasdermin打孔的机制是由caspase介导的,在炎性小体信号传导过程中触发,对防御病原体和癌症至关重要【1】。人类中Gasdermins家族由六个成员组成,GSDMA–GSDME以及pejvakin。但是各种各样的Gasdermin蛋白在进化上的起源以及生物学作用仍然不甚清楚。为此,美国哈佛大学医学院Philip J. Kranzusch研究组与以色列魏茨曼研究所Rotem Sorek研究组合作在Science发文题为Bacterial gasdermins reveal an ancient mechanism of cell death,揭开了细胞焦亡作为细菌以及动物中共有的一种古老的、调节细胞程序性死亡的方式。通过序列分析,作者们发现与哺乳动物Gasdermin蛋白相似不同50个细菌来源的蛋白,其中作者们测定了来自慢生根瘤菌嗜热菌(Bradyrhizobium tropiciagri)和Vitiosangium sp的bGSDMs的晶体结构,结果显示bGSDMs的总体结构都是共享的,与哺乳动物Gasdermin N末端结构具有显著的同源性(图1)。晶体结构分析同时也显示在哺乳动物Gasdermin蛋白中C末端结构,会维持该蛋白处于一种自我抑制的状态;虽然bGSDMs中没有与哺乳动物中Gasdermin蛋白C末端结构相似结构,但是仍然具有自我抑制结构特征(图1)。图1 对细菌来源的Gasdermin蛋白进化保守型以及结构分析随后,作者们想知道bGSDMs在细菌系统中是否有抗噬菌体的功能,作者们发现bGSDMs对大肠杆菌噬菌体具有显著的抵抗性。因此,bGSDMs是细菌“防御工事”中的关键组分。另外,作者们发现bGSDM的激活会诱导细菌细胞膜的破坏,而且在其激活过程中需要蛋白酶的参与,因为引入蛋白酶靶向位点的突变会废除bGSDM的细胞毒性(图2)。图2 蛋白酶参与bGSDM的激活进一步的,作者们对bGSDM的切割过程进行探究。作者们发现bGSDM的切割需要蛋白酶的催化,但是并不需要棕榈酰化修饰。另外,通过质谱分析作者们鉴定到了古字状菌属的Runella中bGSDM的具体切割位点以及处于自我抑制状态的结构生物学基础。通过构建绿色荧光蛋白的融合蛋白,作者们对bGSDM激活的动态过程进行的监测。作者们发现在激活过程中会由弥散分布的形式变成与膜结构存在联系的点状结构,通过透射电镜的检测可以观测到bGSDM切割后会导致细胞膜完整性的破坏,并导致细胞内容物的快速释放。图3 工作模型总的来说,该工作的建立了细菌与哺乳动物中Gasdermin蛋白打孔从而导致的细胞程序性死亡的具体模型(图3),证明了细菌中bGSDM系统可以发挥防御作用,并且该作用依赖于蛋白酶的参与,该工作将有助于深入了解细胞焦亡的具体作用机制以及在进化上的起源。原文链接:https://www.science.org/doi/10.1126/science.abj8432
  • 超微量分光光度计|蛋白以及细菌生长浓度的定量检测【恒美】
    点击此处可了解更多详情→超微量分光光度计 超微量分光光度计是一种高精度的分析仪器,主要用于核酸、蛋白定量以及细菌生长浓度的定量检测。它利用分光光度的原理,可以将样品中的物质进行分离和检测,以获得其具体的浓度和组成等信息。 超微量分光光度计具有很多优点,比如说它的测量精度非常高,可以检测出样品的微小差异;它的灵敏度也很高,可以检测出样品中微量的物质;此外,它还可以同时对多个样品进行检测,大大提高了工作效率。这些优点使超微量分光光度计成为生物医学、化学分析等领域中必不可少的实验仪器之一。 在使用超微量分光光度计的过程中,需要注意以下几点。 首先,要保证仪器的稳定性,避免在测量过程中出现误差;其次,要注意样品的准备,要将样品进行精细的稀释和纯化,以保证测量结果的可靠性;最后,要根据不同的样品选择合适的波长和测试条件,以便得到更准确的结果。 总的来说,超微量分光光度计是一种功能强大的实验仪器,它的应用范围广泛,可以用于核酸、蛋白定量以及细菌生长浓度的定量检测。它不仅可以提高实验的精度和效率,还可以为生物医学、化学分析等领域的研究提供有力的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制