当前位置: 仪器信息网 > 行业主题 > >

绿洲农田土壤

仪器信息网绿洲农田土壤专题为您整合绿洲农田土壤相关的最新文章,在绿洲农田土壤专题,您不仅可以免费浏览绿洲农田土壤的资讯, 同时您还可以浏览绿洲农田土壤的相关资料、解决方案,参与社区绿洲农田土壤话题讨论。

绿洲农田土壤相关的资讯

  • 位可视化定量研究热带农田土壤重金属微区环境行为方面取得重要进展
    近日,中国热科院环植所农业环境研究团队在热带农田土壤重金属原位微区过程研究方面取得重要进展。创新性的应用X射线显微计算机断层扫描结合扫描电镜-能量色散能谱法,发现了土壤孔隙结构特性影响重金属镉微区分布。该研究结果为揭示土壤结构异质性对重金属环境行为的影响机制提供了新的研究思路和方法。  热带作物受镉(Cd)等重金属的污染已成为制约热区农产品质量安全与农业可持续发展的重要问题。土壤异质性导致重金属环境行为过程复杂,一直是重金属污染治理的难点。传统基于总量和平均量的研究方法难以反映由空间、物理、化学和生物共同作用产生的土壤异质性对重金属环境行为的影响。为突破该问题,研究团队建立了X射线显微计算机断层扫描结合扫描电镜-能量色散能谱土壤重金属微区可视化研究方法,结合全景组织细胞定量分析系统,实现了对土壤孔隙内及周围Cd微区分布的原位定量研究。基于团队前期研究发现的团聚体铁、磷形态影响热带农田土壤Cd固持的重要作用,通过该方法分析得到了原状土壤孔隙及周围Fe、P、Cd的微区分布特性,进一步揭示了热带农田土壤的孔隙特性(包括孔隙大小和持水能力)通过控制Fe、P元素微区赋存,影响土壤Cd微区分布特征的微观机制。  该研究成果以“The role of pores in micro-zone distribution of Cd in a tropical paddy soil: Results from X-ray computed tomography combined energy dispersive spectroscopy analysis”为题发表于《Journal of Hazardous Materials》。中国热科院环植所魏超贤助理研究员和林必桂高级工程师为论文共同第一作者,刘贝贝副研究员为论文通讯作者。该研究得到了海南省自然科学基金、海南省重点研发计划等项目资助及农业农村部热区绿色低碳重点实验室、国家农业环境儋州观测实验站、海南省生态循环农业重点实验室等平台的支持。
  • 环保部:农村1/5土壤检测超标 农田菜地污染严重
    中广网北京6月5日消息(记者柴华)今天(6月5日)是世界环境日。环保部副部长吴晓青上午出席国新办新闻发布会,介绍环境质量状况等相关情况。  在今天的新闻发布会上,环保部副部长吴晓青通报了《2011年中国环境状况公报》的相关情况。根据统计,2011年我国废水排放量为652.1亿吨 废气中二氧化硫的排放量约为2218万吨。相关数据的检测结果表明,全国环境质量状况总体平稳,不过形势严峻。有关部门也表示,目前还面临许多困难和挑战。  具体到各个方面,首先是全国地表水质轻度污染,湖泊(水库)的富营养化问题突出。吴晓青介绍说,黄河、松花江、淮河、辽河流域都有轻度污染 海河污染达到中度。在26个监测湖泊中,富营养化状态的湖泊(水库)占到了53.8% 而在监测的4700多个地下水监测点位中,较差/极差水质的监测点比例达到了55%。  空气质量方面,2011年325个地级及以上城市中,环境空气质量达标城市达到89%,但执行新的空气质量标准后,细颗粒物PM2.5污染逐步凸显。吴晓青表示,试点监测结果表明,多数城市细颗粒物超标,均值是58微克/立方米,而按新规年均值的二级标准应该是35微克/立方米。酸雨分布区域主要集中在长江沿线及以南-青藏高原以东地区,酸雨区面积约占国土面积的12.9%。  同时,在海域水质方面,近岸水域的水质被认为总体一般,9个重要海湾中,黄河口和北部湾水质良好,而胶州湾、辽东湾水质差,渤海湾、长江口、杭州湾、闽江口和珠江口水质极差。  另外,农村环境问题正在显现出来,形势严峻。环保部的检测试点结果表明,农村地表水轻度污染,土壤样品超标率达到21.5%,垃圾场周边、农田、菜地和企业周边土壤的污染都比较严重。
  • 2023年“农田土壤检测技术进展”主题网络研讨会日程公布
    良好的农田土壤品质才能确保农产品的品质,近年来,我国高度重视农产品和食品安全的底线,多次强调要持续做好耕地土壤污染调查检测工作,不断加强农产品产地环境质量监测监管,为开展农田土壤环境承载力相关研究提供有力支撑。2023年中央一号文件特别强调:加强农用地土壤镉等重金属污染源头防治、强化受污染耕地安全利用和风险管控、建立农业生态环境保护监测制度、加强耕地保护和用途管控等,其中也特别强调,要做好第三次全国土壤普查工作。为了促进相关领域技术交流与合作,仪器信息网计划组织召开“农田土壤检测技术进展”主题网络研讨会(2023年3月29日),就农田土壤质量、污染物检测及信息感知技术的最新进展等话题展开同探讨,为用户、专家和厂商搭建优质、有效的交流平台。点击图片免费报名此次在线网络研讨会特别邀请到农业农村部环境保护科研监测所贺泽英研究员、中国冶金地质总局第三地质中心实验室刘桀佳总工、江苏省环境监测中心杨丽莉副主任、中国农业大学李民赞教授等进行演讲报告,将围绕农田土壤质量调查、检测与评价,有机污染物和农药的检测技术,信息感知技术与装备创新等进行探讨。报名链接:https://www.instrument.com.cn/webinar/meetings/ntsoil230329/(点击报名)会议日程:演讲嘉宾介绍:贺泽英:博士,农业农村部环境保护科研监测所 研究员,从事农药残留分析和环境毒理研究工作。主持国家自然科学基金面上项目、青年项目、天津市自然科学基金面上等系列项目,参与重点研发、农业行业专项、农业部农业环境有害因子风险评估重大专项等项目10余项。第一/通讯作者发表SCI论文20余篇。参与制定农药残留检测方法国家标准4项。杨丽莉:江苏省环境监测中心副主任。环保部第一批环境监测培训教师,环保部环境监测 “一流专家”,江苏省首席科技传播专家,江苏省色谱专业委员会副主任委员,《环境监测管理与技术》副主编。研究方向:长期研究环境中有毒有害污染物的监测方法和应用、监测方法体系和质量控制体系,主持参加十余项环境保护标准的制订。刘桀佳:中共党员,中国冶金地质总局第三地质中心实验室总工程师,检验检测机构资质认定国家级评审员,CSTM中国材料与试验团体标准委员会委员,中国冶金地质总局专家委员会委员,仪器信息网《原子吸收光谱实战宝典》编委。从事化学分析检测17余年,主要从事岩石矿物、各种金属合金、土壤、水质、煤炭等的分析检测,积累了丰富的技术经验,攻克了大量的技术难题,主持了多项国家及省级重点检测项目。主持入围了“耕地质量标准化验室”名录、主持入围了“第三次全国土壤普查第一批实验室”名录、主持农业农村部“十四五”国家科技支撑重点课题研究,荣获科研成果一等奖。并发表《农田土壤重金属污染快速检测及修复方法研究》、《电感耦合等离子体-质谱法测定岩石样品中的钨元素含量》、《论我国化学分析检验工作的质量控制保证》、《多角度偏振遥感的水中有毒污染物多指标检测方法研究》等多篇科技核心期刊论文及软件著作。李民赞:中国农业大学信息与电气工程学院教授,“智慧农业系统集成研究”教育部重点实验室主任,中国农业大学智慧农业研究中心主任,日本东京农工大学博士,农业机械化与信息化工程专家。研究领域为农业信息化技术、精细农业、智慧农业,所从事的主要研究方向及成果如下:(1) 设施农业信息自动获取及远程监控技术, (2) 基于光谱分析的土壤肥力参数检测方法及先进传感技术研究, (3) 基于光谱和遥感技术的作物生长检测方法及先进传感技术研究, (4) 谷物智能化测产系统开发及产量空间变异分析研究, (5) 农业物联网技术的研究与应用。近年在国内外高水平学术期刊上发表学术论文100余篇。获得中国农业部科技奖二等奖1项,中国机械工业科学技术奖一等奖1项,国家新闻出版广电总局政府奖图书奖1项。2016年荣获北京市“师德先锋”荣誉称号。
  • ASD | ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的
    黑土地是指具有黑色或者暗黑色腐殖质表土层,性状好、肥力高的耕地,这类耕地可用于粮食生产。黑土地黑土地是地球上最珍贵的土壤资源,地球上一共有四块黑土地,分别是乌克兰的乌克兰平原、美国的密西西比平原、中国的东北平原以及南美洲阿根廷连至乌拉圭的潘帕大草原。我国东北平原典型黑土区耕地面积约2.78亿亩,是重要的粮食生产优势区和全国最大的商品粮生产基地。然而,近年来相关研究和调查发现,由于掠夺经营、水土流失等原因,黑土层厚度已逐渐减少,土壤有机质含量也明显降低,土壤侵蚀成了黑土地不容忽视的问题之一。保护黑土地对于保障国家粮食安全、生态安全,促进农业绿色可持续发展具有重大的意义。接下来我们了解一篇在黑土地区探测土壤侵蚀状况的论文。ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的应用土地退化影响着世界上大约三分之一的农田 ,其中土壤侵蚀是最严重和最广泛的退化形式。在侵蚀严重的地区,土壤剖面可能出现明显的截断现象,导致富含碳和营养丰富的表土物质空间重组,造成土壤有机碳(SOC)加速损失,土壤肥力下降,从而影响退化农田的粮食生产。据估计,每10厘米土壤损失作物产量平均减少约4%,而由于农业管理不当和施肥水平低,发展中国家减产的程度可能会加剧。联合国可持续发展目标框架下的土地退化中立方案明确采用了SOC作为评估和监测土地退化状况的关键指标。因此,更好地了解发生土壤侵蚀的地点和加速侵蚀程度,以及SOC损失的发生,将在很大程度上有助于全球在粮食安全和气候方面可持续利用土壤资源的努力。普遍通用的土壤损失方程(USLE)拥有高度的数据可访问性,然而,它仍然是一种经验方法,只考虑了水蚀,而忽略了其他形式,如耕作和风蚀,并没有模拟土壤沉积。另外,主要在流域规模上,存在许多基于过程的物理模型来模拟单个降雨事件中相互作用的侵蚀和沉积过程,但其模型结构的复杂性和模型参数化的不平衡往往会影响模型的空间预测能力,且当前评估侵蚀发生地点和程度的方法仍然不足以在高空间分辨率下精确探测侵蚀热点。无论使用何种建模方法,阻碍土壤侵蚀精确建模和制图的常见问题还包括:(1)输入过时的、静态的和粗糙的分辨率数据,通常无法捕捉到侵蚀过程尺度上土壤侵蚀的时空变化;(2)缺乏空间分布的观测数据来进行严格的模型校准和验证。此外,土壤侵蚀追踪技术作为得出净侵蚀空间估计的可行选择,其价格昂贵,在大空间尺度上的适用性有限。遥感的发展将解决上述问题,不仅因为高分辨率卫星图像的日益普及,土壤成像光谱学的快速发展也提供了直接捕获由侵蚀引起的土壤特性变化的潜力,特别是SOC,如哨兵-2可以很好地明确评估土壤侵蚀程度。然而,很少有研究直接与哨兵-2衍生的土壤光谱信息检测土壤侵蚀热点相关,且一些检测方法的普遍适用性以及支持基于不同侵蚀程度土壤光谱特征分类的基本机制仍有待进一步探讨。鉴于上述研究差距,迫切需要一种有效的土壤侵蚀测绘方法,从而能够精确地检测出多重侵蚀过程导致的侵蚀热点。中国东北黑土区是一个粮仓,年产量超过国家粮食产量的20%,然而其是中国受土壤侵蚀影响最严重的地区之一,因此,一种有效检测局部侵蚀热点的方法对于实施针对性的保护措施具有重要意义。为此,本研究的目标是建立一个方法框架,实现仅基于光谱特征对土壤侵蚀进行准确分类和高分辨率制图。基于此,在本研究中,由吉林大学地球科学学院、鲁汶大学地球与生命研究所、中国农业科学院农业环境与可持续发展研究所组成的一组研究团队以中国东北吉林省中部德惠市木石河流域(44°34′-44°38′N,125°51′-125°59′E,面积约46.20 km2)为例,进行土壤取样与分析(共选取72个采样点,其中山顶19个,斜坡中段28个,山脚25个);在实验室内使用ASD Fieldspec 3 FR光谱仪测量土壤样品VNIR光谱数据;建立地面真实数据集;结合主成分分析和综合光谱判别分析(PCA-LDA)方法对实验室高光谱数据进行测试与分析、研究不同侵蚀影响下土壤的光谱可分性;建立侵蚀分类方案、创建混淆矩阵,通过Kappa系数评估分类性能;最后通过多时间裸土像素合成方法,优化裸土反射率稳定性,基于哨兵-2衍生的宽带光谱对研究区土壤侵蚀情况进行测绘与验证。(a, b)中国东北流域数字高程模型上采样点空间分布;(c,d)哨兵-2彩色图像(2021年5月13日);(e,f)沿典型斜坡剖面的代表性采样位置。【结果】基于实验室VNIR谱PC评分的线性判别分析(LDA)对三个斜坡位置进行分类。基于土壤的三个土壤侵蚀强度等级表土实验室平均光谱。(a)原始光谱和(b)连续体去除反射率。用于侵蚀强度等级光谱分离的表土实验室光谱指数的箱形图。基于哨兵2裸土壤光谱的PC得分的线性判别分析(LDA)确定三个侵蚀强度等级。三种土壤侵蚀强度等级的平均光谱。(a)原始光谱和(b)连续去除反射率。用于侵蚀强度类别光谱分离的哨兵-2光谱指数的箱形图。10米分辨率下的土壤侵蚀强度图。2021年6月,农田范围内三个侵蚀强度等级的NDVI密度图;(b,c)是详细土壤侵蚀模式的放大区域,(d,e)相应的田间尺度NDVI图。【结论】本研究在中国东北黑土区流域尺度上测试了多时间遥感探测侵蚀热点的潜力。建立了一个地面真实数据集,包括在山顶、中坡和脚坡位置收集的土壤,由于其地形特征、净侵蚀率和SOC含量的差异,对应于中、重度和低侵蚀程度类别。对实验室和基于哨兵-2的土壤光谱数据的调查表明,由于侵蚀引起的土壤反照率和生化组成的变化,三个侵蚀类别中的土壤显示出明显的光谱特征,特别是在严重侵蚀的地区,其表土层明显有大量土壤损失。PCA-LDA在不同侵蚀影响下表现出明显的类间光谱可分性,其对两种数据源都产生了良好的分类精度(Kappa系数 0.9),对哨兵-2光谱更是如此,从而能够开发一种光谱分类方案,该方案由确定的光谱指数阈值组成,用于基于哨兵-2裸土混合物质的像素级土壤侵蚀测绘,其中15.9%的农田面积为侵蚀热点,中等类占65.4%。将侵蚀图与NDVI图进行比较,从空间角度来看,显示了土壤侵蚀对作物生长的负面影响。制作的高分辨率土壤侵蚀图可以对土壤侵蚀和作物生产力之间的关系进行进一步分析,突出了本研究提出的方法在黑土地区帮助粮食安全和气候的有针对性可持续农田管理方面的潜力。未来的研究应进一步检验这种方法在其他领域和更大的空间尺度上的可转移性。
  • 岛津应用:酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞
    汞及其化合物是一种具有慢性剧毒的环境污染物,其存在的形态不同毒性有所区别,有机汞的毒性比无机汞强,尤其甲基汞毒性更是无机汞的几百倍。环境中,特别是土壤中的无机汞容易在微生物和化学作用下甲基化转化成有机汞。转化成的有机汞难以降解分离,容易迁移至土壤种植的农作物中,并通过食物链富集进入到人体而对人类健康构成威胁。因此,土壤污染状况详查除了需要测定总汞的含量之外,不同形态汞的准确定量分析也有极其重要的意义,更能正确评估土壤的重金属污染程度和潜在风险。 HPLC-ICP-MS 联用技术具有较高的分离能力和灵敏度,是形态汞分析的主要技术,本文建立了使用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030 联用测定农田土壤中甲基汞和乙基汞含量的方法。方法以0.5 mol/L的硝酸溶液为浸提剂,前处理简单快速,检出限低,甲基汞和乙基汞的检出限分别为0.16 μg/L和0.21 μg/L,定量准确,可满足农田土壤中甲基汞和乙基汞含量的同时分析。 岛津电感耦合等离子体质谱 ICPMS-2030 了解详情,敬请点击《酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 精彩回顾|农田土壤检测技术进展网络研讨会圆满落幕,附视频回放链接!
    2023年3月29日,农田土壤检测技术进展网络研讨会于线上成功召开,会议历时0.5天,来自农业农村部环境保护科研监测所、江苏省环境监测中心、中国冶金地质总局第三地质中心实验室、中国农业大学的专家莅临本次会议,就农田土壤中农药和抗生素残留、有机污染物检测,高标准农田建设土壤质量调查、检测与评价,农田土壤信息感知技术等在线分享报告,展开探讨。经征求报告嘉宾意见,部分报告视频回放详情见下表:报告题目报告嘉宾单位 职称回放链接土壤中农药和抗生素多残留快速检测技术贺泽英农业农村部环境保护科研监测所 研究员—农田土壤中有机污染物的检测技术杨丽莉江苏省环境监测中心 副主任【视频回看】高标准农田建设 土壤质量调查、检测与评价刘桀佳中国冶金地质总局第三地质中心实验室 总工程师【视频回看】基于近红外光谱的土壤信息感知技术与装备创新李民赞中国农业大学 教授【视频回看】报告一:《土壤中农药和抗生素残留快速检测技术》报告二:《农田土壤中有机污染物的检测技术》(点击图片回看)报告三:《高标准农田建设 土壤质量调查、检测与评价》(点击图片回看)报告四:《基于近红外光谱的土壤信息感知技术与装备创新》(点击图片回看)附:为加强土壤环境监测检测、助力第三次全国土壤普查工作,仪器信息网3i讲堂拟于5月9日-10日举办“第四届土壤检测技术与应用”网络会议。报名点击:“第四届土壤检测技术与应用”网络会议
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.27.Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.
  • 杭州城郊农田重金属污染严重 农产品农残检出率51.3%
    据中国之声《央广新闻》报道,近日浙江省政协发布了《关于浙江省食品药品安全情况的调研报告》。报告从监管体制的缺陷,到食品药品安全问题的各种表现,对浙江省"食品药品安全"问题,进行了一次"大梳理"。公布的很多调查数据令人触目惊心。  此次调查从2010年4月开始,一直到6月结束,由浙江省政协副主席姚克等人成立调研组,对全省各地进行实地调查,从农产品种植、土地面积到工业“三废”和城市生活污染物排放及水资源污染等方面进行全面调查。  调查组专门对浙江北部、中部、东部236.5万公顷农用地调查,调查数据真有点触目惊心,不适合种植绿色农作物的农用地面积为47.2万公顷,占20%,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。  调查还发现工业“三废”及城市生活污染物排放引起重金属污染农田,杭州城郊重金属对土壤的污染,主要是人为污染,会直接威胁百姓生命健康。  除水资源遭污染,影响水产品安全外,人为给鱼虾苗虫使用大量违禁药品也导致流通环节的水产品质量合格率下降。  除水产品,药品残留严重的还有农产品。研究表明,浙江省农产品中违规使用剧毒农药的现象还大量存在。在对全省19个县市农产品农药残留进行评估时,样品农药检出率高达51.3%,超标率为11.54%。此外,还有许多农药尚无法检测出其中成份。
  • 河北省质量检验协会发布团体标准《农田土壤地膜残留量监测技术规范》征求意见稿
    各有关单位、有关专家:根据河北省质量检验协会《河北省质量检验协会2024年第一批团体标准立项的通知》部署,由河北省产品质量监督检验研究院主要起草的本协会团体标准《农田土壤地膜残留量监测技术规范》目前已完成征求意见稿及编制说明,现面向各界广泛征求意见。请贵单位组织有关技术人员讨论标准征求意见稿,提出修改意见,填写征求意见表,并于2024年5月20日前将意见以电子邮件或纸制文件形式反馈到河北省产品质量监督检验研究院,逾期未回复意见的按无意见处理。联系人:尚圆圆联系电话:0311-83895786邮寄地址:河北省石家庄市鹿泉区上庄镇上庄大街1号5栋河北省质量检验协会2024年5月5日关于征求河北省质量检验协会团体标准《农田土壤地膜残留量监测技术规范》(征求意见稿)意见的通知.pdf1.标准文本 农田土壤地膜残留量检测技术规范(征求意见稿)--2024.3.19.pdf2.编制说明-《农田土壤地膜残留量监测技术规范》编制说明-征求意见稿20240319.pdf
  • 辽宁出入境检验检疫协会关于《农田土壤线虫多样性检测技术规范》等4项团体标准的发布公告
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》和《辽宁出入境检验检疫协会团体标准管理办法(修订版)》相关文件要求,农田土壤线虫多样性监测技术规范》(T/LNIQA 007-2023)、《农用地土壤重金属钝化微生物菌剂》(T/LNIQA 008-2023)、《冷链货物外包装消毒作业规程》(T/LNIQA 009-2023)、《富硒食品中甲基硒代半胱氨酸和硒代蛋氨酸含量的测定》(T/LNIQA 010-2023)4项团体标准报批材料齐全,准于2023年3月6日发布,自2023年3月6日起实施,现予以公告。辽宁出入境检验检疫协会2023年3月6日关于《农田土壤线虫多样性检测技术规范》等4项团体标准的发布公告.pdf
  • 广州农业局:垃圾菜土壤镉超标220%
    广州农业局公布番禺金山村菜地土壤检测结果垃圾菜土壤镉超标220%  广州番禺金山村菜地土壤的重金属官方检测结果昨天出来了,两个样本的镉分别超标0 .59毫克/千克和0 .659毫克/千克,合百分比大约为197%和220%,此外还有一个样本的铬微超。专家表示,镉含量过高,需采取修复技术,广东省政府参事王则楚表示,每个监管环节的政府部门都需要“打屁股”。  两个样本均超标  广州市农业局昨天发布土壤的检测报告,按国家《土壤环境质量标准》二级标准评价,2份土壤样本中,一份样本镉含量超标0 .59毫克/千克 另一份镉含量超标0 .659毫克/千克,铬含量超标1毫克/千克。  根据《土壤环境质量标准》二级标准评价,镉和铬的重金属含量限值根据PH值的不同而不同。如果pH值小于7.5(广东的土壤基本在这一范围之内),镉的限值是0.30毫克/千克,铬的限值为200毫克/千克。换算成百分比,镉的两个样本分别超标197%和220%。而铬超标为0.5%。  广州市农业局表示,将加强对金山村及其周边区域的农产品和农业生产环境监测检测 着手根据农田受污染情况,制定金山村受污染农田的治理和栽种指导意见,指导农民科学调整作物结构,采取适宜的栽培方法对重金属超标的农田进行修复和治理。  警方现场维持治安  村民表示,昨天金山村一共去了四拨领导,从村一直到区,村委的领导基本就没有离开过农田。由于此前村民存在继续使用存量垃圾肥的情况,番禺区政府已要求封存和清理,加上蔬菜卖不出去,引起农民的反弹,报复爆料人。  昨天公安部门到一线维护治安,同时还有农业部门的领导以及技术人员对村民进行宣传教育,随后村民意识到垃圾肥的危害。由于舍不得这些花钱买来的垃圾肥,村民自行对垃圾肥中的废电池和玻璃瓶等进行分类。但专家认为这些垃圾肥是绝对不能再用的。  广州市农业局表示,将进一步加强对农民的指导和培训,引导农民科学合理使用肥料,加大农业投入品监管力度,维护农业生产安全,同时加强与有关部门的沟通协作,防止未经科学处理、不符合《城镇垃圾农用控制标准》的生活垃圾流入和污染农田。  追问  镉超标了怎么办?  华农专家:修复一亩地要一两万元  专长于土壤污染防治的华南农业大学教授吴启堂表示,从这个检测结果来看,镉的含量有点高,如果种水稻和苋菜等就会出现超标情况,需要采取技术手段进行修复。铬本身难以被植物吸收,加上只有微量超标,因而基本不会对农作物的安全性产生影响。吴启堂说,目前这个报告还不够详细,需要对土壤进行更全面详细的检测,看还有没有其他物质超标,如果只有镉超标则可以采取技术手段进行修复。“按照这个数值来看,一亩地可能需要一两万块钱。”  土壤镉超标 菜还能吃吗?  专家:只要蔬菜检测没超标就可以吃  土壤重金属超标,蔬菜检测没超标,那这块土地上还能种蔬菜吗?种出来的菜还能吃吗?  对此,农业部一相关单位不愿透露姓名的专家表示,客观地讲,土壤里面的重金属含量是该重金属在土壤内的总量,包括了各种形态,而很多形态是不能被植物所吸收的。植物只会吸收少量的呈离子状态的重金属,土壤内的重金属含量超过标准多少,是一个参考值,提醒污染的程度,代表风险的程度。所以,其所种植的蔬菜只要检测没有超标,就是可以安全食用的。  但也有专家对此持有不同观点,毕竟重金属还是超出了标准要求,既然超标了就不能再种,可能还有很多风险是现在的科技水平不能检测出来的,不能让人们承受食品安全的风险。  追责  王则楚:每个监管环节都要打屁股  “垃圾是农民自己买回来的,应该由农民自己负主要责任。”“这个事例有点特殊,垃圾是来自广州之外的顺德,所以监管难度会大一点。”对于责任问题,存在不同的声音,但王则楚认为,农民是受害者,每个相关的政府监管部门都要问责。  王则楚说,这不是农民自己刨来的垃圾,而是一个经营活动。首先,垃圾填埋场有没有按照规矩来处理垃圾?其次,经营者有没有资质处理和出售这些垃圾作为肥料?市场的监管体现在哪里?继而到农民在用垃圾做肥料了,监管部门又在哪里?“农业局你不下田要农业局干什么?”王则楚说,说垃圾来自广州市外,监管难度大更是胡扯。“外地来的更要严格监管啊,一个网友,一个记者下到田里就知道不行了,农业局环保局下田去看看不就懂了吗?”王则楚说,这一事件从源头一直到农田的监管,每个部门都有责任,都需要问责,都需要打屁股。  N个部门没管住一堆垃圾肥  对于垃圾堆肥问题,从国务院一直到广州市都有明文规定。发文部门涉及环保、城建、农业、科技等,甚至还有联合发文的,但城市生活垃圾却还是出现在番禺金山村的农田里。  建设部发布的《城市生活垃圾管理办法》从一开始就对城市生活垃圾有着非常严格的要求:“任何单位和个人不得任意处置城市生活垃圾。”通过审批取得许可证的企业还有控制污染和突发事件的预案。《广东省固体废物污染环境防治条例》也要求:“未经许可,不得擅自处理严控废物。”  但从目前查明的情况来看,顺德北滘垃圾填埋场将垃圾提供给了一家没有处理资质仅有工商登记的企业。  此外,从国家部委发布的文件来看,对垃圾堆肥是鼓励的。建设部、国家环境保护总局、科学技术部2000年就发布了《城市生活垃圾处理及污染防治技术政策》,表示:“鼓励在垃圾分类收集的基础上进行高温堆肥处理。”并对堆肥技术做了详细的技术指引,要求“堆肥产品应符合《城镇垃圾农用控制标准》、《城市生活垃圾堆肥处理厂技术评价指标》及《粪便无害化卫生标准》有关规定,加强堆肥产品中重金属的检测和控制。”去年,《国务院批转住房城乡建设部等部门关于进一步加强城市生活垃圾处理工作意见的通知》也表示:“加强资源利用。……生物处理等生活垃圾资源化利用方式。”  多个文件同时要求,垃圾堆肥要谨慎。《建设部关于加强城镇生活垃圾处理场站建设运营监管的意见》要求:“严格审查、慎重选择垃圾处理场站的技术、工艺和设备,防止造成二次污染。”并要求环境卫生主管部门对堆肥工艺“等关键技术应严格审查”。建设部2010年“关于印发《生活垃圾处理技术指南》的通知”要求:“对于生活垃圾混合收集的地区,应审慎采用生物处理技术。”  然而,兴顺公司还是顺利地将顺德没有经过处理的垃圾直接卖给了广州番禺的农民。根据菜农的说法,这一做法已经存在好几年。  而1989年就颁布的《城镇垃圾农用控制标准》实际上是垃圾肥的最后一道防线。其不但规定了垃圾肥的组分以及重金属含量的要求,同时也规定:“农业、环卫和环保部门,必须对城镇垃圾农用的土壤、作物进行长期定点监测,农业部门建立监测点,环卫部门提供合乎标准化的城镇垃圾,环保部门进行有效的监督。”但这最后一道防线一直没有发现垃圾肥的违规使用。
  • 文献分享丨灌溉绿洲农业生态系统中土壤呼吸CO2及其Δ13C值随时间变化的测量策略
    土壤呼吸中13C的天然丰度可以为研究土壤-植物大气圈系统中的碳动力学提供有力的工具,并对大气δ13C产生很大影响,因为它是进入大气的最大CO2通量之一。大气δ13C可以进一步反映陆地生态系统的分馏,为生物圈-大气CO2交换提供有价值的示踪剂。此外,使用稳定同位素13C作为示踪剂是划分土壤呼吸成分的极好方法,因为它可以在对土壤环境干扰最小的情况下识别释放的CO2的来源。如果由于缺乏δs数据而导致陆地呼吸的同位素组成参数化不正确,基于呼吸过程中陆地同位素分馏常数的生态系统和全球碳循环模型可能会给出不正确的结果。在现有的δs研究中,最常用的方法是使用静态封闭土壤室,在选定的时间间隔从中收集空气样本,并通过同位素比质谱仪测定进行后分析。在这些实验中,样品采集的频率固有地受到烧瓶采集和离线质谱分析所需的时间和精力的限制。因此,最佳测量时间对于获得日、月或年平均δs非常重要。 基于此,中国科学院地理科学与自然资源研究所温学发等研究人员采用非稳态条件下在线连续多通道双循环观测系统,在中国西北的灌溉玉米生态系统中进行了Rs和δs的原位连续测量。研究过程中,基于连续和高频(1Hz)测量,研究Rs和δs在日、月和季节时间尺度上的最佳测量时间,量化Rs和Δs的最佳测量频率,以在季节时间尺度下达到一定的准确度(±10%、±20%或±30%)。从而评估生长季节土壤呼吸CO2(Rs)及其δ13C(δs)值以及土壤温度(ST)和土壤含水量(SWC)的最佳测量时间和频率。 研究发现,尽管在生长季节,Rs和δs通常随着非生物和生物因素的变化而表现出明显的日变化和季节变化,但在9:00–10:00或此时(如9:00–11:00)的窗口中测得的Rs和Δs通常与日平均值没有显著差异。因此,如果研究人员无法直接测量昼夜模式,建议将这些时间尺度作为气候和植物类型相似地区的最佳测量时间。这项研究的结果为未来在其他灌溉农业生态系统中使用非连续测量提供了指导,可用于选择最佳测量时间并在保证一定精度的同时降低测量频率。试验方案及设备 下图是整套系统的示意图。整个方案由1)分析模块;2)采样模块;3)控制模块和4)校准模块构成。整体采用多通道双循环的设计思路,实现待测气体既能快速周转,又能互不干扰,并且将死体积降至最低水平。下图中蓝色线条代表的气路循环为整套系统的大循环,气体在呼吸室和控制系统内快速循环,能实时反馈气体浓度的变化。黄色线条代表的气路循环为小循环,从大循环中取分析仪需要的气体流量进行分析检测,测试完成的气体再次送回循环气路。原位多通道双循环观测系统示意图(std1, std2, std3:标准气体;MV:3通电磁阀;OF:溢流;V:流量控制阀;P:KNF泵;F:过滤器) 1、降低每一个呼吸室的关闭速度,最大限度减少呼吸室盖紧过程因空气下压产生的土壤呼吸测量的不确定性,保证数据测量结果的稳定性和准确性。 2、缩短每个循环周期的测量时间,尤其有利于土壤呼吸通量较低需要延长单个呼吸室测量时间,以及单次循环土壤呼吸室较多的情况。 3、有利于提高流速较慢分析仪的响应时间。 4、双泵交替工作有利于延长泵的使用寿命。 土壤空间异质性强,即便是同一区块相同土壤类型的土壤呼吸,其通量差异性也非常大。科学家在进行土壤呼吸研究时,通常需要在空间、时间和气体种类上进行多维度的组合研究,才能更好地解释土壤呼吸的内在机制。基于此,普瑞亿科研发了PRI-8600D 多通道土壤呼吸(群落光合)测量系统,能为上述研究提供时间顺序上、不同位点土壤呼吸循环测量解决方案。 PRI-8600D双循环复路系统是普瑞亿科潜心研发多年的土壤呼吸测量多路系统,具有发明专利(专利号:ZL201710784488.5),并在科技部重点研发计划项目支持下,于2023年完成最新一轮的升级。升级完成后,相对其他厂家的同类产品具有以下特点和优势: 1)具有双循环气路设计:设有奇数组和偶数组两个分组,每组均包含1个一体化的汇流排和1一个循环泵,并通过电磁阀组连接在一起交替为分析仪主机提供气源。两组复路系统交替工作,在前一个呼吸室测量结束前,次一个呼吸室开始工作,并在前一个呼吸室测量结束时,切入第二个呼吸室进行测量。 2)升级高度集成的采集汇流排、双路双循环汇流排、标样汇流排,极大的减少了分析气路的“死体积”;而模块化的设计也大大降低了气路泄漏的风险,保证了测量结果稳定可靠。 3)升级每个通道内置的过滤器材质为SUS304,提高了整机的气密性和稳定性,保障了整套系统能靠运行。 4)升级工业级电控逻辑板,即使在极端的工况下,设备也能稳定可靠的运行。MODBUS RTU的RS485通讯为客户大范围远距离应用提供了可能。 5)具有三路标准气接口,这可以实现高校准频率需要的分析仪时间在线校准,比如光谱同位素分析仪。 6)升级的气电混装定制化接头和线缆,设备更简洁/美观和可靠;同时,实现一个较小尺寸的主机箱连接不少于32个土壤呼吸室。 7)标配一个RS-232、一个RS-485 通讯接口,为一个复路系统驳接多个气体分析仪提供可能(可根据客户应用,拓展RS-232、RS-485和TTL通讯)。 8)具有WIFI接口,可以连接触控设备进行测量参数配置;具有双网口,可以进行数据自动上传和远程数据跟踪。 9)可以同时接驳土壤呼吸明室/土壤呼吸暗室/大容量群落光合室等。 10)若只需要CO2 H2O测量,分析仪可以内嵌到一个主机箱内。 8600-2012 全自动土壤呼吸测量暗室具有发明专利(专利号:ZL202021501088.2),该呼吸室升级了气电混装的线缆结构,升级土壤呼吸的防水等级至IP66,升级呼吸室多层采样装置,设备简洁、美观、可靠。 8600-2012 具有动压平衡装置,通过科学的设计,既能保证呼吸室内大气压于外界大气压的平衡,也能在一定限度内消除外界风速对呼吸室内气体的扰动,保证测量结果的准确性。配合PRI-8600D双循环,8600-2012关闭呼吸室的速率可以很低,最大限度消除其对土壤呼吸的扰动。 8600-2012C 是全自动土壤呼吸明室,呼吸室上部没有任何遮挡,考虑到植物生长高度,透明呼吸室高度可以在一定范围内特殊定制。兼容性好,可连接不同的同位素或气体浓度分析仪;双循环气路设计,能提升不同通道之间的切换效率;定制化程度高,通道数量、气路长度、呼吸室种类;标配3路标准气切换模块,可在线进行系统标定;专利的动压平衡装置,能提升通量测量精度和准度。PRI-8600D 多通道土壤呼吸(群落光合)测量系统主要包含多路复路系统主控箱,双循环泵,触屏PAD;可选配 CO2 H2O 分析仪,高精度 CO2 CH4 N2O 气体浓度分析仪,高精度 CO2 CH4 N2O 同位素分析仪;可选各种呼吸室,如土壤呼吸室、群光光合箱,明暗交替呼吸室/箱(含动压平衡装置),空气温度、土壤温度和土壤湿度传感器等;可选配不同长度的气路管线,标配15 m,可以定制长度至100 m。装置,能提升通量测量精度和准度。 PRI-8600D 多通道土壤呼吸(群落光合)测量系统可以满足不同科学研究需要,适用于生态学、农学、林学、肥料学、冻土、地震学研究,以及垃圾掩埋等领域。
  • 中国尝试“清洗”重金属污染农田
    中国西北部有“铜都”之称的甘肃省白银市,曾因被国家强制关停众多重金属污染严重的建设项目而备受关注。目前,这座城市的污染“重灾区”东大沟流域正在经历一场土壤与环境的“大清洗”。  在紧临东大沟的四龙镇民勤村,几台挖掘机、推土机在一大片废弃的农田中紧张施工着,将地表下的土壤粉碎后再压平。“这是白银市实施的农田重金属污染治理示范工程。”白银市环境保护局总工程师张琼告诉记者。  东大沟最早是一条排洪渠,后来一度成了重金属企业白银公司的排污道。由于气候干旱,从上世纪60年代起,沿沟村民就用沟里的污水灌溉,导致农田土壤和作物籽粒中重金属严重超标,最终不得不废弃。  2011年开始,白银市计划在五年内投资15亿元用于重金属污染防治,并在全国率先尝试开展对重金属污染农田的修复治理。  “城郊东大沟流域农田重金属污染治理示范工程”从5月起实施,项目总投资1116万元,其中中央专项治理资金1000万元。  然而,由于具有污染范围广、污染隐蔽、不可逆性等特点,重金属污染的治理工作并不容易。在土壤重金属污染治理中,物理方法费时费工,化学方法又容易造成二次污染,到目前为止还没有可借鉴的成熟经验。  “我们想找到一条既经济又实用的道路。”张琼告诉记者。  东大沟治理工程采用的是“化学淋洗-化学固定-生物质改性耦合”和“化学淋洗-土壤改良”两种方法。这两种技术都是要把约40厘米的土层粉碎后与药剂混合,然后用水淋洗,把重金属转换在水里再进行处理。这种方式虽然有效,但处理成本非常高。  除了化学方法外,在土壤改良过程中还加入牛羊粪等有机肥料,并在已改良过的土壤中试种了玉米、大豆等作物。参与项目的珠海市中科信息技术开发公司有关负责人告诉记者,他们选择了7种玉米种子种植在重金属污染的土地上面,目前长势基本达到预期。  东大沟工程将治理弃耕地65亩,而全市将治理的重金属污染严重农田为6688亩。  来自国土资源部的数据显示,中国每年仅因重金属污染而减产粮食1000多万吨,被重金属污染的粮食每年也多达1200万吨,合计经济损失至少200亿元。  2011年2月,国务院正式批复了《重金属污染综合防治“十二五”规划》,包括甘肃在内的14个省区被纳入重金属重点治理省区。  除了甘肃省,浙江省对重金属污染治理的投资将达28亿元。湖南省启动湘江流域重金属污染综合治理方案,计划投入资金595亿元。  白银市副市长齐永刚说,“十二五”期间,白银市将重点实施重金属废水、工业废渣、土壤污染治理和农村环境综合整治等工程,彻底解决重大环境安全隐患。
  • 农田重金属污染触目惊心 每年污染1200万吨粮食
    土壤毒祸  因矿产资源滥挖滥采造成的农田重金属污染,已经到了触目惊心的地步  2009年4月13日,云南阳宗海砷污染事件时隔十个月后的现场,厂区外黑色防渗漏的塑料布下被“封存”的土地。  阿月是一位就读于中央民族大学的少数民族姑娘,来自云南省红河州个旧市某村,刚上大一的她是村里第一个大学生,她说:“我能来北京上学,是很幸运的。”  谈及家乡,阿月情绪复杂。  云南个旧被称作“锡都”,占地1587平方公里,人口45.33万,锡的保有储量为90多万吨,占全国锡储量的三分之一,全球锡储量的六分之一。  在这里,所有的人都与锡紧密相关。  阿月的爷爷曾在锡矿工作30多年,阿月的爸爸是当地小有名气的锡艺工匠,阿月的哥哥在做锡工艺品进出口生意,阿月抚摸着陪伴她18年的小锡镯,它已经紧紧卡在阿月瘦削的手腕上。  锡,让这片土地变得热闹异常,随处可挖的锡矿让附近村民迅速富裕起来,出嫁的女儿身上,都会缀满沉甸甸的锡饰。当地人认为,锡是神灵赐予他们的珍宝。  但与锡相生相伴的,是砷,其化合物是砒霜的主要成分。  根据中科院地理科学与资源研究所环境修复研究中心的公开论文资料显示,在我国,砷作为锡的伴生矿由于利用价值不高,70%以上都成了被废弃的尾矿。截至2008年,我国至少有116.7万吨的砷被遗留在环境中,这就相当于百万吨的砒霜被散落在旷野中,任雨水冲刷,注入河流,渗进土壤……  于是,这片因锡而富裕的土地也在因砷而痛苦。  阿月的爷爷死于砷中毒引发的肺癌。阿月的三个伯伯也是老矿工,因同样的病症已先后去世,阿月的爸爸后来离开了锡矿,可是已经染上了严重的砷中毒,连劈柴的力气都没有,好在后来学了点手艺活,以维持生计。  从此,阿月的家乡被称为“癌症村”。这里的癌症病发率一度高达2%,接近全国平均水平的100倍,平均寿命不足50岁。  上世纪90年代起,中央和地方政府共同出面开展了整顿和治理工作,所有锡矿工人都要戴上防毒面具下井。但是,已经被污染的土地和地下水难以修复,沉重的历史并没有过去,受害的也不只是父辈。  阿月的哥哥视力很差,太阳下山了就看不清东西 阿月的姐姐身上有淡淡的毒斑,村里的很多年轻人都瘦弱无力,经常生病……  阿月的家里原来有十二亩地,种烟叶和柿子树,每年能有上万元的收入。“烟叶早就没了,谁敢抽‘砒霜烟’啊?柿子树上结的柿子都黄澄澄的,拨开了核儿都是黑的。妈妈原来最爱吃柿子,我这辈子都不会吃柿子了。”  这片曾经富饶的土地已经无法耕作,农民们没了生路,水和菜都要到几百里外的镇上买,入不敷出的生活让越来越多的人选择背井离乡。  记者问阿月,毕业了会回家乡工作吗?阿月沉默了很久,小声说:“我也不知道。”  痛苦  类似的案例不只是出现在云南个旧。  2001年,广西环江毛南族自治县遭遇了百年一遇的洪水,突如其来的天灾摧毁了家园,可是,更大的痛苦却在洪水之后。  洪水冲垮了上游废弃的尾砂坝,导致下游万余亩农田有害元素最高超标246倍,农作物基本绝收,临近的刁江100多公里河段鱼虾绝迹,沿河地区全部污染。直到2004年,仍有60%的农田寸草不生,成为荒漠,刁江下游的河池市长老乡多年来报名应征入伍的青年,竟没有一个能通过体检关。  曾有调研专家估算,“毒水”将经刁江进入珠江水系,整个珠三角都将因此遇难,污染会很快蔓延至百万亩土地,影响过亿人口,修复年限超过百年。  除了云南、广西,还有湖南、四川、贵州等重金属主产区,很多矿区周围都已经形成了日渐扩散的重金属污染土地。  国土资源部曾公开表示,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。而这些粮食足以每年多养活4000多万人,同样,如果这些粮食流入市场,后果将不堪设想。  掩盖  曾有一位从事土地污染研究多年的科学家告诉了记者一个意味深长的故事。  就在前几年,这位科学家受邀到某地检测土地重金属污染情况,实验结果出来后,科学家大为震惊,因为这块全国著名的粮食主产区污染情况已经严重到令人咂舌!科学家亲自将监测报告递交给当地的一位高级官员,这位官员在沉思良久后说道:“这个情况确实非常严重,我们也一直很重视,但是,我们目前无力治理,所以请不要告诉任何人我看过这份报告。”  记者通过多方搜集,找到了权威机构中科院地理科学与资源研究所环境修复研究中心的多篇学术论文,这些论文尚未在社会上公开披露。  根据论文资料显示,广东连南、广西南丹、湖南常宁、湖南常德、湖南郴州等地都存在着大量砷渣废弃,导致矿区周围农作物含砷量超过国家标准几百倍的情况。  湘江,全长856公里,流域面积9.46万平方公里。这条灌溉了半个湖南的“母亲河”如今却因为接纳了大量工业废水,使河水中的砷、镉、铅的总量占全省排放总量的90%以上。  课题研究组还做了农作物重金属含量实验,实验结果证明,从衡阳到长沙段的湘江中下游沿岸,蔬菜中的砷、镉、镍、铅含量与国家《食品中污染物限量》标准比较,超标率分别为95.8%、68.8%、10.4%和95.8%。而这些“超标农作物”不仅被当地农户每天食用,还被运送到更多的乡镇和城市……  论文中还提及,水田土壤中的砷、锌的含量还要高于菜地。据科研专家介绍,由于水对重金属的吸附能力更强,水稻等水田农作物的重金属含量会更高。  2008年,湘江中下游农田土壤和蔬菜重金属污染调查实验结果全部出炉,但是仅作为科研成果在学术刊物上发表,并未能在社会上公开以得到足够的重视。  据湖南省政府门户网站消息,2010年,国家湘江流域重金属污染治理重要工程立项,并于6月投资4.6亿元建设基础设施,9月获得国家环保部专项治理资金的支持,“湘江再见清水指日可待”。  但据科研学者介绍,按照调查论文中所提及的污染区域计算,湘江流域重金属污染治理至少需要百亿投资和十年以上的恢复周期。  那么,这些“污染重灾区”的粮食是否流入市场,严重影响粮食安全呢?  2010年11月,记者致电湖南国家粮食质量监测中心,接线人员称,粮食重金属含量检测对设备和技术人员的要求都极高,目前国内能做出权威检测的机构很少,他们目前还没有相关检测项目,因此不能表态。  今年2月16日,记者再次致电湖南省粮油产品质量监测站,该站负责人员称,从仪器设备和技术水平上而言该站可以做粮食重金属含量的相关检测,但是,“我们单位没有做过湖南任何地区的粮食重金属含量的检测,所以没有数据。”  凶手  大规模的土壤重金属污染,究竟是如何逐渐形成的?  曾对矿业市场做过多年深度调研的中国社会科学院工业经济研究所研究员罗仲伟认为,自上世纪80年代中期以来,国内实行的是“大矿大开,小矿放开,有水快流”的政策。  “其结果就是地方政府拥有中小矿产资源开发的审批权,‘一哄而上’全民办矿的局面就此形成。” 罗仲伟认为,正是因为采矿权的混乱导致了我国矿业多年来一直存在着集中度不足,开采工艺落后、统筹规划欠缺的“三大短板”。  据了解,在我国已探明的矿产储量中,共生伴生矿床的比重占80%以上,可是,只有2%的矿山综合利用率在70%以上,75%的矿产综合利用率不到2.5%,也就是说,我国绝大多数矿山都只是为了开发极少数矿石,将更多的矿产资源破坏和废弃了。  有媒体曾报道,在广西环江,绝大多数矿山都没有石排场和尾矿库,大量废石和尾矿就堆放在山上,这不仅占用了本可以利用的耕地,还容易在暴雨来临时形成泥石流,最可怕的是,尾矿中的有害成分在伴随雨水逐渐扩散到更大的范围,危害在时刻发生着。  另一个“定时炸弹”是裸露堆放的矿渣。  在云南个旧,冶炼厂、电镀厂非常密集,矿石在这里经过加工就可以身价倍增,同时,大量的矿渣被生产出来,废弃在矿山和矿厂附近。  据了解,在云南个旧老厂矿田竹叶山矿段,十几万吨砷渣已经裸露堆放在旷野里几十年,为了阻挡砷渣对农田的污染,农民们在砷渣周围堆砌了“土坝”,但是,砷还是通过雨水进入了地下水系统,据检测,该矿段附近的农作物含砷量超标100多倍。  而砷渣还只是重金属污染“五毒”之一,其他的还有汞、镉、铅、铬等重金属废渣。资料显示,截至2005年,我国累计产生铬渣600多万吨,其中仅有200多万吨得到处置,“五渣”总数更是难以计算。  另一个污染的来源则是化工企业排放的污水。  除此之外,农户们过度使用化肥也能使土壤重金属含量急速攀高。  救赎  在湖南省郴州市苏仙区邓家塘乡,绿油油的草长满了整个农田,乍看之下还以为是青色的水稻。在这块已经被重金属严重污染、无法农耕的土地上,被称作“土壤清洁工”的蜈蚣草却生长得郁郁葱葱。  中科院地理科学与资源研究所环境修复研究中心主任陈同斌介绍说,蜈蚣草吸收土壤中砷的能力相当于普通植物的20万倍,通过蜈蚣草的吸附、收割,三至五年内,这片土地就可以“恢复健康”,在郴州已经有修复完工的土地恢复了耕作。  现在,蜈蚣草已经在湖南郴州、云南个旧、广西环江扎下了根,尤其是在广西环江,蜈蚣草种植面积已经达到了1000亩~2000亩,成为世界上最大面积的砷污染农田修复项目。  蜈蚣草的“同盟战友”还有东南景天,这是在广东种植的专门修复镉中毒农田的植物,现在东南景天在全国也有上百亩的试验基地。  在西北,300多亩盐碱土地上种植了被称作“吸毒解毒高手”的竹柳,它不仅耐寒、耐旱、耐涝、抗盐碱,还可以吸收城市污水,消除氮磷钾,分解土壤中的重金属成分。  陈同斌介绍说,植物修复法更接近自然生态,从经济投入、修复周期和避免二次污染等多方面考虑都是目前的最佳选择。  但是,植物修复法的进行却并不顺利,以云南个旧为例,目前治理修复面积还不到100亩,而污染面积却在20万亩以上。  杯水车薪。  虽然植物修复法已经非常“实惠”,修复一吨污染土的成本已经低于200元,但是修复面积的庞大使总投入数额惊人。陈同斌举例说,广西环江受污染土地达万亩,如果要全部修复,总投资至少需要几千万到1亿元,这对当地财政来说是个不小的数目。  在广西河池市,蜈蚣草就与桑叶或甘蔗、苎麻等经济作物间作,使污染土地修复的同时,农民也有较好的经济收入。  但陈同斌仍然强调,并不是所有的修复地区都能够实现经济利益的兼顾,土壤修复还是需要政府的引导和补贴,否则,修复规模就很难扩大。  另外,种苗繁育也并不容易。目前发现的超富集植物一般都是野生植物,其种苗繁育存在较大的技术难度,实现大规模种苗就更加困难,所以现今使用的是先大棚育种再移植到修复区的办法,这无疑会增加成本和操作难度。  而且,类似蜈蚣草的砷超富集植物多集中在我国淮河以南,而在淮河以北则很少发现,这使植物修复法的影响范围大大受限。  对于当地村民来说,最为痛苦的则是三至五年的修复周期过于漫长,他们守在不能耕作的试验田旁,除了等待,他们毫无办法。  更为残酷的现实是,很多污染地区都等不及采用植物修复法,而选择了“客土法”。  “客土法”也称作物理修复法,简而言之就是将被污染土壤深埋到水稻根系不能达到的25厘米以下,用这种方法修复一亩污染土地就要花费上百万元,而且污染土壤仍然存在,甚至会继续扩大。但是,因为修复方法简单,花费时间少,这种饮鸩止渴的方法被广泛应用。  求解  “只有掐紧了准入、统一了管理、明确了监督,才能够合理开采矿产资源,将土壤重金属污染问题遏制住。”罗仲伟的观点也得到了陈同斌的认可,“矿产不合理开采是导致土壤重金属污染的最重要的原因,管住了开矿,就管住了土壤重金属污染的最大问题。”  罗仲伟认为,我国矿业管理立法相对薄弱,多方插手、政出多门是导致权利、责任归属不清的重要原因 其次,我国没有形成统一的矿业管理体制。在管理方面,我国实行中央为主、地方为辅的权益分配。但是,由于中央和地方各级政府对资源的关注点不同,利益取舍不同,“上有政策、下有对策”的情况时有发生,甚至在法律法规的执行上都会有偏差和扭曲。  罗仲伟认为,应该取消地方政府的矿业审批权,明令禁止地方政府参股矿业企业,建立矿业开采的利益协调机制。  另外,在矿业监督上,罗仲伟建议,成立专门的政府主管部门对矿业实行监督迫在眉睫。  “虽然矿业管理涉及到诸多部门和多方利益,调整和改革面临困境,但是,生命的代价也迫使所有相关方都不得不变,国家政策和专项治理也在不断加强,破解僵局并非难事。”罗仲伟表示乐观。  在前不久公布的2010年全国环保专项行动成果中,截至9月30日,共排查重金属排放企业11510家,取缔关闭584家,在14个省(区、市)确定了148个重金属重点监管区域,19个省(区、市)确定了1149家重点监管企业,其整治力度和监管效应都是前所未有的。  2011年,由环保部牵头的《重金属污染综合防治规划(2010—2015年)》编制工作也已基本完成,公布时间指日可待。由国家设立的“重金属污染防治专项资金”也已经筹集完毕,增加财政投入将为“无力的救赎”直接输血。  所有人都在期待着,这个圈住了土地、圈住了生命、圈住了全人类的土壤僵局能够寻求到真正的破解之策。
  • 凝聚创新力,守护农田环境——HT8700大气氨激光开路分析仪助力农田氨气排放监测
    引言在全球碳中和的浪潮下,农田环境的气体排放问题引起了广泛关注。氨气作为农田排放的主要气体之一,其监测对于农业的可持续发展和环境保护至关重要。宁波海尔欣光电科技有限公司推出的HT8700大气氨激光开路分析仪,以其光谱技术的高度精准性和学术应用价值,为农田氨气排放监测提供了新的解决方案。农田排放气体检测的重要性与必要性农田作为重要的碳循环环境,其气体排放直接关系到碳平衡和生态平衡。而其中的氨气排放不仅会影响空气质量,还可能导致氮肥的浪费和土壤污染。因此,精准监测农田中的氨气排放变得至关重要。合理的氨气排放监测不仅有助于农业的可持续发展,也能减少对环境的不良影响,助推碳中和目标的实现。农田氨气排放数据分析通过HT8700大气氨激光开路分析仪,我们能够获取农田氨气排放的精确数据,为进一步的学术研究提供了有力支持。这些数据不仅可以帮助我们更深入地了解农田氨气的季节性和地域性变化,还能够揭示不同施肥策略对氨气排放的影响。这些数据的分析和研究,将为农业生态环境的优化管理提供科学依据。HT8700大气氨激光开路分析仪的特点HT8700大气氨激光开路分析仪凭借其技术特点在学术应用中脱颖而出:高精度测量: 基于光谱技术,HT8700能够实现高精度的氨气浓度测量,确保数据的准确性和可靠性。多维数据采集: HT8700能够实时监测多个维度的氨气排放数据,为研究人员提供更全面的信息。实时数据传输: 设备支持实时数据传输,为学术研究提供了及时的数据支持。助力碳中和,共建美丽乡村随着碳中和目标的不断推进,农业的绿色可持续发展愈发受到关注。HT8700大气氨激光开路分析仪的推出,无疑为农田氨气排放监测注入了新的活力。通过精准监测,农民可以科学施肥,降低氨气排放,助力实现美丽乡村的愿景。宁波海尔欣光电科技有限公司的HT8700大气氨激光开路分析仪,以其精准、高效的特点,成为农田氨气排放监测的得力工具。在环境保护和碳中和的双重压力下,这款仪器不仅体现了技术的创新,更彰显了企业的社会责任。愿HT8700在未来的道路上,为农田环境守护贡献更大的力量,为美好的农村生活贡献一份坚实的保障。
  • 江苏海门:打造数字化高标准农田,为乡村振兴蓄势赋能
    耕地,是人类社会赖以生存的基本资源和条件,习总书记曾多次强调要像保护大熊猫一样保护耕地,由此可见,高标准农田建设的重要性。为建设更高标准和质量的高标准农田,农业农村部农田建设管理司司长郭永田说,高标准农田建设要做到数量和质量并重,要聚焦永久基本农田、粮食生产功能区和粮食生产主产区等重点区域,一步步优化布局,夯实粮食安全基础。 高标准农田,三分靠建设,七分靠管护。在此政策基础上,托普云农深入发挥了自身数字农业建设优势,提出“1+1+N”的高标农田建设方案,打造了集“土壤健康、高效节水、绿色农田、环境生态”于一体的高标农田数字化决策综合平台,提高了高标农田的综合生产能力和抵抗自然能力。 江苏海门,素有“江海门户”之称,近年来,海门区坚持规模化、产业化、科技化、品牌化“四化并重”的方针,推动农业迈向高质量发展之路,创造了一个又一个农耕神话和海门特色。对于粮食产业发展而言,海门区政府实施高标准农田建设计划,扩大粮食种植面积,提高粮食产量。为此,托普云农将物联网、大数据等信息技术与农业生产、经营管理等领域深度融合,推广使用高端智能化农机装备,在海门正余镇打造了首个“无人农场”高标准农田项目。 在海门正余镇的高标准农田里,农田作物的生长状况监控预警主要是依靠智能设备来实现的。智能设备检测土壤状况;智能灌溉系统和水肥一体化设施改善土壤生态;智能气象站、测报灯、孢子捕捉仪等对农田环境进行实时监测和预警,用数字化手段高效推进高标准农田的绿色、安全、优质的管护。此外,智能农机监管系统、质量安全追溯系统、专家系统、知识库等手段可以实现有据可查、全程监控、精准管理、资源共享的高标准农田。 而这些所有的应用都是围绕着唯一的农业大数据中心进行运作,为其提供精确详细的数据支撑。通过数字化决策平台,就可以直观展示农田的灌溉情况、耕地面积、设备分布情况及环境监测等数据信息。 海门的“无人农场”高标建设通过整合现代农艺和信息技术,多设备协同作业,实现了农业生产环境的智能感知、分析、决策、预警以及农业生产耕、种、管、收各环节的智能化、无人化、精准化、可视化。目前,新岸村1000亩稻麦种植基地和正基村5000平方米玻璃温室大棚已经建成,且农业生产成效显著。 随着高标准农田的推进,正余镇已经具备了农机从传统人工操作向无人操作转变的基础,有效提升了自身的农业现代化水平,促进了农业增产、农民增收和农村经济繁荣,对海门地区的数字化高标准农田建设的示范推广有着重要意义,为乡村振兴、农业现代化发展蓄势赋能。
  • 2013全国农田污染检测与修复学术研讨会预通知
    我国农田污染的危害正日益受到相关部门、专家学者及大众的广泛关注。全国土壤污染状况调查结果显示,全国受污染的土壤总面积已占耕地面积的20%左右,超过2000万公顷。为了更好地了解我国农田污染情况,解决农田污染存在的问题,加快相关检测仪器的研发应用,交流农田污染检测、修复的新技术、新成果,中国仪器仪表行业协会、中国仪器仪表学会环境与安全检测仪器分会将于2013年12月在北京召开&ldquo 2013全国农田污染检测与修复学术研讨会&rdquo ,诚邀有关部门领导、专家、科技工作者和企业代表,研讨农田污染监测预警及修复技术,交流研究成果,保障农产品产地和产品质量安全,现将会议有关事宜通知如下:  一、会议组织  主办单位: 中国仪器仪表行业协会  中国仪器仪表学会环境与安全检测仪器分会  承办单位: 农业工程杂志社  二、会议主题及内容  1.会议主题  控制农田污染 维护农业安全  2.会议内容  (1)农田污染的现状、污染源的排查与监测及对农产品的作用机理和破坏效应   (2)农田污染源分析(有机物污染、重金属污染、农药污染、复合污染等)   (3)设施种植、设施养殖区土壤污染现状及治理方法   (4)预测预警模型的建立、风险评价研究以及存在的问题   (5)农田环境污染控制、保护及立法体系   (6)农田环境污染分析、检测技术与装备   (7)农田污染诊断与风险评估   (8)农田污染修复过程、机理和技术(物理法修复、化学法修复、生物法修复和复合修复技术等)。  3.会议形式  研讨会采取专家专题报告、学术研讨、论文交流、信息发布和成果展示等多种形式进行。  三、参会人员  1. 政府机构:环保部、农业部、国土资源部等管理决策部门   2. 科研机构:大专院校、科研院所从事土壤、资源环境、仪器分析、食品、农产品、动物营养及疫病研究的教师、学生、科研人员及实验室管理人员   3. 省、市、县三级农业环境监测站(所),农业局、农委,农产品质量监管检测部门,国土资源管理部门   4. 科学仪器、检测试剂盒、修复治理材料及相关产品生产企业。  四、会议时间、地点  1. 会议时间:2013年12月18&mdash 21日(18日全天报到,21日早餐后散会)。  2. 会议地点:北京市(具体地点会前十天统一通知)。  五、会议费用  会务费:1500元/人(含会议费、资料费、餐费等),住宿统一安排,费用自理。  六、会议论文  征文对象:农田污染涉及面较广,凡研究内容包括农田污染源分析与排查、环境监测、食品安全、动植物营养分析、水处理、饲料检测、仪器研制与应用和修复治理等相关的专家学者、科技人员、大专院校师生、企业研发技术人员、管理人员等均可投稿。会议论文经评审入选后,安排大会交流,并择优在《农业工程》杂志发表。  论文要求:  (1)论文字数在3000~5000字,立意明确,层次分明 采用论文标准格式:中英文标题、摘要、关键词,正文、参考文献等项目齐全。并注明作者(包括作者简介)、单位、联系人及电话等信息。请登录《农业工程》杂志网站(www.d1ae.com)参阅撰稿要求及稿件格式。  (2)自觉遵守学术道德规范,无政治问题,确保其为本人原创,若涉及版权及其他问题,责任自负。  (3)文章内容需要提供图片、照片等素材的请注明来源及相关说明。  (4)论文提交截止时间:2013年12月5日。请作者于截止日期之前将论文全文以电子邮件等形式提交给会议组委会,来稿请务必注明&ldquo 2013全国农田污染检测与修复学术研讨会征文&rdquo 。  七、会议要求  为便于会务安排,请会议代表于2013年12月5日前将会议回执传真或E-mail至组委会。  农业工程杂志社  地 址:北京市德外北沙滩一号16信箱 邮编:100083  电话:010-64882380、64883625、13683189968、15010443039 传真:010-64882329、64870803  联系人:王艳红、常 蕊 E-mail:nygc_2011@163.com nygc2011@gmail.com  二〇一三年十一月一日  2013全国农田污染检测与修复学术研讨会参会回执 姓名 性别 民族 工作单位 职务/职称 联系地址 邮编 联系手机 电子信箱 是否需要安排单独住房或合住单住□合住□是否提交大会论文是□否□是否有大会交流报告是□否□备注
  • 18条入海河流水质连农田都无法灌溉
    国家海洋局监测显示78%入海河流水质在第Ⅳ类以下  国家海洋局最新发布了2011年第四季度海洋环境信息,所监测的37条入海河流断面水质状况显示,有29条入海河流水质在第Ⅳ类(人体不可直接接触用水)以下,比例高达78%,其中有18条入海河流水质连农田都无法灌溉。  据了解,依据《地表水环境质量标准》(GB3838-2002)评价,2011年第四季度,海洋部门对37条入海河流进行了监测,其中滦河等4条入海河流监测断面水质为第Ⅱ类 陡河等4条入海河流监测断面水质为第Ⅲ类,主要污染物为总磷和COD(化学需氧量) 闽江等5条入海河流监测断面水质为第Ⅳ类,主要污染物为总磷、石油类和重金属镉等 大沽夹河等6条入海河流监测断面水质为第Ⅴ类,主要污染物为重金属汞、石油类、COD和总磷 碧流河等18条入海河流监测断面水质为劣Ⅴ类,主要污染物为COD、总磷、氨氮、石油类和重金属汞。  据了解,依据《地表水环境质量标准》(GB3838-2002),地表水水域环境按功能高低依次划分为五类:Ⅰ类主要适用于源头水、国家自然保护区 Ⅱ类主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生物栖息地、鱼虾类产场、仔稚幼鱼的索饵场等 Ⅲ类主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、水产养殖区等渔业水域及游泳区 Ⅳ类主要适用于一般工业用水区及人体非直接接触的娱乐用水区 Ⅴ类主要适用于农业用水区及一般景观要求水域。而海洋局监测的37条入海河流中,就有18条入海河流水质在劣Ⅴ类,也就是说,这些入海河流的水质连农业用水都不符合要求,是在向海洋排放污水。  此外,2011年第四季度,海洋部门对部分沿海省(市、区)342个陆源入海排污口的排污状况实施了监测,监测评价结果表明,超标排污的入海排污口数量为154个,占监测排污口总数的45%。第四季度监测的入海排污口超标排放的总体情况较第三季度有所好转。  2011年第三季度部分沿海地区海水入侵和土壤盐渍化监测结果显示,渤海滨海地区海水入侵范围基本稳定,黄海、东海、南海滨海地区海水入侵呈加重趋势,其中浙江温州、福建福州及泉州湾监测区海水入侵程度和范围有所增加。广东潮州、揭阳、阳江海水入侵范围有所增加,海南三亚监测区个别站位氯度明显升高,是2010年同期监测值的3.8倍 各监测区土壤盐渍化范围基本稳定,个别监测区含盐量明显增加。第四季度部分入海河流监测断面水质状况序号河流名称水质类别主要污染物1滦河第Ⅱ类 2南渡江第Ⅱ类 3宣惠河第Ⅱ类 4盐田杯溪第Ⅱ类 5陡河第Ⅲ类总磷6晋江第Ⅲ类总磷、COD7九龙江第Ⅲ类总磷、COD8漳江第Ⅲ类总磷9大辽河第Ⅳ类总磷10戴河第Ⅳ类总磷、石油类11闽江第Ⅳ类镉、COD、总磷12漠阳江第Ⅳ类石油类13鸭绿江第Ⅳ类总磷14大沽夹河第Ⅴ类石油类、COD15东江北干流第Ⅴ类汞、COD16东溪第Ⅴ类总磷17黄冈河第Ⅴ类汞18榕江第Ⅴ类汞、石油类19乳山河第Ⅴ类汞、COD20碧流河劣Ⅴ类COD21潮白新河劣Ⅴ类总磷、COD、石油类22大凌河劣Ⅴ类COD、汞、铅23东江南支流劣Ⅴ类COD、汞、石油类24复州河劣Ⅴ类COD、石油类25傅疃河劣Ⅴ类COD、石油类、氨氮26蓟运河劣Ⅴ类总磷、COD、石油类27界河劣Ⅴ类石油类、氨氮、COD28练江劣Ⅴ类氨氮、COD、总磷29龙江劣Ⅴ类总磷、氨氮、汞30母猪河劣Ⅴ类COD、氨氮、汞31木兰溪劣Ⅴ类总磷、汞32深圳河劣Ⅴ类氨氮、总磷、石油类33同安东溪、西溪劣Ⅴ类总磷、COD、氨氮34小凌河劣Ⅴ类COD、氨氮35小青龙河劣Ⅴ类总磷、COD、氨氮36绣针河劣Ⅴ类总磷、COD、石油类37永定新河劣Ⅴ类总磷、COD、氨氮注:水质类别依据《地表水环境质量标准》(GB3838-2002)评价
  • 征求意见 | 《贵州省“十四五”土壤、地下水和农村生态环境保护规划》
    为深入打好污染防治攻坚战,加强土壤及地下水污染防治,强化农村生态环境保护,根据《中华人民共和国土壤污染防治法》《中共中央 国务院关于深入打好污染防治攻坚战的意见》《中共中央 国务院关于全面推进乡村振兴加快农业农村现代化的意见》《国务院关于支持贵州在新时代西部大开发上创新路的意见》《“十四五”土壤、地下水和农村生态环境保护规划》和《贵州省生态环境保护“十四五”规划》,贵州省生态环境厅制定《贵州省“十四五”土壤、地下水和农村生态环境保护规划(征求意见稿)》(以下简称《规划》)。《规划》中强调要提升生态环境监管能力,主要包括完善法规标准、健全监测网络、加强生态环境执法、强化科技支撑4个方面。重点内容如下:1.完善法规标准发布《贵州省土壤污染防治条例》。制修订《贵州省农村生活污水资源化利用指南》、《农村生活污水处理适用技术指南》、《贵州省农村生活污水处理设施建设与运行维护技术指南》、《贵州省农村生活污水处理设施运行维护管理办法》等技术规范并适时发布,修订《贵州省农村生活污水处理技术规范》。(省生态环境厅、省司法厅、省市场监管局等按职责分工负责)2.健全监测网络完善土壤环境监测网,优化调整土壤环境监测点位,定期开展国控网络和省控土壤环境质量监测,持续开展农产品产地土壤和农产品协同监测。以毕节市和铜仁市为试点,同时鼓励其他有条件的市(州)开展大气重金属沉降、化肥等农业投入品、农田灌溉用水、作物移除等影响土壤环境质量的输入输出因素长期观测。至少完成一轮土壤污染重点监管单位周边土壤环境监测。探索开展严格管控类耕地种植结构调整等措施实施情况卫星遥感监测。建成48个点位的国家地下水环境质量考核网络,覆盖三级水文地质分区和平原盆地地区主要地级行政区域,并配合国家做好监测全过程质量控制。对218个国家地下水监测工程监测点和152个省级地下水环境质量监测点位开展每年丰、枯两季的监测,并再对省级地下水环境质量监测点位进行优化调整。组织开展12个特色村的农村环境质量监测,监测内容涵盖空气、地表水、土壤、生态质量等,加强农村“万人千吨”饮用水水源地水质监测,开展农村黑臭水体监测,加强日处理能力20吨及以上农村污水设施排口、规模化畜禽养殖场排污口、水产养殖集中区养殖尾水等监测。(省生态环境厅、省农业农村厅、省自然资源厅、省水利厅等按职责分工负责)3.加强生态环境执法依法开展土壤、地下水和农业农村生态环境保护行政执法。严厉打击固体废物特别是危险废物非法倾倒或填埋,以及利用渗井、渗坑、裂隙、溶洞等逃避监管的方式向地下排放污染物等行为,对涉嫌污染环境犯罪的,及时移送公安机关。落实生态环境损害赔偿制度,按要求开展污染土壤和地下水的生态环境损害调查评估。提升执法水平,组织开展监管执法工作培训。(省生态环境厅负责)4.强化科技支撑优化整合科技计划(专项、基金等),支持土壤、地下水和农业农村污染治理相关技术研发。整合省内外高校、研究机构、企业等科研资源,开展有关土壤污染物生态毒理、污染物在土壤中迁移转化规律、土壤污染风险评估涉及的模型和关键暴露参数等基础研究。开展高背景农用地土壤中镉等重金属元素生物有效性及向农产品迁移转化规律研究。开展耕地土壤污染累积变化趋势方法研究。推进土壤污染风险管控和修复共性关键技术、设备研发及应用。开展地下水污染溯源、岩溶与裂隙地下水污染运移与阻断、地下水超采与污染协同治理、地下水回灌水质保障、封井回填以及依赖地下水的生态系统保护等研究。开展农业面源污染溯源与评估、农村黑臭水体整治关键技术等研究。研究加强农村生态系统恢复与保护、推进乡村生态振兴的政策措施。推进土壤、地下水和农业农村生态环境保护领域省级以上重点实验室建设。(省科技厅、省生态环境厅、省自然资源厅、省水利厅、省农业农村厅等按职责分工负责)
  • “100家实验室”专题:访北京农产品质量检测与农田环境监测技术研究中心
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十二站:北京农产品质量检测与农田环境监测技术研究中心。  北京农产品质量检测与农田环境监测技术研究中心(以下简称中心)成立于2007年4月,是北京市科委和北京市农林科学院公益型院所科研体制改革的试点单位。中心整合了北京市农林科学院六个研究所专业检测技术资源,形成了拥有“中国实验室国家认可(CNAS)”、“农业部果品及苗木质量监督检验测试(CMA)”、“农业部蔬菜种子质量监督检验测试(CMA)”、“北京市肥料质量监督检验(CMA)”、“农业部农药登记试验单位”、“北京市实验室计量认证资质(CMA)”等6项认证资质的综合性科研机构。近日仪器信息网工作人员拜访参观了北京农产品质量检测与农田环境监测技术研究中心(以下简称中心),中心潘立刚博士热情接待了到访人员,并介绍了中心的基本情况。  中心由北京市农林科学院李云伏院长亲自兼任主任。中心采取学术委员会领导下的首席专家负责制,聘请院内外12名本领域知名专家组成学术委员会,委任在检测技术信息化方面具有突出贡献的王纪华研究员任首席专家,带领一支高效、精干、勇于创新的科研队伍。目前直接从事农产品质量与农田环境相关研究工作的在职科研人员40多人,客座研究及科研辅助人员近百人。此外,中心还和高校合作招收研究生,目前已有1名博士后在站,3名博士在读,4名硕士在读。  北京农产品质量检测与农田环境监测技术研究中心  承担新标准制定  潘立刚博士介绍说:“目前中心承担了农业部的两项方法标准制定:一是快速检测采样方法规则:当下快速检测的应用非常多,快速检测具有精度低、速度快、覆盖范围大的特点。快速检测大多数采用了表面采样的方法,这种方法虽然简单方便但没有统一的标准。因此需要深入研究确定采样方法、采样数量、采样步骤等具体的标准。”  “二是农业科学仪器分类与代码标准:这是和中国农科院合作的一个项目,希望能有利于对国内的农业科学仪器进行管理。这项工作重点在于确定分类的标准,分类标准要得到行业内的普遍认可才行,现在该标准的初稿已经完成,农业部准备正式发布公告征求意见。”  联合发起成立北京农产品质量安全学会    2009年11月,中心与中国农科院农业质量标准与检测技术研究所、北京市植物保护站、北京市农业环境监测站、农业部农产品质量安全中心、中国农业大学食品学院等多家单位于联合发起成立了北京农产品质量安全学会(以下简称学会),中心为学会办事机构挂靠单位。学会主要开展检测技术服务、科研需求调研、知识普及、学术交流、成果展示、基地建设等六个方面的工作。  潘立刚博士介绍说:“学会目前已经开展了房山污染农田治理、怀柔西洋参重茬现象、大兴区西瓜产地土壤中碘分布以及西瓜果实中能否富碘等科研项目,为首都农业的健康发展提供实际的技术支持。此外,学会还组织参加一些展览培训活动,向市民宣传农产品质量安全方面的知识。今后学会还会继续深入的开展农业科研、检测技术服务、公益性的宣传培训等方面的活动。”    农田环境监测——对北京的农田进行全面评价  潘立刚博士介绍说“农田环境监测是我们的一个特色,其包括两大部分,一是对农田的土壤质量和灌溉水质进行分析监测 二是对田间作物生理的监控,即农田的植物生理指标测定,如光合作用、呼吸效率、叶片大小以及最后的产量估测等。”  “目前,中心与地勘局,农业环境监测站合作对北京地区的农田土壤质量进行全面评价。由于北京农田面积比较小,都市型现代农业要求高,所以有望在全国率先‘摸清家底’。中心已在大兴区、顺义区以及京承路沿线获得大量有关土壤中重金属、养分数据。获取数据只是第一步,之后还需要分析大量数据,寻找规律,如风、河流、工矿企业、道路等对农田环境的影响。最理想的是能建立农田环境监测系统,输入历史数据,对污染物的分布和迁移规律建立数学模型,甚至建立专家系统,这样就可以进行预警或指导农业种植布局。”    检测信息化技术——自主开发新仪器,构建近红外谷物品质分析网络  “由于中心的前身依托国家农业信息化工程技术研究中心组建,因此在检测信息化技术研究方面独具优势”,潘立刚博士表示:“这也是中心的一个特色,一些信息化技术如远程数据传送可以实现在田间采样分析的同时将检测结果传送回监控中心,进行实时监控 数据可视化表达让分析检测结果表达的更加清楚,这样不仅是专业人员,每个人都能看懂 数据锁定技术可以确保样品检测结果更加可靠,分析人员不去田间就没法获得当地的GPS。并且在检测的同时能够获得采样点的检测结果和坐标定位,并且能同时对数据加密,数据不能随意篡改。”  潘立刚博士介绍说,结合检测信息化技术,研究中心自主研发了两款仪器:便携式X射线重金属分析仪、果蔬污染物三合一便携式检测仪,并与普析通用仪器有限公司和韩国美卡西斯(北京)科技公司共同开展分析仪器研发平台建设。  便携式X射线重金属分析仪中引入GPS定位和上位机软件空间分析功能,不仅可以在田间快速同步检测20多种重金属,而且使重金属定量信息与取样点的位置信息在米级精度上实时匹配,还可以对土壤中重金属含量进行空间插值、分布特征分析、污染原因查找、污染等级评价和专题图可视化表达,当数据累积到一定程度甚至可以实现预警。该仪器先后获得国家发明专利和实用新型专利授权。目前该仪器已在北京、天津、河北、吉林、辽宁、云南、山东、江苏、湖北、重庆等10个示范区进行示范应用。  自主研发的XRF7便携式X射线重金属检测仪  果蔬污染物三合一便携式检测仪采用了酶抑制法和化学法,通过自主研发的多通道专利技术,集成了果蔬类农产品中有机磷和氨基甲酸酯农药残留、亚硝酸盐和重金属铅含量三合一检测功能,实现了仪器小型化、多功能、高效率(可同时检测多个样品)、产地现场活体采样的特点 仪器自带GPS模块,使测试信息与取样点的位置信息在米级精度上实时匹配 具有数据实时远程传输和测定数据安全锁定功能 与仪器配套的上位机软件可以对检测数据进行插值、空间分布特征分析评价和专题图可视化表达。  自主研发的HISFM-FW果蔬污染物三合一便携式检测仪  中心信息化技术方面的另一项工作重点是构建农业部公益性行业科技专项“主要农作物调优栽培信息化技术”中的近红外谷物品质分析网络。目前在北京、河北、河南、山东、江苏、浙江、湖南、黑龙江、吉林等地30多家科研院所、农业推广站、食品企业、农业科技园等建立了网络节点,每个网络节点都配备了福斯InfratecTM 1241近红外谷物品质分析仪,共同开展样本获取、联网检测和数据传输工作,现在已经积累了近万份谷物样品和近十万条数据,首次在全国粮食主产区构建起近红外谷物品质分析网络。中心负责近红外谷物品质分析网络中心的建设、运维、数据传输、标准下达和分析评价,具有制定定标规范和检测标准的能力。潘立刚博士介绍说“十二五期间我们打算进一步扩大这一项目,积累更多数据,对谷物品质进行准确评价。为了让近红外谷物品质分析网络中心能健康发展,以后中心也会考虑商业运作。”  福斯InfratecTM 1241近红外谷物品质分析仪    工欲善其事必先利其器  中心承担了多项国家科研项目,同时还开展公益性的检测服务工作。这些工作的开展和相应的仪器配置是分不开的。研究中心目前拥有常规分析仪器、无机分析仪器、有机分析仪器和植物生理生化分析仪器等。  常规分析仪器  装备电子天平、旋转蒸发仪、微波消解仪、加速溶剂萃取仪、分光光度计、人工气候箱等常规仪器和设施,主要开展样品前处理、比色、滴定、过滤、干燥、燃烧等基于物理和化学方法的常规分析检测工作。  戴安ASE 300快速溶剂萃取仪  图注:主要用于快速提取固体或半固体样品,大大缩短萃取时间,提高萃取效率,减少萃取溶剂用量,显著降低了单个样品的提取费用,具有节省溶剂、快速、健康环保、自动化程度高等优点。  无机分析仪器  装备电感耦合等离子体原子发射光谱仪(ICP-AES)、原子吸收光谱分析仪、原子荧光光谱分析仪、元素分析仪、流动注射分析仪、荧光分光光度计、凯氏定氮仪、纤维素测定仪等,开展土壤养分、重金属污染物检测与监测,农产品品质、水质与水环境评价,以及测土配方施肥等科研和分析检测工作。  英国SEAL AutoAnalyzer3 流动注射分析仪  图注:流动注射分析仪基于双光束分光比色原理,采用空气片段连续流动分析(CFA)技术进行的自动样品分析,适用于水、土壤提取液、饮料或混合物中硝酸盐、氮、氨、硫化物、硼化物和磷酸盐等多种物质检测。仪器优点在于全自动操作、低的检测限、高精度和重复性、低试剂消耗,检测效率达每小时40~100样品。  德国Elementar VARIO Macro元素分析仪  有机分析仪器  装备凝胶渗透色谱气相色谱质谱联用仪(GPC-GC-MS)、超高压液相色谱质谱联用仪(UPLC-MS/MS)、气相色谱仪、液相色谱仪、红外显微成像仪、半自动快速微生物鉴定仪等,开展有机污染物、农兽药残留、农产品品质和生物技术在检测中应用等科研和分析检测工作。  瑞士步琪NIRLab N-200近红外光谱仪  珀金埃尔默Spectrum 400傅立叶变换红外显微成像仪  图注:红外显微镜技术是在红外光谱仪的基础上,将红外光路引出到外接的显微镜上,通过显微镜就可得到待测物的直观图像。在此基础上直接选择待测物的特定区域进行红外光谱扫描,得到特定区域的高质量红外光谱图。具有灵敏度高、吸光度准确、制样方便等特点。  岛津 GPC-GC-MS-QP2010凝胶渗透色谱/气相色谱/质谱联用仪  图注:与气相色谱相比,气质联用可以通过特征离子更准确地对待测物进行定性。与凝胶色谱的联用,大幅度的提高了样品前处理的效率。  沃特世UPLC-MS/MS超高压液相色谱质谱联用仪  图注:液相色谱质谱联用仪在农产品质量检测方面有着广泛的应用,主要用于不易挥发性化合物分析测定、极性化合物的分析测定、热不稳定化合物的分析测定、大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定。    植物生理生化分析仪器  装备小型自动气象站、地物光谱仪、冠层分析仪、激光叶面积仪、叶绿素荧光分析仪、凝胶成像系统,以及多种温光电传感器等,开展农业生态环境监测、室内和田间植物生理生化指标测定方法研究和服务。  美国Davis 气象测量站  图注:Davis 气象测量站,是一台全自动化气象数据收集的测量记录仪,能测量并记录气压、气温、湿度、风向、风速、雨量等气象变化数值,还能计算寒风指数、露点温度、体感温度,及做简易的气象预报、暴雨警报。  美国LI-COR LI-6400便携式光合作用测定系统  图注:原位获取植物叶片的光合参数及小环境参数,可用于研究植物光合作用的动态变化、植物光合作用的比较、植物光合作用与环境因子的关系、逆境条件下植物光合作用的变化、抗逆植物的筛选。  美国CID CI-203便携式激光叶面积仪  图注:利用激光技术方便、快速地测量植物离体和活体叶片的面积、长度、宽度、周长、长宽比和形状因子。  后记  在参观交流过程中,中心承担的多项科研任务以及机构管理运行机制给笔者留下了深刻的印象。  在科学研究方面,虽然中心在农产品质量监督领域,属于成立时间较短的研究机构,但它充分发挥了自己的固有优势独辟蹊径,在信息化技术与农田环境监测方面走出一条与众不同的发展之路,并取得了不错的成绩,在短时间内得到了许多同行的认可。去年中心又申请到了一项经费达400万元的科研项目,目前根据科研需要中心正在不断购进仪器设备。  在科研管理上,中心整合了北京市农林科学院六个研究所的专业检测技术人员,共同开展课题研究,改变了检测技术人员在科研机构的弱势地位,充分调动了大家工作的积极性,让每个人都各尽其能,促进了中心的科研工作进展。  此外,中心在自我发展的同时,也利用自己的技术优势,深入到田间,为农业生产遇到的问题提供解决方案,并且能联系一线工作者,让普通老百姓有机会更好的了解农产品质量安全。采访编辑:秦丽娟
  • 智慧农业普及 土壤参数速测仪为土壤定制施肥“配方”
    “一年之计在于春”,春节过后,气温不断回暖,春耕春播在即。农民朋友纷纷走进农资店选购种子、化肥等农资,抢抓晴好天气,积极开展春耕备耕、农田施肥、大棚管护、冬小麦浇水等农事活动,开启了“春忙”模式......“春忙”中,农田施肥和麦田浇水显得尤为重要,以往的农田施肥及麦田浇水全凭农户们的经验,往往会有过度施肥灌溉的情况发生,造成土壤酸化、土壤盐渍化及土壤板结等情况。随着科学技术的发展,智慧农业的不断普及,人们开始利用科学技术来改善这一现象,对土地进行“测土配方施肥”。所谓测土配方施肥,就是对耕地土壤进行全面的分析,了解这块地的有机质、酸碱性和各种养分状况,为农作物提供每一个生长期不同的“营养餐”。农户种植按照“配方”施肥,做到个性化科学施肥、经济施肥、生态施肥,确保肥料不浪费。那么我们是通过什么方式对土壤进行全面分析的呢?是把土壤带到实验室一点一点进行化学实验吗?答案是否定的,这种方式不但费时费力,而且不适用于农户操作。现在对土壤的分析,一般是使用建大仁科土壤速测仪,建大仁科土壤速测仪是一种可以快速检测土壤成分的传感器,可以实时精确检测显示土壤中的多种成分,例如:土壤温湿度、土壤电导率以及土壤氮磷钾等成分;这些成分指标对作物的生长起着十分重要的作用,使用土壤参数速测仪检测土壤中的成分,通过检测的数据合理施肥灌溉,有效改善土壤,达到监控植物养料供给的目的,让农作物处于较好的生存环境,从而提高产量。设备特点:1、土壤速测仪外形采用手握式设计,方便用户携带,探头采用四针探头设计,材质为不锈钢,具有良好的耐蚀性、强韧性;2、实时监测土壤成分(可检测土壤中多种有机成分),数据通过采用电池供电液晶数字显示屏显示,界面参数功能显示明确;3、探针插入式设计保证测量精确,性能可靠,门槛低,步骤少,测量快速,无需试剂,不限检测次数。使用方法:在需要测量的地方,将传感器不锈钢探针垂直插入土壤,按一下按键即可开始测量。如图所示: 按下按键后,1 秒开机,然后检测两秒,多要素款检测结果每种要素显示 3 秒,循环显示3次后息屏;若为单要素款,检测结果显示 10 秒后息屏。若在显示过程中,再次按下按键,则重新检测两秒,再次循环显示。为保证数据的准确性,探头要确保和土壤充分接触。此土壤速测仪可以广泛应用于农田生产、土壤研究、大棚种植、果园苗圃、园艺种植、树木种植、盆栽种植等领域,为农作物科学施肥、改善土壤、合理灌溉提供数据支持。有效的数据支持,使农作物施肥更合理,农作物营养全了,农产品的产量也有所提高,土壤也变得更清洁、健康,一举多得。
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业
  • 浙江临安高标准农田建设示范区:竹林变稻田,农户喜开颜
    时值盛夏,临安区太阳镇高标准农田示范区内,到处是耕作繁忙景象。青山在前,白云掠影,放眼望去,连片黄绿色稻田盈满青山与村庄之间的田野。当然,与以往不同的是,这次忙碌的是那些驻扎在田间地头的设备了,智慧化生产管理让太阳镇的农户喜开颜。图片来源:杭州网 过去的太阳镇一直是一个农业大镇,大部分良田种着雷竹。但近年因效益走低,竹林失管,土质日益退化。因此,去年8月起,太阳镇对7个村近5000亩耕地开展“非粮化”整治。不到一年,田间地头大变样,曾经的抛荒地、毛竹林,成了连片成网的良田畈,退竹还粮后,一个省级稻米生猪特色农业强镇呼之欲出。 要实现农业强镇,社会化的服务以及现代化的设施设备必不可少。在太阳镇的高标准农田示范区里,浙江托普云农科技股份有限公司汇集多项数据资源,建立统一的农业综合管理服务云平台,实现统一管理、统一调度、信息共享,最大程度地实现生产资源可管理、生产过程可智能、加工流通可追踪、销售交易可追溯、食品安全可保障的目标。通过托普云农对数据资源的汇集利用,太阳镇在稻田耕种前实现了对本土土地资源、劳动力资源和技术资源流转情况以及市场供需动态变化的了解,有效调整产业规划方向,降低了产业风险,提高了生产标准。 而所谓数据赋能打造高标农田示范区,在太阳镇的水稻种植过程中主要是以精准农业、节能节源的形式体现。通过环境监测、病虫灾情预警、绿色防控、水肥一体化、农资管理、农事管理等智能设备的应用,大大降低了化肥农药及劳动力的投入,实现绿色农田。临安区农田建设服务中心主任阮弋飞说,“建设示范区,区里目标就是提升农田粮食产能,因此建设措施除基础设施提标工程外,采用多种改良土壤生态手法,并集成了肥水管理、病虫害防治、质量安全追溯等数字化管理技术,既关注“颜值”,更聚焦“内核”。” 秋收时节,喜看稻菽千重浪。托普云农发挥数据优势,以农产品安全监管的形式体现,为示范区内农产品赋码,严格农产品质量监管的流程,促进区域种植标准化生产,同时建立产品可溯品牌统一管理系统,实现溯源信息的便捷查询,提升消费者对太阳镇农产品的认知度和认可度。 通过农业数字化管理平台和智能设备的搭建、应用,太阳镇农业生产的管理效率和技术水平有着明显提升,农产品产量、质量与安全性也在提高,同时生产能耗与成本也有所减少,农业生产经济效益和生态效益不断提升,农户收入也在大幅增加,竹林变稻田,真正实现了农户喜开颜。 据了解,下一步太阳镇将围绕“稻米生猪”省级特色农业强镇创建,将数字技术充分融入高标准农田建设,加强耕地保护和粮食安全生产工作,进一步完善农业基础设施,推进农业机械化、现代化进程,融合美丽乡村建设、稻渔综合种养产业发展,提高农田综合生产能力,促进农民增收、农业增效、农村增靓,加快乡村振兴步伐。
  • 土壤监测再迎政策红利 农业部印发“土十条”实施意见
    “土十条”发布后,土壤监测行业迎来了发展的春天,虽然一说起土壤监测和土壤污染,大家首先关注的是环保部门的态度。但是作为我国农业生产的主管部门,农业部对土壤以及土壤污染的关注也由来已久。近日,农业部印发了关于贯彻落实《土壤污染防治行动计划》的实施意见,对“土十条”中规定的农业部门任务进行了细化。  其中很重要的一项工作是开展耕地土壤环境调查监测与类别划分,主要包括开展农用地土壤污染状况详查、完善耕地土壤环境质量监测网络和开展耕地土壤环境质量类别划分。  在农业生产过程中,农业部还强调,推动有关部门和地方加强农田灌溉水检测与净化治理,确保水源符合农田灌溉水质标准,严禁未经达标处理的工业和城市污水直接灌溉农田。  值得注意的是测土配方施肥技术的推广,农业部规定看具体时间和推广力度,到 2020年,测土配方施肥技术推广覆盖率达90% 以上。  文件全文:农业部印发关于贯彻落实《土壤污染防治行动计划》的实施意见  各省、自治区、直辖市及计划单列市农业(农牧、农村经济)、畜牧、兽医厅(局、委、办),新疆生产建设兵团农业局:  为深入贯彻落实《土壤污染防治行动计划》,切实加强农用地土壤污染防治,逐步改善土壤环境质量,保障农产品质量安全,特制定本实施意见。  农业部  2017年3月6日  一、总体要求和目标  (一)总体要求。统筹粮食安全、农产品质量安全与农产品产地环境安全,以耕地为重点,以实现农产品安全生产为核心目标,以南方酸性土水稻种植区和典型工矿企业周边农区、污水灌区、大中城市郊区、高集约化蔬菜基地、地质元素高背景区等土壤污染高风险地区为重点区域,按照“分类施策、农用优先,预防为主、治用结合”的原则,从防、控、治关键环节入手,强化监测评价,突出风险管控,实施分类管理,注重综合施策,坚持重点突破,狠抓督导考核,落实“国家统筹、省级推进、市县落实”的责任分工,逐步建立用地养地结合、产地与产品一体化保护的耕地可持续利用长效机制。  (二)工作目标。到 2020年,完成耕地土壤环境质量类别划定,土壤污染治理有序推进,耕地重金属污染、白色污染等得到有效遏制。优先保护类耕地面积不减少、土壤环境质量稳中向好 受污染耕地安全利用率达到 90% 左右,中轻度污染耕地实现安全利用面积达到4000万亩,治理和修复面积达到 1000万亩 建立针对重度污染区的特定农产品禁止生产区划定制度,重度污染耕地种植结构调整和退耕还林还草面积力争达到2000万亩。到2030年,受污染耕地安全利用率达到 95% 以上,全国耕地土壤环境质量状况实现总体改善,对粮食生产和农业可持续发展的支撑能力明显提高。  二、完善农用地土壤污染防治法规标准体系  (三)推进农用地土壤污染防治法制建设。研究修订《农产品产地安全管理办法》,增加农产品产地土壤污染防治有关内容,细化特定农产品禁止生产区管理要求。配合相关部门推动《土壤污染防治法》《农产品质量安全法》《农药管理条例》《耕地质量保护条例》《肥料管理条例》制修订工作。2017年底前,出台废弃农膜回收利用管理办法,配合相关部门制定农药包装废弃物回收处理办法。针对耕地重金属、农膜残留等农用地土壤污染突出问题,鼓励推动地方结合实际,研究制定地方性法规。  (四)健全耕地土壤污染防治相关标准。开展耕地土壤环境监测、调查评估、等级划分、风险管控、损害鉴定、治理与修复等技术规范研究与制修订工作。会同有关部门完善农业投入品相关环境保护标准制修订工作,加快推进肥料、饲料、灌溉用水中有毒有害物质限量和农用污泥中污染物控制等标准修订,完善农产品产地环境(土壤、大气、灌溉水、秸秆还田等)和农业投入品(农药、农膜、化肥、有机肥和土壤调理剂等)重金属限量指标体系,研究制定重金属低积累作物品种筛选和审定标准。配合有关部门颁布实施农用地膜新修订国家标准,研究制定可降解农膜相关标准,推动农药包装标准修订,增加防止农药包装废弃物污染土壤的要求。鼓励地方制定适合本地农业特点和地域特征的农用地环境管理相关地方标准。到2020年,基本建立覆盖主要农作物农业投入、生产、产出全过程的农用地环境安全管理标准保障体系。  三、开展耕地土壤环境调查监测与类别划分  (五)开展农用地土壤污染状况详查。加快完成全国农产品产地土壤重金属污染普查,在此基础上,以耕地为重点,根据全国土壤污染状况详查总体方案,开展耕地土壤污染状况详查,实施风险区加密调查、农产品协同监测,进一步摸清我国耕地土壤污染现状,明确耕地土壤污染防治重点区域。2018年底前,查明耕地土壤污染的面积、分布及其对农产品质量的影响,完善耕地土壤环境质量档案信息。配合环境保护部门建立耕地土壤环境质量定期调查制度,每10年开展1次。  (六)完善耕地土壤环境质量监测网络。2017年底前,根据国家土壤环境质量监测网络的统一部署,在现有相关耕地监测网络基础上,进一步布设全国耕地土壤环境质量国控监测点,构建覆盖面广、代表性强、功能完备的耕地土壤环境质量监测网络,进一步强化农业环境监测保障能力。实施耕地土壤环境质量例行监测,重点在水稻、小麦、玉米、马铃薯、蔬菜等主产区和风险区域,制度化开展耕地土壤和农产品质量状况同步监测。鼓励各地农业部门,在大宗农产品生产基地及地方特色农作物种植区等区域,增设监测点位和特征污染物监测项目,提高监测频次,实施耕地土壤环境质量补充监测。2018年底前,建成耕地土壤环境监测数据管理平台,与全国土壤环境信息化管理平台实现数据共享,适时对耕地环境风险变化作出预警,提出风险管控措施,并持续跟踪后续风险管控效果。  (七)开展耕地土壤环境质量类别划分。在耕地土壤污染详查和监测基础上,将耕地环境质量划分为优先保护、安全利用和严格管控三个类别,实施耕地土壤环境质量分类管理。2017年底前,以土壤和农产品污染协同监测状况为依据,会同环保部门出台耕地土壤环境质量类别划分技术指南。2020年底前,各地农业部门会同环保部门依据技术指南,在试点基础上有序推进耕地土壤环境质量类别划定,逐步建立分类清单和图表,开展耕地土壤环境质量类别区划。根据土壤环境质量变化进行动态调整。有条件的地区要逐步开展园地、草地等其他农用地土壤环境质量类别划定等工作。  四、优先保护未污染和轻微污染耕地  (八)纳入永久基本农田。各地农业部门要根据《永久基本农田划定工作方案》,积极配合国土等部门将符合条件的优先保护类耕地划为永久基本农田,从严管控非农建设占用永久基本农田,一经划定,任何单位和个人不得擅自占用或改变用途。在优先保护类耕地集中的地区,推动各地优先开展高标准农田建设项目,确保其面积不减少,质量不下降。  (九)切实保护耕地质量。配合环保部门加强环境督查,督导地方在优先保护类耕地集中区域严格控制新建有色金属冶炼、石油加工、化工、焦化、电镀、制革等行业企业,已建成的相关企业应当按照有关规定采取措施,防止对耕地造成污染。配合水利部门加强灌溉水水质定期监测,防止污染物随灌溉水进入耕地。督促农村土地流转受让方切实履行土壤保护的责任,避免因过度施肥、滥用农药等掠夺式生产造成土壤环境质量下降。因地制宜推行种养结合、秸秆还田、增施有机肥、少耕免耕等措施,提升耕地质量,优先发展绿色优质农产品。开展黑土地保护利用试点,扎实推进“控、增、保、养”,分类施策,精准保护黑土地。密切跟踪例行监测结果,及时排查农产品质量出现超标的优先保护类耕地,及时实施安全利用类措施。  五、安全利用中轻度污染耕地  (十)筛选安全利用实用技术。总结科研示范和实践探索经验,研究制定相关评价技术规范及标准,科学评价、筛选安全利用类耕地实用技术。2017年底前,出台受污染耕地安全利用技术指南,全面加强宏观技术指导。2020年底前,安全利用类耕地集中的县(市、区),要结合当地主要作物品种和种植习惯,依据受污染耕地安全利用技术指南,科学制定适合当地的受污染耕地安全利用方案。  (十一)推广应用安全利用措施。以南方酸性土水稻产区(江西、福建、湖北、湖南、广东、广西、重庆、四川、贵州、云南)为重点区域,合理利用中轻度污染耕地土壤生产功能,大面积推广低积累品种替代、水肥调控、土壤调理等安全利用措施,降低农产品重金属超标风险。根据土壤污染状况和农产品超标情况,建立受污染耕地安全利用项目示范区,采用示范带动、整县推进的方式,分批实施。2020年底前,推广应用安全利用技术措施面积达4000万亩。  (十二)实施风险管控与应急处置。定期开展农产品质量检测,实施跟踪监测,根据治理效果及时优化调整治理措施。推动地方制定超标农产品应急处置措施,对农产品质量暂未达标的安全利用类耕地开展治理期农产品临田检测,实施未达标农产品专企收购、分仓贮存和集中处理,严禁污染物超标农产品进入流通市场,确保舌尖上的安全。  六、严格管控重度污染耕地  (十三)有序划定农产品禁止生产区。依照《农产品质量安全法》和《农产品产地安全管理办法》,结合区域农产品品种特性和大气、土壤、水体等环境状况,科学划定特定农产品禁止生产区。2017年底前,研究制定特定农产品禁止生产区划定技术规定。及时总结湖南长株潭地区重金属污染耕地修复及农作物种植结构调整试点工作经验,在南方酸性土水稻产区、产粮(油)大县、蔬菜产业重点县等地区开展农产品禁止生产区划定试点。2020年底前,依据耕地土壤污染详查结果,在全国范围内逐步推进特定农产品禁止生产区域划定工作。  (十四)推进落实种植结构调整。在耕地重度污染区域,严禁种植超标食用农产品,及时采取农作物种植结构调整措施。研究制定相关支持政策,加大对结构调整产业链的扶持,激发农民实施结构调整的自觉性和主动性。继续开展湖南长株潭地区重金属污染耕地修复及农作物种植结构调整试点工作,总结完善技术路线、配套政策和工作机制,确保试点成果可复制、可推广。实行耕地轮作休耕制度试点,出台轮作休耕方案,开展重金属污染耕地休耕试点。  (十五)纳入退耕还林还草范围。将严格管控类耕地纳入国家新一轮退耕还林还草实施范围,研究制定相关配套支持政策,保证退得出、稳得住,切实保障农民收益不降低。严格控制大中城市郊区严格管控类耕地转用,确实需要转为建设用地的,要根据有关规定经过严格审批。  七、实施耕地土壤污染综合治理与修复  (十六)开展典型耕地污染治理修复技术应用试点。综合土壤污染类型、程度和区域代表性,在典型耕地污染区开展治理与修复技术应用试点工作,分类分批实施受污染水田、菜地、旱地治理与修复试点项目。根据试点情况,比选形成一批成本低、效果好、易推广的适用技术,编制和发布受污染耕地治理与修复推荐技术目录。  (十七)建设耕地污染综合治理与修复示范区。以典型工矿企业周边农区、污水灌区、大中城市郊区、高集约化蔬菜基地、地质元素高背景区等土壤污染高风险地区为重点区域,针对典型作物和污染物,建设耕地污染综合治理与修复示范区,因地制宜选择外源污染隔离、灌溉水净化、低积累品种筛选应用、水肥调控、土壤调理、替代种植、秸秆回收利用等技术,综合施策,逐步实现农作物安全生产。2020年底前,受污染耕地开展治理与修复1000万亩。  (十八)开展治理技术及产品验证评价。在耕地污染典型地区建立治理技术验证示范与监测评价基地,研究制定评价方法和标准,开展治理修复技术及产品的筛选、验证与评估,研究建立耕地污染治理修复技术及产品验证评价制度。  八、推行农业清洁生产  (十九)严控农田灌溉水源污染。推动有关部门和地方加强农田灌溉水检测与净化治理,确保水源符合农田灌溉水质标准,严禁未经达标处理的工业和城市污水直接灌溉农田。对因长期使用污水灌溉导致土壤污染严重且农产品质量严重超标的,划定为特定农产品禁止生产区,开展休耕、种植结构调整、退耕还林还草等措施。  (二十)实施化肥农药零增长行动。加大测土配方施肥技术推广,开展化肥减量增效试点和果菜茶有机肥替代化肥试点,指导地方加大示范推广力度。推行精准施药、病虫害统防统治和绿色防控,加强试点示范和补贴力度,推广高效低毒低残留农药和大中型高效药械,扶持一批专业化病虫防治服务组织 加强科学施肥用药的技术指导和工作督查,严禁将城镇生活垃圾、污泥、工业废物直接用作肥料。到 2020年,全国主要农作物化肥、农药使用量实现零增长,利用率提高到40% 以上,测土配方施肥技术推广覆盖率达90% 以上。加强农药包装废弃物回收处理,2017年起,在江苏、浙江、山东、河南、海南等省份选择部分产粮(油)大县和蔬菜产业重点县开展农药包装废弃物回收处理试点 到 2020年,推广到全国30% 的产粮(油)大县和所有蔬菜产业重点县。  (二十一)强化废旧农膜和秸秆综合利用。配合有关部门修订完善地膜生产加工标准体系,建立联合监管机制,加大执法监管力度,严厉打击违法生产和销售不合格农膜行为。推行地膜“以旧换新”机制,推广加厚地膜应用,开展可降解地膜示范应用 开展区域性回收利用示范,建立健全废弃农膜回收贮运和综合利用网络。到2020年,河北、辽宁、山东、河南、甘肃、新疆等农膜使用量较高省份力争实现废弃农膜全面回收利用。大力开展秸秆还田与秸秆肥料化、饲料化、基料化、原料化和能源化利用,建立健全秸秆收储运体系,加快推进秸秆综合利用的规模化、产业化发展。在京津冀等大气污染重点区域,开展秸秆综合利用示范县建设。到2020年全国秸秆综合利用率达到85% 以上。  (二十二)推进畜禽养殖污染防治。严格规范兽药、饲料添加剂的生产和使用,防止有害成分通过畜禽养殖废弃物还田对土壤造成污染。组织实施畜禽粪污综合利用政策试点,采取政府购买社会化服务,或者政府支持农业生产者购买社会化服务等方式,支持探索畜禽粪污有效储存、收运、处理、综合利用全产业链发展的有效模式。编制《种养结合循环农业工程规划》,探索种养结合整县推进试点。推进典型流域农业面源污染综合治理试点,形成一批可复制、可推广的农业面源污染防治技术模式。到 2020年,规模化养殖场、养殖小区配套建设废弃物处理设施比例达到 75%以上。  九、加大耕地污染防治政策支持力度  (二十三)健全绿色生态导向的农业补贴制度。实施绿色生态为导向的农业支持保护补贴政策,引导农民综合采取秸秆还田、深松整地、减少化肥农药用量、施用有机肥等措施,切实加强耕地质量保护,减少耕地污染。进一步整合测土配方施肥、低毒生物农药补贴、病虫害统防统治补助、耕地质量保护与提升、种养结合循环农业、畜禽粪污资源化利用等项目资金,更多用于优先保护类耕地集中的县(市、区),耕地重金属污染治理修复等项目资金适度向耕地污染防治重点区域倾斜。  (二十四)建立农用地污染防治生态补偿机制。以耕地重金属污染防治为切入点,在重点区域探索建立耕地重金属污染治理修复生态补偿制度,合理确定补偿标准,采取实物补偿或现金补贴等方式,对开展种植结构调整、禁止生产区划分或自主采取土壤污染防治措施的农民进行补偿,确保农民收入不减少、农产品有毒有害重金属含量不超标、土壤质量不恶化、农产品产量基本稳定。开展休耕补贴试点,引导农民将重度污染耕地自愿退出农业生产。  (二十五)创新耕地污染防治支持政策。进一步创新金融、保险、税收等支持政策,对开展耕地污染治理的农业经营主体或市场主体优先实施信用担保、贴息贷款或税收减免,完善耕地污染防治保险产品和服务。  (二十六)健全耕地污染防治市场机制。完善耕地污染防治投融资机制,建立目标绩效考核制度,因地制宜探索通过政府购买服务、第三方治理、政府和社会资本合作(PPP)、事后补贴等形式,吸引社会资本主动投资参与耕地污染治理修复工作,逐步建立健全耕地污染治理修复社会化服务体系。鼓励有条件的地区,探索通过第三方治理或 PPP模式,实施整县(区)或区域一体化耕地污染治理修复。  (二十七)加大科技研发支持力度。启动“农业面源和重金属污染农田综合防治与修复技术研发”国家重点研发计划,充分发挥全国农业科技协同创新联盟作用,促进科研资源整合与协同创新,加强农用地污染监测、污染源解析、污染物迁移转化、土壤与作物污染相关性等基础研究,加大农业投入品减施、水分管理、土壤调理、品种替代、生物修复、污染超标农产品安全利用等实用技术研发,尽快形成一整套适合我国国情农情的农用地污染防治技术模式与体系。加强农业科技体制机制创新,完善经费保障和激励机制,激发农业科技创新活力和农业科研人才积极性。  十、强化农用地污染防治责任落实  (二十八)建立责任机制。按照“国家统筹、省级推进、市县落实”原则,建立政府主导的农用地污染防治工作责任机制。农业部成立相关司局和单位参加的农用地污染防治推进工作组,制定总体意见及配套文件,强化顶层设计,做好科学谋划部署,配合环境保护部,与省级人民政府签订责任书,落实治理任务 省级农业部门安排部署本省农用地土壤污染防治工作,及时做好协调推进 县级人民政府是农用地土壤污染防治的责任主体,县级农业部门要加强与发展改革、财政、环保、国土等部门沟通协作,根据耕地土壤环境调查监测结果及时向同级人民政府提出工作建议,因地制宜制定具体落实方案,科学确定技术路径,确保农用地土壤污染防治工作及时、全面、有效落实。  (二十九)加强技术指导。农业部组建涵盖环保、土肥、种植、农产品加工、农产品质量安全等领域的技术指导委员会,负责制定技术指南、操作规程和相关技术标准,确定重点实施区域,指导相关省(区、市)编制耕地污染防治规划与实施方案,配合农用地污染防治推进工作组做好耕地污染防治工作的监督和技术服务,对耕地土壤治理修复技术和产品开展评价。加强农业资源环境体系建设,提升农业环境监测和指导服务能力。  (三十)实施绩效考核。各级农业部门要强化责任意识和担当意识,切实将农用地污染防治纳入农业农村工作的总体安排,不断加大工作力度,创新工作机制,确保工作取得成效。农业部加强对地方工作的督查,定期召开农用地污染防治协调推进会,及时研究解决工作中出现的新问题新情况 开展农用地污染防治评估与考核,建立综合评价指标体系和评价方法,客观评价地方工作成  效,纳入农业部延伸绩效考核,并作为相关项目支持的重要依据,工作严重不力的要追究责任。  (三十一)推进信息公开。配合环保部门建立完善农用地土壤环境质量信息发布制度,定期发布农用地土壤环境质量报告,向社会公众公布农用地土壤环境质量状况,及时回应社会关切的热点问题,全力保障社会公众对农用地土壤环境信息的知情权。畅通公众表达及诉求渠道,全面推进公众参与,充分发挥社会公众和新闻媒体对农用地污染防治工作的监督作用。  (三十二)加强宣传培训。结合世界地球日、世界环境日、世界土壤日、世界粮食日、全国土地日等主题宣传活动和新型职业农民培育、农村实用人才培训等,用人民群众喜闻乐见的方式,大力开展农用地污染防治科学普及和教育培训活动,切实提高农民特别是新型经营主体对农用地污染防治重要性和紧迫性的认识,进一步提升社会公众参与农用地保护的自觉性、主动性和能力水平。
  • 土壤污染致珠三角蔬菜重金属超标率达10%-20%
    6月18日,广东省政协召开&ldquo 农村环境污染治理&rdquo 专题座谈会,政府有关部门披露的情况令现场委员&ldquo 心情沉重&rdquo 。据介绍,由于土壤污染,珠三角多地蔬菜重金属超标率达10%-20%。  新会灌溉水汞超标47 .7%  省农业厅巡视员余俭娥表示,我省农村水质性缺水问题越来越严重。据有关部门对新会市灌溉水质量的监测结果,汞超标准率达47.7%。粤东练江受工业废水和生活污水污染,水质严重恶化,流域近200万人的生活用水和农田用水受到影响。  省水利厅副厅长刘敏称,目前我省主要污染河流主要集中在珠三角水体交换较慢的内河涌,粤东的练江、枫江和榕江,粤西的小东江、九洲江和遂溪河。  珠三角形成区域性土壤污染  余俭娥称,广东耕地受重金属污染日益严重。据有关部门对珠三角土壤检测结果,土壤重金属含量超标。形成大面积区域性污染的重金属元素以镉、汞、砷、铜等毒性金属元素为主,伴有铅、铬、锌、镍等有害元素。  余俭娥说,近几年来,广东几乎每两场降雨就有一场是酸雨,81.8%的城市出现酸雨,59.1%的城市受酸雨污染。韶关、佛山和清远属于重酸雨区。由于广东土壤普遍呈酸性反应,对酸雨的缓冲能力甚低,酸雨对农业环境危害大。  土壤污染导致农产品质量安全问题突出。据近年对台山、惠阳、花都、从化、南海、番禺、新会、高明、东莞等地大田蔬菜的监测结果,蔬菜重金属超标率达10%-20%。  万亩农田因工业&ldquo 三废&rdquo 抛荒  是什么导致农村环境污染?余俭娥称,工矿企业仍然是主要污染源。据不完全统计,近年来广东受工业&ldquo 三废&rdquo 污染且造成减产的农田面积达77.6万亩,其中有1.15万亩农田因严重污染抛荒或改变用途。
  • 高标准农田建设项目实施方案参考
    方案简介: 建设高标准农田,是巩固和提高粮食生产能力、保障国家粮食安全的关键举措,中国人的饭碗装中国粮要突出抓好耕地保护和地力提升,坚定不移建设高标准农田。托普云农高标准农田建设项目实施方案力推数字技术与农业生产加速融合,打造1个农业大数据中心、1个数字化决策平台以及N项涵盖土壤改良、高效节水、农田防护、生态保护、科技服务等多面的数字化应用服务,形成绿色生产方式,为粮食及重要农副产品稳产保供提供有力支撑,促进农业现代化、可持续发展。 建设内容: 大数据中心:通过建立涵盖农田主体、农田生产、农田环境、农田病虫害、质量安全等基础数据的高标准农田数据中心,为高标农田数字化决策平台的运行提供统一标准的数据底座,推动形成覆盖全农田、业务协同、上下联动、信息共享的发展格局。 数字化决策平台:高标准农田数字化决策平台通过土壤改良、节水节肥减药、病虫害绿色防控、生态保护等技术与数字化平台的结合,构建科学统一、层次分明、结构合理的高标准农田建设体系,实现高标准农田的高质量建设、高效率管理、高水平利用。 数字应用场景:通过高标准农田数字化监管体系、智慧化生产体系、专业化服务体系实现耕地地力建设提升、农业生态环境保护、农业生产综合利用、农田灌溉高效节水、农业科技高效创新。 系统亮点: 高标准农田数字化监管体系:天空地一体化。 基于多源卫星遥感系统、遥感无人机系统、农情监测系统,打造天空地一体化监管系统,为高标农田的生产决策提供科学准确的数据支撑。 高标准农田智慧化生产体系: 土壤改良:通过智能硬件设备,检测盐碱土壤和酸化土壤,同时配合耕地质量保护系统和土壤墒情监测平台,实时统计分析土壤数据,进行测土配方施肥,实现土壤养分平衡,耕地质量水平提升,土壤生态环境改善。 节水灌溉:建设智能机井灌溉系统和水肥一体化系统,对水资源数据,用水状况,灌溉情况等进行科学管理,因地制宜推广滴灌和喷微灌等节水措施,提高农业灌溉用水效率,提高水资源可持续利用水平。 农情监测:在田间合理配置物联网监测设备,集农田数据采集汇交、管理分析、评估服务等功能于一体,实现田间生产、管理、防控、服务全流程的数字化,建设高质量、高标准、高效率的高标准农田。 农田防护:通过农业物联,实时监测田间生产,及时预警提示,应用绿色杀虫灯、农田天眼、无人机打造农田防护体系,建设绿色、安全、优质的高标准农田。 科学管理:通过推进农机管理、生产管理、科学施肥等农业科技应用,科学合理利用高标准农田,提高管理效率,实现农田内有据可查、全程监控、精(jing)准管理、资源共享。 高标准农田专业化服务体系:
  • 察布查尔锡伯自治县农业农村局2356.51万元采购土壤采样器
    详细信息 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 新疆维吾尔自治区-伊犁哈萨克自治州-察布查尔锡伯自治县 状态:公告 更新时间: 2023-01-29 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 发布时间 :2023-01-20 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目招标公告 一、招标条件 本招标项目伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目已由以伊犁哈萨克自治州农业农村局以伊州农办字2022124号和察布查尔锡伯自治县发展和改革委员会察发改字〔2023〕16号文批准建设批准建设,建设资金来自中央资金、自治区资金,项目出资比例为:中央资金62.5%自治区资金37.5%,项目法人代表为呢加提﹒塔西买买提,招标人为察布查尔锡伯自治县农业农村局,代理机构为新疆双峻项目管理有限公司。项目已具备招标条件,现对该项目施工进行公开招标。 二、项目概况与招标范围 1.招标项目所在地区:察布查尔县孙扎齐牛录镇孙扎齐牛录村 2.项目规模:1.灌溉排水工程:新建 12 个滴灌灌溉系统,均为加压滴灌,配套输配水管道 135691m,管材额定压力 0.6MPa,管径 DN90-400;修建闸阀井 208 座,排水井 201座,排气井 40 座。购置配套设备:水泵 12 台,设计流量 245-400m3/h,设计扬程 50m-52m,电机功率 55-75KW;变频柜 12 台;80目叠片全自动过滤器 12 组,过流能力 280-490m3/h;500L 压差式施肥罐 12 台;修建 77.77 ㎡泵房 4 座;新建 315-400KVa 变压器4 台,架设 10kv 高压输电线路 1182m,低压 0.4kV 线路 240m。2.耕地质量监测:计划土壤采样送样与测定(实施前)13 处,土壤采样送样与测定(实施后)实施后 13 处。3.高标准农田公示牌 1座。全套施工图、招标文件、工程量清单及补疑文件所示范围全部内容。 3.招标内容与范围: 标段(包)编号 标段(包)名称 工期要求(日历天) 标段合同估算价(万元) 建设规模及内容范围 A6540003917002260001001 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 244 2356.51 1.灌溉排水工程:新建 12 个滴灌灌溉系统,均为加压滴灌,配套输配水管道 135691m,管材额定压力 0.6MPa,管径 DN90-400;修建闸阀井 208 座,排水井 201座,排气井 40 座。购置配套设备:水泵 12 台,设计流量 245-400m3/h,设计扬程 50m-52m,电机功率 55-75KW;变频柜 12 台;80目叠片全自动过滤器 12 组,过流能力 280-490m3/h;500L 压差式施肥罐 12 台;修建 77.77 ㎡泵房 4 座;新建 315-400KVa 变压器4 台,架设 10kv 高压输电线路 1182m,低压 0.4kV 线路 240m。2.耕地质量监测:计划土壤采样送样与测定(实施前)13 处,土壤采样送样与测定(实施后)实施后 13 处。3.高标准农田公示牌 1座。全套施工图、招标文件、工程量清单及补疑文件所示范围全部内容。 三 、投标人资格要求 1.本次招标要求投标人须具备[水利水电工程﹒水利水电工程三级](含)以上资质,并在人员、设备、资金等方面具有承担本标段施工的能力。 2.项目负责人资质要求:[注册二级建造师﹒水利水电工程](含)以上 3.本次招标不接受联合体投标。 4.本次招标实行资格后审,资格审查的具体要求见招标文件。资格后审不合格的投标人投标文件将按废标处理。 5.投标其他条件:(1)本项目不接受有不良行为记录且在限制市场准入有效期内的企业投标。(2)投标单位请在伊犁州公共资源电子交易系统下载招标文件,通过其他途径取得的招标文件不可参与投标。(3)因投标单位错失下载招标文件而未能参与投标,造成的后果自己承担。(4)如有必要对招标文件的修改或澄清将在伊犁州公共资源电子交易系统网站及时发布 ,修改或澄清文件一旦发布即视为以书面形式通如所有潜在投标人,请各投标人自行关注本次招标项目相关信息的变更情况,否则所造成的一切后果由投标人自负。 四、招标文件的获取 1.凡有意参加投标者,请派代表于2023年01月21日至2023年01月29日(法定公休日、法定节假日除外),在伊犁哈萨克自治州公共资源交易平台下载招标文件。 五、投标文件的递交 1.投标文件递交的截止时间(投标截止时间,下同)为2023年02月10日10时30分, 2.逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 六、发布公告的媒介 本招标公告同时在伊犁州公共资源交易中心网(http://ggzy.xjyl.gov.cn/)上发布。 七、联系方式 招 标 人: 察布查尔锡伯自治县农业农村局 招标代理机构: 新疆双峻项目管理有限公司 地 址: 地 址 邮 编: 邮 编: 联 系 人: 郭伟勇 联 系 人: 杨婉君 电 话: 18699911182 电 话: 18997578122 传 真: 传 真: 电子邮件: 电子邮件: 监督单位: 监督单位电话: 下载 divDS_f5ffa64e_dd4e_410d_8bcc_d6a2097c8d44610.4499816894531-17.099998474121093 88d09e35-0129-45e6-8c6e-176b0047a34b × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:土壤采样器 开标时间:null 预算金额:2356.51万元 采购单位:察布查尔锡伯自治县农业农村局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:新疆双峻项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 新疆维吾尔自治区-伊犁哈萨克自治州-察布查尔锡伯自治县 状态:公告 更新时间: 2023-01-29 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 发布时间 :2023-01-20 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目招标公告 一、招标条件 本招标项目伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目已由以伊犁哈萨克自治州农业农村局以伊州农办字2022124号和察布查尔锡伯自治县发展和改革委员会察发改字〔2023〕16号文批准建设批准建设,建设资金来自中央资金、自治区资金,项目出资比例为:中央资金62.5%自治区资金37.5%,项目法人代表为呢加提﹒塔西买买提,招标人为察布查尔锡伯自治县农业农村局,代理机构为新疆双峻项目管理有限公司。项目已具备招标条件,现对该项目施工进行公开招标。 二、项目概况与招标范围 1.招标项目所在地区:察布查尔县孙扎齐牛录镇孙扎齐牛录村 2.项目规模:1.灌溉排水工程:新建 12 个滴灌灌溉系统,均为加压滴灌,配套输配水管道 135691m,管材额定压力 0.6MPa,管径 DN90-400;修建闸阀井 208 座,排水井 201座,排气井 40 座。购置配套设备:水泵 12 台,设计流量 245-400m3/h,设计扬程 50m-52m,电机功率 55-75KW;变频柜 12 台;80目叠片全自动过滤器 12 组,过流能力 280-490m3/h;500L 压差式施肥罐 12 台;修建 77.77 ㎡泵房 4 座;新建 315-400KVa 变压器4 台,架设 10kv 高压输电线路 1182m,低压 0.4kV 线路 240m。2.耕地质量监测:计划土壤采样送样与测定(实施前)13 处,土壤采样送样与测定(实施后)实施后 13 处。3.高标准农田公示牌 1座。全套施工图、招标文件、工程量清单及补疑文件所示范围全部内容。 3.招标内容与范围: 标段(包)编号 标段(包)名称 工期要求(日历天) 标段合同估算价(万元) 建设规模及内容范围 A6540003917002260001001 伊犁哈萨克自治州 2023年度察布查尔县孙扎齐牛录镇新建1.3万亩高标准农田建设(高效节水)项目施工招标 244 2356.51 1.灌溉排水工程:新建 12 个滴灌灌溉系统,均为加压滴灌,配套输配水管道 135691m,管材额定压力 0.6MPa,管径 DN90-400;修建闸阀井 208 座,排水井 201座,排气井 40 座。购置配套设备:水泵 12 台,设计流量 245-400m3/h,设计扬程 50m-52m,电机功率 55-75KW;变频柜 12 台;80目叠片全自动过滤器 12 组,过流能力 280-490m3/h;500L 压差式施肥罐 12 台;修建 77.77 ㎡泵房 4 座;新建 315-400KVa 变压器4 台,架设 10kv 高压输电线路 1182m,低压 0.4kV 线路 240m。2.耕地质量监测:计划土壤采样送样与测定(实施前)13 处,土壤采样送样与测定(实施后)实施后 13 处。3.高标准农田公示牌 1座。全套施工图、招标文件、工程量清单及补疑文件所示范围全部内容。 三 、投标人资格要求 1.本次招标要求投标人须具备[水利水电工程﹒水利水电工程三级](含)以上资质,并在人员、设备、资金等方面具有承担本标段施工的能力。 2.项目负责人资质要求:[注册二级建造师﹒水利水电工程](含)以上 3.本次招标不接受联合体投标。 4.本次招标实行资格后审,资格审查的具体要求见招标文件。资格后审不合格的投标人投标文件将按废标处理。 5.投标其他条件:(1)本项目不接受有不良行为记录且在限制市场准入有效期内的企业投标。(2)投标单位请在伊犁州公共资源电子交易系统下载招标文件,通过其他途径取得的招标文件不可参与投标。(3)因投标单位错失下载招标文件而未能参与投标,造成的后果自己承担。(4)如有必要对招标文件的修改或澄清将在伊犁州公共资源电子交易系统网站及时发布 ,修改或澄清文件一旦发布即视为以书面形式通如所有潜在投标人,请各投标人自行关注本次招标项目相关信息的变更情况,否则所造成的一切后果由投标人自负。 四、招标文件的获取 1.凡有意参加投标者,请派代表于2023年01月21日至2023年01月29日(法定公休日、法定节假日除外),在伊犁哈萨克自治州公共资源交易平台下载招标文件。 五、投标文件的递交 1.投标文件递交的截止时间(投标截止时间,下同)为2023年02月10日10时30分, 2.逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 六、发布公告的媒介 本招标公告同时在伊犁州公共资源交易中心网(http://ggzy.xjyl.gov.cn/)上发布。 七、联系方式 招 标 人: 察布查尔锡伯自治县农业农村局 招标代理机构: 新疆双峻项目管理有限公司 地 址: 地 址 邮 编: 邮 编: 联 系 人: 郭伟勇 联 系 人: 杨婉君 电 话: 18699911182 电 话: 18997578122 传 真: 传 真: 电子邮件: 电子邮件: 监督单位: 监督单位电话: 下载 divDS_f5ffa64e_dd4e_410d_8bcc_d6a2097c8d44610.4499816894531-17.099998474121093 88d09e35-0129-45e6-8c6e-176b0047a34b
  • 我国农业土壤信息采集设备研制获得新进展
    863课题“车载农田土壤信息快速采集关键技术与产品研发”取得阶段成果  装备现代化和生产精准化是我国现代农业发展的必由之路。由于农田信息采集技术发展相对滞后,已经影响到我国精准农业的发展。发达国家精准农业发展始于外围技术特别是高技术的推动,信息采集主要采用接触式传感技术和非接触式遥感技术。相关仪器设备虽然精度很高,但价格昂贵,适用于科研而不适用于农业。开发廉价、适用、可靠的农田信息采集技术及相关仪器设备不仅是我国精准农业发展的需要,而且也是国际农业发展的需求。  “十一五”期间,课题总体执行情况良好,取得了多项重大成果。开发了车载和定点网络式土壤信息复合传感器,在国际上首次实现了土壤水分/盐分/压实度的复合车载测量以及对容重和水热特性的连续原位监测,得到国际同行的高度赞誉。研制了车载农田土壤信息快速采集设备,实现了不同土质农田0~2m土样的快速采集、GPS定位和信息存储,采样效率较国外同类产品提高一倍以上。基于光谱分析的农田信息采集技术和设备实现了多项重要突破,在国际上首次建立了土壤红外光声光谱测试和信息管理系统;基于激光吸收光谱技术的氨挥发快速测定设备成功应用于2008北京奥运期间奥体场馆附近NH3的连续监测;基于近红外光谱的便携式多波段土壤氮素测定仪,精度达到国外同类产品水平,而成本仅为其5%。获得具有完全自主知识产权的灵活低成本无线传感器网络平台(FLOWS),产品性能达到国际先进水平,成本降低一半。以上述成果为代表的多项技术和设备均达到或超过了国外同类产品的性能,同时显著降低了生产成本,为我国农田土壤信息快速采集技术和装备跻身世界水平奠定了坚实基础,为精准农业的大力发展提供了高技术保障。课题获得车载、便携、定点网络式土壤信息快速采集系统及相关设备样机44台套,专利19项(含美国专利1项),登记软件著作权9项。制定标准3项(含1项国际标准)。发表SCI和EI论文35篇。培养博硕士研究生44名。  研发的系列农业土壤信息采集设备均已在大田中得到了系统验证,一些产品还得到推广示范。如氨挥发快速测定系统在2008年北京奥运会期间城市氨气检测等方面得到了成功应用。课题成果的进一步推广和应用将解决土壤信息快速获取所面临的技术瓶颈,极大地推动我国农业生产的数字化和精准化水平,为建设粮食高产、资源高效节约型农业奠定技术基础,为国家1000亿斤增粮计划的实现和未来粮食的持续生产做出重要贡献。
  • 托普云农:数字背后见真章 科技创新赋能数字土壤新思路
    昨日,第23届全国肥料信息交流暨产品交易会在南京市国际博览中心圆满落幕。来自全国31个省(区、市)土肥水技术推广部门、肥料企业、经销商、经营主体和新闻媒体代表等参加了现场活动。作为国内领 先的数字农业综合解决方案服务商,托普云农一直致力于推动土壤的数字化发展。本次展会,更携带高标准农田建设综合解决方案、墒情监测大数据平台、耕地质量保护大数据平台、土壤三普专用仪器和农化服务解决方案亮相南京。01大数据平台,深挖土壤数字秘密数字大田平台托普云农高标准农田建设综合解决方案打造1个农业大数据中心、1个数字化决策平台以及N项涵盖土壤改良、高效节水、农田防护、生态保护、科技服务等多面的数字化应用服务,形成绿色生产方式,为粮食及重要农副产品稳产保供提供有力支撑,促进农业现代化、可持续发展。耕地质量保护大数据平台托普云农结合人工智能、GIS、物联网等新一代信息技术,搭建“耕地质量保护大数据平台”,实现土、水、肥三大耕地质量数据统一汇聚,土壤类型、耕地质量等级、土壤养分含量数据宏观展示、归纳与整合,将以往被忽略的数据进行有效利用,提高部门间数据共享效率,形成可靠的决策驾驶舱,为落实“藏粮于地,藏粮于技”战略夯实数据基础。同时联动“土肥管家”APP,指导农户主体科学合理施肥。墒情监测大数据平台为将数据更好地运用到数字土壤建设中,托普云农充分发挥技术优势,通过墒情监测点、绿色农田监测点、耕地质量监测点、高标准农田监测点等的布设,全方位采集土壤数据,通过长期监测与云端实时分析,打造数据呈现一张图、监测保护一张网、社会化服务一站式平台,实时监测预警,为我国全域高精度数字土壤数据库建成提供数据支撑与服务。02便携智能装备,实现土壤数据高效采集自第三次土壤普查行动开始,各地纷纷落实行动。智能装备的加持,加速了土壤普查工作的数字化转型。本次展会,托普云农携带众多土壤三普专用仪器,从土壤取样、土壤筛分到成分检测,致力更好地辅助普查工作顺利推进。快速检测,移动服务,随身携带,指标丰富现场小小农化服务车“五脏俱全”,丰富的农化服务组合方案,不仅帮农技服务人员省去了搭配工具的时间,更打破了以往场地限制的痛点问题,随时随地的田间地头服务,不再遥不可及。03图像识别,智能测产工具成新宠 在测产工作中,如何彻底摆脱传统人工测量耗时久、误差大等痛点问题?现场黄灿灿的小麦测产展区就为嘉宾们带来了“智慧答案”!只要1部手机、1个APP、1个标定杆,麦穗数量、亩穗数、理论产量、种子总数量和千粒重指标通通不在话下!亮点满满的内容,更获得不少参展嘉宾的认可与关注。内蒙古自治区农牧业技术推广中心胡有林主任山东省农技推广中心刘延生副主任(左2)、省农技推广中心土肥部张风祥部长(右2)天津市农业发展服务中心种植业部徐建坡部长一行海南省土壤肥料总站王朝弼站长吉林省土壤肥料总站李德忠站长浙江省耕肥管理站虞轶俊站长(右1)、陈红金副站长(中)河南省土壤肥料站刘灿华站长青海省农业技术推广总站白惠义站长,王生副站长一行山西省耕地质量监测保护中心张武云副主任甘肃省耕地质量建设保护总站郭世乾副站长
  • 索引:高标准农田气象监测系统——一款实惠物美的农业环境监测仪@2023动态已更新
    索引:高标准农田气象监测系统——一款实惠物美的农业环境监测仪@2023动态已更新型号:FT-NQ12 品牌:风途科技一、产品简介FT-NQ12农业气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度气象观测设备。该设备由气象传感器,采集器,太阳能供电系统,立杆支架,云平台五部分组成。免调试,可快速布置,广泛运用于气象、农业、林业、科学考察等领域。二、产品特点1.低功耗采集器:静态功耗小于50uA2.标配GPRS联网、支持扩展蓝牙、有线传输3.七寸安卓触屏,版本:4.4.2、四核Cortex&trade -A7,512M/4G4.支持modbus485传感器扩展5.太阳能充电管理MPPT自动功率点跟踪6.三米碳钢支架,两节螺纹旋接7.短信报警,超限后向指定的手机上发送短信8.ABS材质防护箱,耐腐蚀、抗氧化,防水等级IP66三、技术参数1.采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,2.传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V3.太阳能供电、配置铅酸电池,可选配30W 20AH/50W 20AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%4.数据上传间隔:1分钟-1000分钟可调5.屏幕尺寸:1024*600 RGB LCD6.部分传感器参数名 称 测量范围 分 辨 率 准 确 度 风 速 0~30m/s 0.01m/s ±(0.1+0.03V)m/s 风 向 0~360°(16方向) 1/16 3°(1.0m/s) 空气温度 -40-80℃ 0.1℃ ±0.3℃(25℃) 空气湿度 0-100%RH 0.10% ±3%RH 大气压力 30-110Kpa 0.01Kpa ±0.02Kpa(相对) 雨量 ≦4mm/min 0.01mm ±0.2mm 光照 0-18.8W LUX 1lux 5% 二氧化碳 500-5000PPM 1PPM ±50PPM±读数的3% 土壤温度 -40~80℃0.01℃±0.5℃土壤湿度 0-100%0.01%±3%土壤电导率EC0-20000us/cm10us/cm±5%土壤PH(探针)3-90.1≤5%/year四、云平台1.CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2.支持多帐号、多设备登录3.支持实时数据展示与历史数据展示仪表板4.云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5.支持短信报警及阈值设置6.支持地图显示、查看设备信息。7.支持数据曲线分析8.支持数据导出表格形式9.支持数据转发,HJ-212协议,TCP转发,http协议等。10.支持数据后处理功能11.支持外置运行javascript脚本
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制