绿洲农田土壤

仪器信息网绿洲农田土壤专题为您整合绿洲农田土壤相关的最新文章,在绿洲农田土壤专题,您不仅可以免费浏览绿洲农田土壤的资讯, 同时您还可以浏览绿洲农田土壤的相关资料、解决方案,参与社区绿洲农田土壤话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

绿洲农田土壤相关的耗材

  • TDR 350土壤水分温度电导率速测仪探针
    FieldScoutTDR 350土壤水分温度电导率速测仪产品简介:产品用途:TDR350土壤水份仪主要用于测量土壤水分含量来判断土壤的干旱程度以指导农业灌溉。测量范围:0-100% 百分比体积水容量产地:美国FieldScoutTDR 350土壤水分温度电导率速测仪产品特点:体积轻巧,携带方便实时液晶显示操作简单易懂内置数据采集器,RS232接口实时数据存储配合GPS绘制土壤水分分布图FieldScoutTDR 350土壤水分温度电导率速测仪基本技术指标:测量原理:时域反射原理测量单位:百分比体积水容量分 辨 率:1.0%精 度:±3.0%范 围:0%-饱和电 源:4个AAA电池可用12个月数据采集器容量:3250个(不含GPS数据),1350个含GPS数据
  • 土壤水分温度传感器 ML3
    土壤水分温度传感器ML3是一款的科研级的土壤水分温度传感器,其土壤体积含水量测量精度达到±1%,土壤温度测量精度达到±0.5℃。ML3土壤水分温度传感器可以适应市场上多种控制器、数据采集系统的要求,能够更广泛地应用在农业生产领域。设计坚固,不仅能够作为便携式仪器使用,而且能够长期安装。土壤水分温度传感器ML3特点:土壤体积含水量高测量精度达到了±1%;采用新型内置温度传感器。测量精度±0.5℃;采用新型的电缆,方便延长,容易携带;新型的白色外壳,降低了辐射热量;改进了在盐土中的性能,可在最高2000 mS/m电导率的土壤中使用。土壤水分温度传感器ML3技术规格:土壤水分范围:0~100% vol测量精度:±1% vol(0~50% vol和0~40℃)盐分误差:≤3.5%(50~500 ms/m和0~40% vol)输出信号:0~1V差分≈标称0~60% vol感应区域:高度55毫米×直径70毫米土壤温度范围:-20~+40℃测量精度:±0.5℃(0~40℃)输出信号:电阻5.8~28KΩ电缆长度:标准5米,可延长到25米供电:5~14V,1秒约18mA工作温度:-20~+60℃防护等级:IP68尺寸:高度143毫米×直径40毫米HH2水分读数表土壤水分范围:0~饱和,0~1500mV测量精度:±(电压读数0.13%+1.0mV)分辨率:1 mV内存:1500个读数电池:9V碱性电池电量:典型6500次测量防护等级:IP52温度范围:0~40℃跌落高度:约为1米EMC:通过欧洲EMC认证尺寸:150×80×40毫米重量:450克显示屏:16×2行液晶显示屏按键:7个按键连接:1个25针D型连接口,用于连接传感器和通过RS232转换口连接电脑软件:随机配套HH2Read软件
  • Hydra土壤水分温度电导率传感器
    用途:Hydra土壤水分温度电导率传感器可以同时测量出土壤体积含水量、土壤电导率、土壤温度等参数。传感器输出信号有模拟信号、SDI-12和RS485三种可以进行选择,广泛用于农学、水文学、气象学、地球物理学及土木工程学的研究和生产领域。测量原理:Hydra土壤水分温度电导率传感器通过发射高频电磁波测量介电常数,从而可以计算出土壤水分含量和电导率。高频电磁波同时测量被测物的电容和电导特性。电容特性反映土壤水分含量,电导率特性反映土壤的含盐量。温度是通过标定过的电热调节器内嵌在探头中进行测量。技术规格:介电常数测量范围1~80(1=空气,80=蒸馏水)测量精度±1.5%或0.2(典型蒸馏水)土壤水分测量范围0~饱和测量精度多数土壤±0.01 WFV,特殊土壤±0.03电导率测量范围0.01~1.5 S/m测量精度±2.0%或0.005 S/m(典型)温度测量范围-10~+55℃测量精度±0.1℃电气规格供电9~20 VDC通讯协议SDI-12标准V1.2电缆长度标准7.6米,最大可延长到60米功耗空闲电缆接线3芯:供电、接地和数据波特率1200工作环境工作温度-10~+55℃,可延长到-30~+55℃存储温度-40~+55℃防水探头可以放入水中物理参数电缆22AWG,防紫外,直埋材质探头外壳PVC,探针为304不锈钢尺寸长度12.4厘米×直径4.2厘米感应区域长度5.7厘米×直径3厘米重量传感器200克,电缆0.08公斤/米产地:美国

绿洲农田土壤相关的仪器

  • 高标准农田设备 400-860-5168转5113
    高标准农田设备是一种综合性的农业监测设备,主要用于监测农田中的土壤湿度、温度、PH值、光照强度、降雨量、风速、风向等环境参数。该设备可以通过传感器技术实现自动化监测,并将数据传输到计算机或云平台上进行存储和分析。一、系统背景 高标准农田设备随着智慧农业的发展,互联网、大数据、人工智能等技术逐渐运用到了农业生产的各个环节,大大提高了劳动力、资本等各项生产要素资源的配置与利用效率。 借助物联网,智慧农业构建了集环境监控、精准调节为一体的农业生产系统,可对不同的农业生产环境及对象进行监测监管,通过传感设备检测环境的物理参数,对土壤、虫情、气象、苗青、孢子等生产环境状况进行实时动态监控,使之符合农业生产环境标准,这些新技术的应用将大大改善农产品品质,使其符合市场需求,可以实现供给与需求的有效对接,促进农业生产精细化、高效化、现代化发展。 同时系统配备了风吸式杀虫灯,可高效杀虫,绿色无污染。二、系统组成 该系统由管式土壤墒情监测仪、虫情测报灯、气象站、视频监控、围栏、风吸式杀虫灯、孢子捕捉仪、云平台组成。 该系统可对农业大田的土壤温度、土壤水分,病虫状况(病虫种类、病虫数量等),气候状况(空气温度、湿度、雨量、光照度、二氧化碳、风速风向等环境参数),作物长势,孢子数目进行系统监测和管理,通过GPRS/4G或网口将数据上传至测报平台,管理人员可远程实时查看各环境参数数据及趋势,节省人力,并根据数据反馈作出相应调整,以保证农作物良好的生长态势,助力农业生产。 三、平台介绍 1.农业四情测报平台是集虫情、气象、墒情、苗情、孢子监测为一体在线监控平台。虫情监测具有Al害虫自动识别、远程实时查看虫情、虫情在线分析、害虫种类自动识别、区域虫情统计、虫情变化趋势分析、设备监测等功能。气象监测具有远程实时查看气象、在线分析气象历史数据的功能。墒情监测具有远程获取土壤墒情(如土壤温湿度、水分、PH)数据、在线分析土壤墒情历史数据的功能。苗情监测可实时查看作物长势画面。孢子自动捕捉仪采用光、电、数控技术,自动显微成像全天候对所捕获的病菌孢子自动拍摄。智能孢子捕捉设备高倍光学显微成像系统,精度限位技术、自动智能化聚焦融合技术、物联网传输控制技术等技术手段,并实时将空气中孢子图片上传到指定农业云平台。 2.监控主页显示设备列表、大屏可视化、地图展示等菜单信息。显示土壤墒情、虫情、气象监测图标及设备的运行状态。 3.虫情监测包括实时虫情、虫情分析、害虫种类、实时状态、操作记录五部分。 4.虫情分析:可查询到所选时间范围内的图片。 5.虫情统计包括区域统计和趋势分析。 区域分析:选择区域,选择时间后点击查询即可查询出所选时间段区域内虫情设备的害虫数量。 趋势分析:选择区域,选择时间后点击查询,即可查询出区域内各害虫种类数量的曲线变化。 6.气象监测包括实时数据和历史数据两部分。 7.墒情监测包括实时数据和历史数据两部分。 8.系统管理包括设备管理、用户管理、区域管理、系统日志四部分。
    留言咨询
  • 农田气象站 400-860-5168转4652
    农田气象站的主要作用是监测农田环境中的气象参数,如温度、湿度、光照、降雨量、风速等。这些数据可以帮助农民了解农田的生长环境,监测分析的天气变化,从而采取相应的措施来保护农作物。例如,在干旱时期,农民可以根据气象数据合理安排灌溉,避免作物受损;在多雨季节,可以及时排水,防止作物受淹。一、产品简介TH-NQ10农田气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度气象观测设备。农田气象站该设备由气象传感器,采集器,太阳能供电系统,立杆支架,云平台五部分组成。免调试,可快速布置,广泛运用于气象、农业、林业、科学考察等领域。二、产品特点1.低功耗采集器:静态功耗小于50uA2.标配GPRS联网、支持扩展蓝牙、有线传输3.七寸安卓触屏,版本:4.4.2、四核Cortex&trade -A7,512M/4G4.支持modbus485传感器扩展5.太阳能充电管理MPPT自动功率点跟踪6.三米碳钢支架,两节螺纹旋接7.短信报警,超限后向指定的手机上发送短信8.ABS材质防护箱,耐腐蚀、抗氧化,防水等级IP66三、技术参数1.采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,2.传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V3.太阳能供电、配置铅酸电池,可选配30W 20AH/50W 20AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%4.数据上传间隔:1分钟-1000分钟可调5.屏幕尺寸:1024*600 RGB LCD6.部分传感器参数 名 称 测量范围 分 辨 率 准 确 度 风 速 0~30m/s 0.01m/s ±(0.1+0.03V)m/s 风 向 0~360°(16方向) 1/16 3°(1.0m/s) 空气温度 -40-80℃ 0.1℃ ±0.3℃(25℃) 空气湿度 0-100%RH 0.10% ±3%RH 大气压力 30-110Kpa 0.01Kpa ±0.02Kpa(相对) 雨量 ≦4mm/min 0.01mm ±0.2mm 光照 0-18.8W LUX 1lux 5% 二氧化碳 500-5000PPM 1PPM ±50PPM±读数的3% 土壤温度 -40~80℃0.1℃±0.5℃土壤湿度 0-100%0.1%3%四、云平台1.CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2.支持多帐号、多设备登录3.支持实时数据展示与历史数据展示仪表板4.云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5.支持短信报警及阈值设置6.支持地图显示、查看设备信息。7.支持数据曲线分析8.支持数据导出表格形式9.支持数据转发,HJ-212协议,TCP转发,http协议等。10.支持数据后处理功能11.支持外置运行javascript脚本
    留言咨询
  • 农田气象墒情监测站 400-860-5168转4652
    农田气象墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度气象观测设备。一、产品简介TH-NQ14农田气象墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度气象观测设备。二、产品特点1.低功耗采集器:静态功耗小于50uA2.标配GPRS联网、支持扩展蓝牙、有线传输3.七寸安卓触屏,版本:4.4.2、四核Cortex&trade -A7,512M/4G4.支持modbus485传感器扩展5.太阳能充电管理MPPT自动功率点跟踪6.三米碳钢支架,两节螺纹旋接7.短信报警,超限后向指定的手机上发送短信8.ABS材质防护箱,耐腐蚀、抗氧化,防水等级IP66三、农田气象墒情监测站技术参数1.采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,2.传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V3.太阳能供电、配置铅酸电池,可选配30W 20AH/50W 20AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%4.数据上传间隔:1分钟-1000分钟可调5.屏幕尺寸:1024*600 RGB LCD6.部分传感器参数 名 称 测量范围 分 辨 率 准 确 度 风 速 0~30m/s 0.01m/s ±(0.1+0.03V)m/s 风 向 0~360°(16方向) 1/16 3°(1.0m/s) 空气温度 -40-80℃ 0.1℃ ±0.3℃(25℃) 空气湿度 0-100%RH 0.10% ±3%RH 大气压力 30-110Kpa 0.01Kpa ±0.02Kpa(相对) 雨量 ≦4mm/min 0.01mm ±0.2mm 光照 0-18.8W LUX 1lux 5% 二氧化碳 500-5000PPM 1PPM ±50PPM±读数的3% 土壤温度 -40~80℃0.1℃±0.5℃土壤湿度 0-100%0.1%3%土壤电导率EC0-20000us/cm10us/cm±5%土壤PH(探针)3-90.1≤5%/year土壤氮磷钾0~1999mg/kg1 mg/kg±2%土壤蒸发量0~75mm0.1mm±1%
    留言咨询

绿洲农田土壤相关的试剂

绿洲农田土壤相关的方案

  • 莱伯泰科:上海崇明农田土壤中有机磷农药的残留特征
    摘 要:2008年7月分别选取崇明典型农田土壤,对其中的9种有机磷农药残留进行检测。结果表明:水稻田土壤和蔬菜地土壤有机磷农药均有不同程度检出。水稻田土壤检测出的有机磷农药总量在0.23~0.69 μg g-1之间,检出种类主要为甲拌磷、乐果、二嗪农、马拉硫磷、对硫磷;蔬菜地土壤检出的有机磷农药总量为0.10~0.57 μg g-1,检出种类主要为氧化乐果、甲拌磷、乐果、马拉硫磷和对硫磷。其中,对硫磷的检出量和检出率均**。不同土地利用方式对土壤有机磷农药残留有一定影响,水稻田土壤有机磷农药残留高于蔬菜地土壤,这可能与水稻田与蔬菜西瓜田耕种方式和施用农药量有关。关 键 词:有机磷农药;农田;土壤;崇明
  • 莱伯泰科:上海崇明岛农田土壤中多氯联苯的残留特征
    露天蔬菜西瓜田土壤.主成分分析和相关性研究结果表明,土壤中低氯联苯同系物间相关性较好,污染来源可能为同一类.关键词:多氯联苯;农田;土壤;崇明岛;残留
  • 基于光谱指数的绿洲农田土壤含水量无人机高光谱检测
    预处理在不同程度上提高了光谱指数与SMC的相关性,其中基于Abs-SG预处理的PVI_((R644,R651))表现**优,相关系数为0.788,据此构建的三次拟合函数表现**优。基于不同预处理方案下多变量SMC估算模型效果在消噪的基础上,更为深度地挖掘了光谱信息,减少了单一光谱指数造成的误差,提升了模型的定量估测效果。Abs模型预测精度亦**为突出,其建模集R_c~2和RMSE为0.80、2.42**,验证集R_p~2与RMSE为0.91、1.71**,RPD为2.41。本研究构建的SMC估算模型减少了单一变量模型的误差 在规避过拟合现象的同时,提升了模型的定量估测效果,为土壤水分状况天地空一体化遥感监测提供了崭新的视角和方案。

绿洲农田土壤相关的论坛

  • 【世界环境日】场地土壤与农田土壤质量检测的差异项

    场地土壤与农田土壤质量检测在目的、方法、标准以及关注点上存在一定的差异。以下是两者的一些主要差异项:1. 检测目的: - 场地土壤检测:通常是为了评估场地污染程度,确定土壤中污染物的种类和浓度,为场地修复和环境保护提供数据支持。 - 农田土壤检测:主要是为了评估土壤的健康状况和耕作适宜性,确保农作物生长环境的安全和土壤的生产力。2. 检测方法: - 场地土壤检测:可能需要使用更高级别的分析技术,如[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])等,以检测低浓度的污染物。 - 农田土壤检测:通常使用较为常规的分析方法,如[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(AAS)、原子荧光分光光度计(AFS)等,重点在于检测植物生长所需的营养元素和可能影响农业生产的污染物。3. 检测标准: - 场地土壤检测:依据的是国家和地方的环境保护标准,关注的是土壤环境质量标准(如GB 15618—2018《土壤环境质量 建设用地土壤污染风险管控标准(试行)》)。 - 农田土壤检测:依据的是农业标准,关注的是土壤肥力标准(如NY/T 897—2002《农田土壤环境监测技术规范》)。4. 关注点: - 场地土壤检测:关注点在于污染物的种类、浓度及其对环境和人类健康的潜在风险。 - 农田土壤检测:关注点在于土壤的肥力、污染状况及其对农作物生长和农产品质量的影响。5. 检测频率: - 场地土壤检测:可能是一次性的或定期的,取决于场地使用情况、环境变化等因素。 - 农田土壤检测:通常与农作物的种植季节相关,以便及时调整施肥和土壤管理策略。总的来说,尽管两者都关注土壤质量,但场地土壤检测更侧重于环境和健康风险评估,而农田土壤检测则更侧重于农业生产和食品安全。

  • 农田土壤的主要污染物及其污染途径有哪些?

    [font=仿宋_GB2312][size=21px]我国农田土壤的主要污染物有汞、镉、铅、铬、砷等重金属污染物,有机磷、有机氯等有机污染物,还有残留的农膜。[/size][/font][font=仿宋_GB2312][size=21px]农田土壤的污染途径包括农药、化肥和农膜的不正确使用;生活污水、商业污水、工业污水的不合理灌溉;矿业、工业固体废弃物在农田的不合理堆放;工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘在农田的自然沉降。[/size][/font]

  • 农田土壤的主要污染物及其污染途径有哪些?

    [font=仿宋_GB2312][size=21px]我国农田土壤的主要污染物有汞、镉、铅、铬、砷等重金属污染物,有机磷、有机氯等有机污染物,还有残留的农膜。[/size][/font][font=仿宋_GB2312][size=21px]农田土壤的污染途径包括农药、化肥和农膜的不正确使用;生活污水、商业污水、工业污水的不合理灌溉;矿业、工业固体废弃物在农田的不合理堆放;工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘在农田的自然沉降。[/size][/font]

绿洲农田土壤相关的资料

绿洲农田土壤相关的资讯

  • 位可视化定量研究热带农田土壤重金属微区环境行为方面取得重要进展
    近日,中国热科院环植所农业环境研究团队在热带农田土壤重金属原位微区过程研究方面取得重要进展。创新性的应用X射线显微计算机断层扫描结合扫描电镜-能量色散能谱法,发现了土壤孔隙结构特性影响重金属镉微区分布。该研究结果为揭示土壤结构异质性对重金属环境行为的影响机制提供了新的研究思路和方法。  热带作物受镉(Cd)等重金属的污染已成为制约热区农产品质量安全与农业可持续发展的重要问题。土壤异质性导致重金属环境行为过程复杂,一直是重金属污染治理的难点。传统基于总量和平均量的研究方法难以反映由空间、物理、化学和生物共同作用产生的土壤异质性对重金属环境行为的影响。为突破该问题,研究团队建立了X射线显微计算机断层扫描结合扫描电镜-能量色散能谱土壤重金属微区可视化研究方法,结合全景组织细胞定量分析系统,实现了对土壤孔隙内及周围Cd微区分布的原位定量研究。基于团队前期研究发现的团聚体铁、磷形态影响热带农田土壤Cd固持的重要作用,通过该方法分析得到了原状土壤孔隙及周围Fe、P、Cd的微区分布特性,进一步揭示了热带农田土壤的孔隙特性(包括孔隙大小和持水能力)通过控制Fe、P元素微区赋存,影响土壤Cd微区分布特征的微观机制。  该研究成果以“The role of pores in micro-zone distribution of Cd in a tropical paddy soil: Results from X-ray computed tomography combined energy dispersive spectroscopy analysis”为题发表于《Journal of Hazardous Materials》。中国热科院环植所魏超贤助理研究员和林必桂高级工程师为论文共同第一作者,刘贝贝副研究员为论文通讯作者。该研究得到了海南省自然科学基金、海南省重点研发计划等项目资助及农业农村部热区绿色低碳重点实验室、国家农业环境儋州观测实验站、海南省生态循环农业重点实验室等平台的支持。
  • 环保部:农村1/5土壤检测超标 农田菜地污染严重
    中广网北京6月5日消息(记者柴华)今天(6月5日)是世界环境日。环保部副部长吴晓青上午出席国新办新闻发布会,介绍环境质量状况等相关情况。  在今天的新闻发布会上,环保部副部长吴晓青通报了《2011年中国环境状况公报》的相关情况。根据统计,2011年我国废水排放量为652.1亿吨 废气中二氧化硫的排放量约为2218万吨。相关数据的检测结果表明,全国环境质量状况总体平稳,不过形势严峻。有关部门也表示,目前还面临许多困难和挑战。  具体到各个方面,首先是全国地表水质轻度污染,湖泊(水库)的富营养化问题突出。吴晓青介绍说,黄河、松花江、淮河、辽河流域都有轻度污染 海河污染达到中度。在26个监测湖泊中,富营养化状态的湖泊(水库)占到了53.8% 而在监测的4700多个地下水监测点位中,较差/极差水质的监测点比例达到了55%。  空气质量方面,2011年325个地级及以上城市中,环境空气质量达标城市达到89%,但执行新的空气质量标准后,细颗粒物PM2.5污染逐步凸显。吴晓青表示,试点监测结果表明,多数城市细颗粒物超标,均值是58微克/立方米,而按新规年均值的二级标准应该是35微克/立方米。酸雨分布区域主要集中在长江沿线及以南-青藏高原以东地区,酸雨区面积约占国土面积的12.9%。  同时,在海域水质方面,近岸水域的水质被认为总体一般,9个重要海湾中,黄河口和北部湾水质良好,而胶州湾、辽东湾水质差,渤海湾、长江口、杭州湾、闽江口和珠江口水质极差。  另外,农村环境问题正在显现出来,形势严峻。环保部的检测试点结果表明,农村地表水轻度污染,土壤样品超标率达到21.5%,垃圾场周边、农田、菜地和企业周边土壤的污染都比较严重。
  • 2023年“农田土壤检测技术进展”主题网络研讨会日程公布
    良好的农田土壤品质才能确保农产品的品质,近年来,我国高度重视农产品和食品安全的底线,多次强调要持续做好耕地土壤污染调查检测工作,不断加强农产品产地环境质量监测监管,为开展农田土壤环境承载力相关研究提供有力支撑。2023年中央一号文件特别强调:加强农用地土壤镉等重金属污染源头防治、强化受污染耕地安全利用和风险管控、建立农业生态环境保护监测制度、加强耕地保护和用途管控等,其中也特别强调,要做好第三次全国土壤普查工作。为了促进相关领域技术交流与合作,仪器信息网计划组织召开“农田土壤检测技术进展”主题网络研讨会(2023年3月29日),就农田土壤质量、污染物检测及信息感知技术的最新进展等话题展开同探讨,为用户、专家和厂商搭建优质、有效的交流平台。点击图片免费报名此次在线网络研讨会特别邀请到农业农村部环境保护科研监测所贺泽英研究员、中国冶金地质总局第三地质中心实验室刘桀佳总工、江苏省环境监测中心杨丽莉副主任、中国农业大学李民赞教授等进行演讲报告,将围绕农田土壤质量调查、检测与评价,有机污染物和农药的检测技术,信息感知技术与装备创新等进行探讨。报名链接:https://www.instrument.com.cn/webinar/meetings/ntsoil230329/(点击报名)会议日程:演讲嘉宾介绍:贺泽英:博士,农业农村部环境保护科研监测所 研究员,从事农药残留分析和环境毒理研究工作。主持国家自然科学基金面上项目、青年项目、天津市自然科学基金面上等系列项目,参与重点研发、农业行业专项、农业部农业环境有害因子风险评估重大专项等项目10余项。第一/通讯作者发表SCI论文20余篇。参与制定农药残留检测方法国家标准4项。杨丽莉:江苏省环境监测中心副主任。环保部第一批环境监测培训教师,环保部环境监测 “一流专家”,江苏省首席科技传播专家,江苏省色谱专业委员会副主任委员,《环境监测管理与技术》副主编。研究方向:长期研究环境中有毒有害污染物的监测方法和应用、监测方法体系和质量控制体系,主持参加十余项环境保护标准的制订。刘桀佳:中共党员,中国冶金地质总局第三地质中心实验室总工程师,检验检测机构资质认定国家级评审员,CSTM中国材料与试验团体标准委员会委员,中国冶金地质总局专家委员会委员,仪器信息网《原子吸收光谱实战宝典》编委。从事化学分析检测17余年,主要从事岩石矿物、各种金属合金、土壤、水质、煤炭等的分析检测,积累了丰富的技术经验,攻克了大量的技术难题,主持了多项国家及省级重点检测项目。主持入围了“耕地质量标准化验室”名录、主持入围了“第三次全国土壤普查第一批实验室”名录、主持农业农村部“十四五”国家科技支撑重点课题研究,荣获科研成果一等奖。并发表《农田土壤重金属污染快速检测及修复方法研究》、《电感耦合等离子体-质谱法测定岩石样品中的钨元素含量》、《论我国化学分析检验工作的质量控制保证》、《多角度偏振遥感的水中有毒污染物多指标检测方法研究》等多篇科技核心期刊论文及软件著作。李民赞:中国农业大学信息与电气工程学院教授,“智慧农业系统集成研究”教育部重点实验室主任,中国农业大学智慧农业研究中心主任,日本东京农工大学博士,农业机械化与信息化工程专家。研究领域为农业信息化技术、精细农业、智慧农业,所从事的主要研究方向及成果如下:(1) 设施农业信息自动获取及远程监控技术, (2) 基于光谱分析的土壤肥力参数检测方法及先进传感技术研究, (3) 基于光谱和遥感技术的作物生长检测方法及先进传感技术研究, (4) 谷物智能化测产系统开发及产量空间变异分析研究, (5) 农业物联网技术的研究与应用。近年在国内外高水平学术期刊上发表学术论文100余篇。获得中国农业部科技奖二等奖1项,中国机械工业科学技术奖一等奖1项,国家新闻出版广电总局政府奖图书奖1项。2016年荣获北京市“师德先锋”荣誉称号。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制