纳米阵列

仪器信息网纳米阵列专题为您整合纳米阵列相关的最新文章,在纳米阵列专题,您不仅可以免费浏览纳米阵列的资讯, 同时您还可以浏览纳米阵列的相关资料、解决方案,参与社区纳米阵列话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米阵列相关的耗材

  • 蛋白质微阵列芯片制作打印机配件
    蛋白质微阵列芯片制作打印机配件是全球领先的微阵列芯片制作仪器,是专业为蛋白质芯片或DNA芯片,基因芯片等微阵列芯片而设计的微阵列芯片制作打印机器,在全球各大实验室已经安装使用的设备超过500多台。nanoprint微阵列芯片制作打印机全自动化和可编程,采用了先进的线性伺服电机技术,在X,Y方向实现高达500nm的分辨率,在Z轴方向实现250nm分辨率,并具有纳米尺度的定位精度。nanoprint微阵列芯片制作打印机具有高精度湿度和温度控制系统,具有方便用户操作的软件,可以全面和高效地打印微阵列和用于分子生物学研究和诊断应用的各种芯片。微阵列芯片制作打印机具有除湿功能可供用户选择配备,除湿功能可让用户在潮湿环境下操作。微阵列芯片制作打印机可打印高达384个微孔的微孔板,最多可以打印60个标准玻璃芯片底片。也可以打印各种微孔板,1“X3”的芯片和其他任何微流体生物芯片。纳米打印机系统提供先进的微孔板,位于微孔板下的 Peltier将其进行冷却。微阵列芯片制作打印机兼容任何PIN生物材料:DNA,蛋白质,抗体,小分子,肽核酸(PNA),碳水化合物,以及许多其他样品。这些引脚基于由美国专利6101946保护 ArrayIt专有工程和表面化学的技术 这样的设计使打印高效,经过数百万的印刷周期依然耐用。 BioTray根据研究结果提供了3种主要的PIN材料。微阵列芯片制作打印机有两种型号:纳米打印机LM60有384个微孔,最多可以打印60个标准玻璃芯片底片;纳米打印机LM210有384个微孔,最多可以打印210个标准玻璃芯片底片。LM60和LM210对可以打印一种特殊的蛋白质种类。General SpecificationsDimensions (L x P x H, cm)LM60 (110 x 85 x 56 cm)LM120 (164 x 85 x 56 cm)WeightLM60 (150 Kg), LM120 (200 Kg)Positional resolution (X,Y-Axis)500 nanometersPrinting speed48 spots per second or 192 Spots second according to the pins and printhead technologyPrinting technologyArrayit Pro, 946 or Stealth pins and printheadsNumber of pinsConfigurable 1 to 48 at 4.5 mm centers or1 to 192 at 2.25mmSpot diameter65 microns or larger to meet all applicationsMinimum spot spacing50 micronsPre-printingUser definableWash/dry stationUltrasonic with 2 wash positions and a dry stationNumber of microplatesThree standard 384-well sample microplates, customizable on the worktableMicroplates to be printed into :- 15 96-wells microplates (LM60)- 45 96-wells microplates (LM120)Number of slides60 glass slide substrates (LM60)120 glass slide substrates (LM120)Microplate coolingCool 1-3 microplates with a Peltier system, for protein microarray applicationsEnvironment controlFully enclosed, HEPA filtration and user-defined humidity controlNanoPrint™ uses 3 linear drives for X, Y and Z axis positioning combined with a proprietary linear drive motion control technology for superior positional resolution and accuracyThe X, Y - axis positional resolution is 500 nm.The high speed, high precision linear servo control system of the NanoPrint™ produces superior instrument performance that is essentially free of friction, noise and thermal emission.NanoPrint™ uses a Z-axis encoder reading at 250-nanometers resolution leading to a superior Z-Axis Resolution for Optimum Spot Morphology.NanoPrint™ offers highly precise resolution, repeatability and computer control over the speed and acceleration settings to ensure optimal printing onto any surface taking into account the biological samples to be printed.Optimal parameters are set at the factory but can be easily changed by the user for printing onto many different surfaces with different samples. The user gets a license to be allowed to use this patented technology.The figure above shows 3 Z-Axis moves to configure distance, speed and acceleration are the parameters to set :Z Profile: High speedZ Extend: Printing speedZ Retract: Quick returnFig.1Fig.2Fig.1: this picture shows three 348-wells microplates, the wash/dry module with sonicator (upper part of the picture) and the printhead and pins printing onto glass substrates (middle left). NanoPrint™ deck is configured in a module manner, allowing different worktables to be inserted and removed from the deck allowing users to easily switch between different printing applications such as glass substrates, microplates, and proprietary cassettes and cartridges or other types of substrates.Fig.2: NanoPrint™ is equipped with a Pin Cleaning Module that has a station providing pin washing, drying and sonication (downwards). The sonicator is filled and emptied during the print run in a completely automated manner.Systems sensors prevent splashing and overflowing for pin and deck safety. Drying is accomplished by vacuum using a quiet but powerful ACM-controlled (Accessory Module Control) function. The Pin Cleaning Module is rugged, durable and easy to maintain.Fig.3Fig.4Fig.3: Here the deck is configured with a capacity of three 384-well sample microplates printing onto 60 standard glass slide substrates using a printhead loaded with 48 pins. A 192-pin printhead can also be used instead of the 48-pin printhead.Fig.4: The screenshot shows a worktable allowing printing into 15 microplates (96-well) for the NanoPrint™ LM60. On the left part, three 348-well sample microplates with the pin cleaning module (wash/dry station with sonicator) can be seen.Fig.5Fig.6Fig.5: The ACM (Accessory Control Module) unit provides computer control for the wash/dry, humidity, and ultrasonication stations on the deck of the NanoPrint™ . Accurate sensing of the humidity inside the chamber assures that proper humidity levels are achieved and maintained during the entire duration of each print run. Humidity is maintained in a user-specified manner of ±1%. HEPA filtration protect the deck from dust to assure the necessary printing quality. Printing onto the worktables and control of the Pin Cleaning Module and the humidity are easily specified in software using the Microarray Manager.Fig.6: Easy connectivity (pump, tubing and connectors) between the ACM and the robot provides proper humidity and tigthness levels.Fig.7: Humidity SensingFig.8: Peltier systemFig.7: A RH sensor monitors the humidity inside the chamber with high accuracy.Together with the ACM, it assures that proper humidity levels are achieved and maintained during the entire duration of each print run.The humidification and dehumidification systems are triggered by the RH sensor that automatically maintain the levels set by the user.Fig.8: NanoPrint™ systems offer sophisticated sample microplates cooling via Peltier s an affordable and highly recommended option in order to minimize sample evaporation during printing. Microplate cooling is highly recommended for protein microarray applications to minimize protein denaturation and microbial growth in recombinant protein samples. The Peltier module fits directly beneath the 348-well sample microplate for highly efficient cooling while maintaining a low deck profile.
  • 高通量微阵列清洗器配件
    高通量微阵列清洗器配件专业为玻片清洗,微阵列芯片清洗而设计,拥有耐用的载玻片架,可容纳1-25个25×76毫米规格的玻璃玻片微阵列,可浸入到500ml的缓冲溶液槽。高通量微阵列清洗器配件特色该缓冲溶液槽配备有磁力搅拌棒和盖子,可以防止缓冲物蒸发。高通量微阵列芯片清洗器大大了微阵列芯片干燥前的清洗效率和效果。含独立的缓冲液加快微阵列芯片的处理和清洗速度。是提高基因学,生物医学,制药和农业研究的质量和速度的理想的工具高通量微阵列清洗器配件规格?容量:1?25个微阵列基片?体积:每个清洗步骤400毫升缓冲液。?缓冲液温度:4至50℃?材质:亚克力箱使温和溶剂稳定,如乙醇
  • 衍射光栅-相干光栅阵列
    衍射光栅-相干光栅阵列图1。照片LightSmyth单片光栅阵列单片式单基片硅栅阵列(图1)提供独特的高分辨率连续获得超出所能获得的单个光栅的光带宽。这种光栅须不能有移动部件。单片光栅阵列是一致的单次数据采集与许多宽带应用,例如激光诱导击穿光谱,可以帮助系统元件数显著减少。每个阵列由的所有相干在单一基板上形成的多个主光栅。母光栅有连续且轻度重叠的有效光谱范围。此外,在基底的顶部和底部的辅助光栅产生直接的校准的输出区域用于使用一个单一参考波长,如氦氖激光器的波长的光输出。图2。示意图说明操作的单片光栅阵列光谱仪与2D检测器设置在图2给出在一个简单的光谱仪装置的光栅阵列。一个二维检测器阵列被用来记录的光栅阵列的输出。图3示出了照射时由白色光源和一个共同传播的氦氖激光器的二维探测器阵列上看到的光栅阵列输出的示意图。每个附近的水平行包括四个主光栅中的一个的输出端,并对应于光谱范围表示。此外,还显示为红点是6个辅助光栅校准参考标记,当暴露在氦氖光。进一步详细描述了设备的运行和设计说明请点击http://www.lightsmyth.com/downloads/product_info/LS_MonoGrat_Array.pdf。图3。阵列输出信号检测原理图校准/准直功能特性顶部和底部的六个小光栅阵列(参见图1)提供了用于校准的光谱输出,以及协助系统对齐标记,这里的校准标记用于氦氖照明,见示意图4。校准标记提供了两个主要的功能:第一,它们表示在主光栅输出的校准部分的开始和结束点。因此,它们允许用户校准波长作为位置的函数的沿着各母光栅色散线 - 注意,校准点所表示的波长范围内是独立的光栅输入角度,使光栅阵列具备各种不同可能的样式。第二,辅助光栅辅助系统调整。当所述检测器表面被适当地定位在焦平面阵列后聚焦镜,两对对准标记设计为一致性和适当远场操作指示。中心两个标记阵列探测器表面使得水平正确的准直方式。更多单片光栅阵列技术细节请参考http://www.lightsmyth.com/downloads/product_info/LS_MonoGrat_Array.pdf。单片硅平面阵列硅基底具有0.73毫米厚度。基板的高度和宽度公差是0.3毫米。光栅基片:单晶硅。光栅镀膜:铝(其它镀膜类型额外收费)。Primary GratingCalibration Markers1Line/mmSizePart NumberPrice first 99 units2,3Unit price 100+1381, 522 nm178812.5mm x 12.5mmSAG-1212A-Al$96.00 ea.$25.00 ea.2509, 696 nm13413683, 935 nm9984929, 1271 nm7341The calibration markers listed are produced by a HeNe laser incident on the small calibration gratings. Use of a different calibration light source having a different wavelength will produce markers (see Fig. 4) coinciding with different values of the dispersed spectra of the four primary gratings. Using a common input angle for calibration light and signal, the calibration marks delineate spectral output ranges of the primary gratings that are independent of grating input angle.2For orders with the total product value below $250.00, a handling charge of $75.00 will be added.3Academic discounts are available for eligible institutions. To determine eligibility complete an account application procedure.

纳米阵列相关的仪器

  • 金刚石NV色心阵列 400-860-5168转2831
    金刚石NV色心阵列昊量光电新推出金刚石NV色心阵列,使您的单个NV实验简单快速。金刚石NV色心阵列是将一个金刚石膜片与阵列的脱耦结构安装在蓝宝石芯片上,便于操作。与单独的金刚石NV色心相比,这些结构的形状将收集效率提高了10倍以上,显著提高了信噪比。增强发射我们将单个金刚石NV色心放置在近似抛物线形状的结构中,从而显著提高了它们的亮度。这不仅可以将饱和计数率提高到MCts/s范围,还可以轻松定位和处理金刚石NV。无论是用于传感,作为单个光子源,还是用于量子计算实验,10倍以上的亮度增加将显著改善您的实验。金刚石NV色心阵列产品描述我们的金刚石NV阵列芯片由一个钻石膜片和36个200 × 200 NV点阵列组成,安装在蓝宝石芯片上,便于操作。大约30%的柱上有一个单一的NV,大约5%的柱上有一个高性能的NV。我们预先表征了NV阵列,并为您提供了NV柱点及其性能的地图。相干时间很大程度上取决于NV深度,越深越好。我们提供两种不同的深度:浅:目标深度为8纳米,用于表面传感应用,如核磁共振。中等:目标深度为50(100)nm,适用于单光子源、磁场传感和量子计算等应用。金刚石NV色心阵列技术规格Number of single Nitrogen Vacancy centers~100'000Typical contrast (10 MHz, linewidth cw- ODMR)15 - 25%Typical saturation countrate (650 nm longpass, Mitutoyo 50x HR NA 0.75 objective)1 MCts/sNV depth (shallow/deep)coherence time T2 (single pulse Hahn Echo) (shallow/deep)3 / x μsdephasing time T2* (x-y sequence) (shallow/deep)3 / x μs更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • InGaAs 阵列光谱仪 400-860-5168转1545
    SM304 InGaAs 阵列光谱仪 科研级高性能 极低的暗噪声和杂散光 宽的动态范围和高的信噪比 高稳定性 灵活的光纤输入直接到狭缝或通过光纤 广泛的应用设计 高速数据采集 各种近红外范围从900纳米到2500纳米 应用: 光谱产品将提供新的SM304 TE致冷的InGaAs阵列光谱仪。 SM304系列是理想的近红外光谱法,需要非常高的信噪比和/或高动态响。高性能的SM304系列的低噪声电平,能够应用在非常苛刻的应用。 SM304系列中使用的检测器的高灵敏度允许各种宽带应用,例如,测量在近红外范围内的各种样品,在分析化学品/水分检测的光学性质,以及一个窄频带的应用,如近红外激光表征。 标准接口SM304系列与16位在USB 1.1/2.0兼容接口。软件支持包括SDK和DLL的专用应用程序的开发,我们的SM32Pro基于Windows的光谱采集和分析软件。 软件: SM32Pro - 视窗95,2000,XP,7的软件(支持32位和64位)进行数据采集和分析透射率,反射率,和吸光度测量 数据导出,放大和缩小,频谱覆盖,还有更多的功能 信号平均和积分时间控制 可在DOS和Windows用户方便的软件开发DLL库 用VC+ + / VB/ Labview的例子
    留言咨询
  • 微纳光学元器件外协加工|衍射光学元件|衍射光栅|超透镜|微透镜阵列 微纳光学元件是指面形精度可达亚微米级,表面粗糙度可达纳米级的自由光学曲面及微结构光学元件。由于其具有体积小、重量轻、设计灵活、易阵列化和可批量复制等优点,使其可完成传统光学元件无法实现的新功能,并可构成许多新型的光学系统。目前微光学元件阵列己经成功地应用于现代光学的各个领域,在军事上以及航空航天方面均具有非常重要的应用前景,因而微纳光学元件的制备也成为了表面微加工领域重要的热点研究方向。  实验室平台拥有设备等共计200余台,其中主要设备(40余台)包括:  图形化设备  电子束曝光、激光直写、台式接触式光刻机、桌面式光刻机等  薄膜沉积设备  ICP-PECVD、LPCVD、磁控溅射、电子束蒸发镀膜、PE-ALD、DLC薄膜沉积等、电镀 (Au、Ag、Cu、Ni、Sn等)  刻蚀设备  ICP—RIE、RIE、IBE、DRIE深硅刻蚀、XeF2表硅刻蚀机、HF气相刻蚀等干法刻蚀设备和满足体硅、介质膜、金属氧化物、金属等的湿法刻蚀设备以及相配套的二氧化碳超临界释放设备  表征和测试设备  AFM、台阶仪、Raman光谱、SEM、FIB、共聚焦显微镜、白光干涉仪、红外热成像仪、FEMTO—TOOLS微纳力学测试仪、超高速相机、3D多普勒激光测振仪、DC/RF探针台(60GHZ)、网络分析仪(60GHz)、半导体分析仪、阻抗分析仪以及高精度电学原表等  器件后道封装设备  晶圆减薄、CMP抛光、晶圆键合、贴片机、划片机、打线机、固晶机、激光焊接机等团队自主研发的加工设备,封测设备。  平台技术能力  工艺整合及平台能力  —导电DLC膜层(超滑副,导电超硬膜层等)  —AIN/PZT薄膜工艺(压电驱动材料)  —大尺寸高定向碳材料生长和器件加工工艺  —键合:阳键合、玻璃焊料键合、共晶键合(AIGe)、扩散键合工艺  —气氛或真空封装、Reseal  —研磨减薄和原子抛光工艺  —硅基全湿法微纳加工工艺—柔性衬底微纳器件加工  制造与封测能力  —硅通孔(TSV)玻璃通孔(TGV)  —压力/气体/红外/湿度传感器  —微流控芯片加工和相关测试  一超滑射频/惯性器件加工能力  —Die的全封装能力应用类别设备名称设备型号工艺参数镀膜低压力化学气相沉积(LPCVD)HORIS L6471-1可沉积SIN,TEOS,poly等薄膜 1-50片/炉热氧化炉管热氧化退火快速退火炉RTPAnnealsys AS-One 150高温度到1500℃, 升温速率大200℃/sFIB加工聚焦离子束 FIBThermo Fisher Scios 2 HiVacTEM样品制备SEM形貌观测场发射环境扫描电镜ESEMThermo Fisher Quattro SSEM能谱分析电子束蒸发镀膜-金属电子束蒸发FU-20PEB-950蒸镀金属薄膜、可做lift-off工艺镀膜、8寸基片向下兼容电子束蒸发镀膜-介质电子束蒸发FU-12PEB蒸镀介质薄膜一炉可镀10片四寸基片磁控溅射镀膜-金属磁控溅射系统FSE-BSLS-RD-6inch溅射金属薄膜、6寸基片原子层沉积等离子体增强原子层沉积系统ICPALD-S200当以Al2O3为主DLC镀膜类金刚石薄膜化学沉积系统CNT-DLC-CL200干法刻蚀干法刻蚀机北方华创硅Bosch和超低温刻蚀、SiO2与石英深刻蚀,8英以下IBE刻蚀离子束刻蚀系统(IBE)AE4三维结构材料刻蚀,刻蚀陡直度优于85度,刻蚀精度10nm等离子体去胶微波等离子体去胶机Alpha Plasma紫外光刻紫外光刻机SUSS MA6BA6GEN4对准精度:±0.5um,分辨率600nm电镀电镀机WPS-200MT镀Cu、镀Au、镀镍/镍合金临界干燥超临界点干燥仪Automegasamdri-915B划片切割机划片机Disco D323晶圆键合晶圆键合机SUSS MicroTec SB6Gen2阳键合AFM测试高分辨原子力显微镜Oxford Cypher ES原子力显微镜Park Systems NX20电子束光刻电子束光刻机Elionix ELS-F125G8不含匀胶等费用,材料费根据用胶类型另计  我们提供快速MEMS器件 / 微纳米结构加工设计服务, 欢迎留言咨询。咨询电话:
    留言咨询

纳米阵列相关的方案

纳米阵列相关的论坛

  • 【原创大赛】纳米阵列电极简述

    【原创大赛】纳米阵列电极简述

    纳米阵列电极是多个纳米电极的集合体。根据单个纳米电极的组合方式,纳米阵列电极可分为有序纳米阵列电极(nanoelectrode arrays) 和无序纳米阵列电极( nanoelectrode ensembles) 。纳米阵列电极不仅具有单个纳米电极高传质速率、低双电层充电电流、小时间常数、小IR 降及高信噪比等优势,而且由于成千上万个单个纳米电极集中在一个基体上,克服了单个纳米电极响应信号过小、易受干扰和难以操作等缺点,能极大地提高测量的灵敏度和可靠性,降低操作难度和测量成本。特别是作为人工组装的纳米结构体系,纳米阵列电极更能突出研究者的设计和创新理念。人们能够通过设计和组装实现对纳米阵列组成、结构和性能的有效控制。因而,纳米阵列电极自20 世纪80 年代诞生起就受到人们的普遍关注。迄今为止,人们已相继设计制作出如圆盘状、井状、叉指状、圆柱形、圆锥形、截锥形、球形和半球形等多种形状的纳米阵列电极,所用电极材料包括金属、半导体、高聚物和碳纳米管等多种材料。其在电化学分析、微型生物传感器、电催化和高能化学电源等领域已日益显示出广阔的应用前景。1、纳米阵列电极的制备方法1. 1 模板法模板法是选择具有纳米孔径的多孔材料作为模板,在模孔内合成纳米阵列,然后组装成纳米阵列电极。此方法通过调整模板的参数,可以实现对纳米电极结构和尺寸的有效控制。可采用纳米阵列孔洞膜做模板,通过电化学沉积法、溶胶一凝胶法、溶胶一凝胶一聚合法、化学气相沉积法等技术将纳米结构基元组装到模板孔洞中而形成纳米管或者纳米线的方法。常用的模板主要是有序孔洞阵列氧化铝模板(AAO)和含有孔洞有序分布的高分子模板。多孔阳极氧化铝模板是通过高纯铝片在适当温度的酸性溶液中阳极氧化制得。依阳极氧化时所加的氧化电压、电解液类型、电解温度及电解时间的不同,可得到不同孔径、孔深和孔间距的膜,这种膜是典型的具有纳米孔阵列的自组装微结构。Keller等在1953年报道了多孔阳极氧化铝的理想结构模型如图1所示,该模型指出多孔层是由许多六角柱形结构单元紧密有序地排列而构成的。Martin等在模板法制备纳米线方面做了开拓性工作,1989年他们在阳极氧化铝模板的孔道内合成了金纳米线,并研究了它的透光性能。此后,模板法得到了迅速发展。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567915_3043450_3.jpg图1 多孔阳极氧化铝的理想结构模型纳米阵列电极的模板法制作过程如图2所示,大致是先在通孔的模板膜的一面用各种方法覆盖一层金属。这层金属膜较厚是为了保证电极能覆盖所有的孔。然后将覆有金属的一面与导电基体接触或者直接将金属膜作为导电基体进行电沉积。通过溶解或部分溶解模板控制纳米线的长度,可得到不同类型的纳米阵列电极。如图2b为纳米孔阵列电极,图2c为纳米盘阵列电极,图2d、e为纳米线阵列电极。用化学沉积的方法填充模板时不需事先镀覆金属膜。例如,在金属已充满膜的纳米孔洞之后继续沉积,可在模板膜的两面均得到一层金属膜,去除其中的一层,另一层留作阵列电极的基体,则得到典型的纳米盘阵列电极。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567916_3043450_3.jpg图2 纳米阵列电极的模板法制作过程示意图1.2 刻蚀法刻蚀法是基于化学腐蚀或光化学反应,对材料进行加工的一种方法。在纳米阵列电极制备过程中,主要通过对电极覆盖层、阵列模板或电极材料进行加工,从而制备出各种立体形状的电极,是目前制备形状可控的纳米阵列电极较为有效的方法。目前主要的刻蚀方法有化学刻蚀法和光刻法。化学刻蚀操作简便,只要控制得当就能得到理想的纳米阵列电极。Crooks等报道了通过刻蚀覆盖在平面电极上的绝缘层来获得纳米孔阵列电极的方法。他们制得直径为60~80 nm 的Au (111) 有序凹进并且高度对称的六边形纳米阵列。具体做法是:选择一定面积的Au(111),其余部分用蜡覆盖,电化学方法纯化45 min 后,欠电位沉积单层铜;再将硫醇化学吸附在上层的铜上形成硫醇自组装层;最后在氰化物溶液中用化学刻蚀的方法扩大硫醇自组装层的缺陷,以制成凹进的Au (111) 纳米阵列电极。光刻法在制备有序带状纳米阵列电极方面具有特殊的优势。典型的制作过程如下:首先设计阵列的形状,采用气相沉积在绝缘基体上沉积厚度约为100 nm的薄层金属,再涂上一层光刻胶,然后在其上覆盖光刻模板,通过光照和选择性化学溶解得到阵列。Finot等采用电子束光刻及离子刻蚀的方法得到纳米插指阵列电极。其中单个插指电极的宽度为100 nm、电极间距离为200nm、电极面积为100 m×50 m,如图3所示。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251646_567917_3043450_3.jpg图3 金插指阵列电极SEM图(1000×)1.3 自组装法自组装法通过非共价键之间的相互作用使纳米粒子聚合在一起,自发地在基底表面形成有序纳米结构薄层的一种方法,是近年来非常活跃的研究方法之一。在纳米阵列电极制备过程中,自组装层可作为电极反应的活性部分,也可作为惰性覆盖层。汪尔康等采用自下而上自组装法制成金纳米粒子阵列电极。他们首先将云母基体在巯基的作用下表面功能化,再将云母浸入到金胶溶液中,云母表面的硫醇基团将12 nm的金颗粒固定。不同的浸入时间获得的金阵列的密度不同,时间越长,得到的纳米金粒子阵列的密度越高。Radford等采用自组装法将氧化还原活性物质单层膜固定在以金为基体的单层十二烷基硫醇自组装膜上,制成纳米阵列电极。其中活性部分是固定在直链硫醇自组装层终端的氧化还原类物质,每个活泼的氧化还原分子相当于单个纳米电极。这种电极灵敏度高,可用来研究以氧化还原介质作电子传递媒介的生物大分子氧化还原反应机理。2、前人相关纳米阵列制备的研究高度取向的纳米阵列是以纳米颗粒、纳米线、纳米管为基本单元,采用物理和化学等方法在二维或三维空间构筑的纳米体系。高度取向的纳米阵列结构除具有一般纳米材料的性质外,它的量子效应突出,具有比无序的纳米材料更加优异的性能。纳米阵列结构很容易通过电、磁、光等外场实现对其性能的控制,从而使其成为设计纳米超微型器件的基础。目前,有序纳米结构材料已经在垂直磁记录、微电极束、光电元件、润滑、传感器、化学电源、多相催化等许多领域开始得到应用。2.1TiO2纳米管阵列的制备及其研究目前TiO2纳米管的制备方法主要有包括利用多孔氧化铝、有机聚合物和表面活性剂作为模板的模板合成法和利用TiO2纳米粉在碱性条件反应的水热合成法。其中最主要的方法是多孔氧化铝模板法和碱性条件下的水热合成法。在多孔氧化铝模板合成法中,通过调节工艺参数来控制,不同模板的孔径尺寸,可以制备出不同管径的纳米管,但难以合成直径较小的纳米管;而水热合成法虽然操作简单,且可以制得管径较小的纳米管,但纳米管的特征却严重依赖于颗粒的尺寸和晶相。同时这两种方法制备的纳米管是一种分散状态,不能直接固定在电极的表面。从高级氧化技术应用角度来看,TiO2固定薄膜比悬浮颗粒更为实用。美国科学家Grimes利用电化学阳极氧化的方法制备了TiO2纳米阵列材料,采用阳极氧化技术制备的TiO2纳米管分布均匀,以非常整齐的阵列形式均匀排列,纳米管与金属钛导电基底之间以肖特基势垒直接相连,结合牢固,不易被冲刷脱落。TiO2纳米阵列材料是制备工艺流程如表1所示。表1 TiO2纳米阵列材料是制备工艺流程 步 骤操 作 工 艺Ⅰ金属钛在含有F-的酸性电解质中迅速阳极溶解,阳极电流很大,并产生大量Ti4+离子(反应式(1))。接着Ti4+离子与介质中的含氧离子快速相互作用,并在Ti表面形成致密的TiO2薄膜,电流急剧降低(反应式(2))。Ⅱ多孔层的初始形成阶段,随着表面氧化层的形成,膜层承受的电场强度急剧增大,在氟离子和电场的共同作用下,在TjO2阻挡层发生局部蚀刻,形成许多不规则的微孔凹痕(反应式(3)),此时,电流呈轻微增大趋势。Ⅲ多孔膜的稳定生长阶段,电流完全由发生在阻挡层两侧的离子迁移提

  • 【原创大赛】Ni基纳米阵列的制备

    【原创大赛】Ni基纳米阵列的制备

    1、实验步骤(1)AAO模板前处理依次用丙酮,乙醇,去离子水对模板进行清洗,以除去表面油污和灰尘等杂质,以防阻塞纳米孔。然后,在模板的一侧进行喷金处理,根据本实验要求,选择喷黄金,喷金在真空条件下进行,时间为5min。前处理后,测得AAO模板喷金侧具有良好的导电性。 (2)电镀液的选取主要选用Ni的盐溶液作为电镀液使用,考虑到AAO模板易被腐蚀的特性,配制了酸性和中性两种电镀液配方进行实验。(3)电镀实验预处理用循环水泵抽真空,使电镀液充满氧化铝模板的孔洞。抽真空时间为12h左右,至溶液内不再有气泡冒出为止。 (4)电沉积 在室温条件下,采用两电极体系,Pt作为对电极。直流电源下电流密度恒定在8mA/cm2条件下制备得到了金属Ni纳米线。将所制备的样品用3MNaOH溶液进行充分溶解,除去多孔氧化铝膜,用去离子水反复长时间冲洗,将残留的NaOH去除干净。2、 结果与讨论2.1模板的微观形貌图1为AAO模板的电镜形貌图。AAO模板孔径为80~100nm。孔隙率,模板中孔洞的体积之和占模板总体积的百分比,用P表示。因模板孔洞平行排列,故孔隙率的大小可用垂直于模板孔洞生长方向的平面上,孔洞面积与总面积的比值来计算。所用模板孔隙率计算如下:α(孔密度)=n÷S总 (2·1)P(孔隙率)=S孔÷S总 (2·2)其中,n(孔数)应按选定的分析面积内完整孔洞的数目来计算。由于孔洞数目较多,且实际模板的孔洞并非理想的圆形,因此,可以考虑借助专门的图形分析处理软件对一些结构参数进行辅助分析计算,一方面可以提高工作效率,另一方面,结构参数分析的准确率也可以得到很好的保证。经计算得,实验所用AAO模板孔隙率约1011个孔/cm2。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567922_3043450_3.jpg图1 AAO模板的SEM图2.2制备Ni纳米阵列在室温下恒流电镀9h后,将AAO模板置于3M的NaOH中50min,进行模板的去除后,用SEM观察其微观形貌。图2为去除AAO模版后的纳米线的SEM图。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567923_3043450_3.jpg图2 Ni纳米线的SEM图从图2可以看出, Ni纳米线呈束状,有较大的长径比,大量纳米线互相接触,这是由于溶解时间过长,AAO模板全部被除去后,单独的纳米线无法独立支撑,未形成规整的阵列结构。Ni纳米线直径在80-100nm之间,这与AAO模板孔洞直径分布有关。AAO模板的制备过程中会因降压引起纳米孔洞底部变细小,镍纳米线的外形与氧化铝模板具有相似性,因此镍纳米线的根部会有分支、变细的现象。还可能是电沉积过程中,导电性能好的区域生长较快形成的。纳米线表面不光滑则说明Ni纳米线的生长为单晶结构,生长速度有一定的不可控性。图3为所制备的Ni基纳米线的俯视图,AAO模板全部去除,纳米线互相接触。可以看出,Ni纳米线具有很好的取向性且未发生断裂,表明纳米线刚性较好。在模板全部被去除的情况下,仍保持有一定的有序性。纳米线生长长度基本一致。纳米线呈束状集中也有可能是电沉积时间过长,导致所沉积的纳米线长度超过模板而在模板表面沉积而形成的。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567924_3043450_3.jpg图3 Ni基纳米阵列将AAO模板的去除时间缩短为35min,电沉积时间仍为9h,对制得的样品进行微观表征,如图4的a、b、c、d所示。由图4可知,模板部分去除后得到的Ni基纳米阵列,呈排列整齐的阵列结构,可用于下一步的纳米阵列电催化性能的研究。http://ng1.17img.cn/bbsfiles/images/2015/09/201509251659_567925_3043450_3.jpg图3·5 Ni基纳米阵列的SEM图依据上面的分析结果可知,为得到排列规整的Ni基纳米阵列,需对电镀时间和模板溶解时间进行调整。缩短模板溶解时间,使Ni纳米线底部不与基体脱离,使纳米线之间相互独立,保持模板去除前的间距,从而得到Ni基纳米阵列电极。3、结论通过AAO模板电沉积法制备的Ni基纳米线平行排列,高度有序,镍基纳米阵列中镍纳米线直径为80~100nm。

  • 【求助】(ok)如何测Ni纳米线阵列的磁性

    我在多孔氧化铝模板(AAO)中填充了Ni的纳米线阵列,老师让分别测试平行阵列方向和垂直阵列方向的磁性,请问该如何操作?(是不是在换算磁性物质的质量的时候必须把模板的重量扣除?)请高手赐教,谢谢!

纳米阵列相关的资料

纳米阵列相关的资讯

  • 苏州纳米所等在基于纳米Nafion阵列的低Pt、高性能燃料电池研究方面获进展
    有序Nafion阵列因其在降低催化剂载量、提高燃料电池性能方面的巨大潜力引起了人们的广泛关注。目前,有序Nafion阵列的尺寸已经从最初的微米级减小到现在的亚微米级,纳米尺寸的有序Nafion阵列成为其发展的必然趋势。这主要是因为有序Nafion阵列尺寸的减小能够带来三个方面的提升:高的阵列密度提供更多的质子传递通道,高的比表面积提高催化剂的利用率,催化层与扩散层更多的接触位点减小界面传递阻力。但是,纳米尺寸有序Nafion阵列较低的机械强度给其制备以及应用都带来了极大的困难(图1)。近日,中国科学院苏州纳米技术与纳米仿生研究所研究员周小春、崔义,大连理工大学教授宋玉江等在ACS Nano上发表了高比表面积、纳米尺寸有序Nafion阵列提高燃料电池性能、降低Pt催化剂载量的研究。相较于已经报道的制备方法,该工作创新地通过Nafion乳液溶剂、Nafion阵列热退火温度,以及Nafion阵列剥离方式三个方面的研究实现了纳米尺寸有序Nafion阵列的制备(图2)。研究人员使用DMSO作为Nafion乳液溶剂,并在140℃下进行热退火处理,显著提高了纳米尺寸有序Nafion阵列的机械强度,其机械强度高达17.5 MPa,并高于商业Nafion 212的11.9 MPa。进一步,边缘刻蚀的方式避免了纳米尺寸有序Nafion阵列剥离过程中大量氢气的产生与聚集,以及较高氢气压力对于Nafion阵列的破坏和Nafion膜的穿孔。该研究成功制备了高机械强度、形貌完好的纳米尺寸有序Nafion阵列(图3)。成功制备的纳米尺寸有序Nafion阵列的直径仅为40 nm(D40),密度高达2.7×1010柱/cm2,远高于文献中已经报道的Nafion阵列的密度。高密度的Nafion阵列提供了丰富的质子传递通道,有利于催化层内质子传递阻力的降低。其次,比表面积高达51.5 cm2/cm2,为催化剂的负载提供了较大的比表面积,有利于催化剂利用率的提高(图4)。此外,纳米尺寸有序Nafion阵列的尺寸优势在燃料电池上得到了很好的证明。有序Nafion阵列作为阳极一侧时,相较于尺寸更大的D400(400 nm)、D100(100nm),D40峰值功率密度最高,高达1.47 W/cm2(图5),与此同时,催化剂载量仅为17.6 μgPt/cm2。此外,D40用于阴极一侧,在61.0 μgPt /cm2的载量下,峰值功率密度可以达到1.29 W/cm2。与已经报道的文献相比,纳米尺寸有序Nafion阵列无论应用于阳极一侧还是阴极一侧,均能够在较低的催化剂载量下获得较高的峰值功率密度。此外,该工作还为电解水和电合成催化层的合理设计提供指导。相关研究工作得到国家重点研发计划、中国博士后基金、苏州市碳达峰碳中和科技支撑重点专项等项目资助。图1 有序Nafion阵列尺寸的发展趋势、尺寸优势以及纳米尺寸有序Nafion阵列的制备挑战图2 该研究中纳米尺寸有序Nafion阵列的制备流程与已报道的制备流程的对比图3 纳米尺寸有序Nafion阵列制备流程的影响图4 有序Nafion阵列尺寸与Nafion阵列密度、比表面积的关系图5 纳米尺寸有序Nafion阵列在燃料电池中的应用
  • 科学家利用金属—氧化物相互作用构建纳米团簇阵列
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组(502组)包信和院士、傅强研究员和宁艳晓副研究员团队在负载纳米团簇催化剂的结构控制和微观表征方面取得新进展,利用金属—氧化物相互作用调控金属纳米团簇的尺寸与稳定性,揭示了载体氧化物表面氧原子p-带中心可用于定量描述金属—氧化物界面作用。负载纳米团簇在许多催化反应中表现出高活性、高选择性以及高原子利用率,基于原子规整的模型催化剂和原子可视的表面表征方法可以对纳米团簇的稳定机制和催化作用提供微观理解。在前期研究中,该团队发现单层分散、亚稳态、高活性氧化物纳米结构可以在贵金属表面稳定,并提出界面限域催化概念(Science,2010;Acc. Chem. Res.,2013;JPCC,2015;ACS Nano,2017)。近期,团队进一步揭示了金属表面和环境气氛对氧化物纳米结构动态变化的协同限域效应(PNAS,2022)。在本工作中,研究人员在FeO/Pt(111)和FeO2-x/Pt(111)表面上构建了结构规整的金属(Cu、Ce等)单原子和纳米团簇阵列结构。对这些团簇结构的选择性落位以及热稳定性研究发现,氧化物载体表面氧原子活性决定了金属原子与氧化物的作用强度。基于理论研究发现,可以利用表面氧原子p带中心来描述表面氧活性,并与Cu在氧化物上相互作用强度实现很好的关联。据此,团队提出了表面氧原子p带中心可以作为金属—氧化物相互作用的定量描述符。相关研究成果以“Periodic Arrays of Metal Nanoclusters on Ultrathin Fe-Oxide Films Modulated by Metal-Oxide Interactions”为题,发表在JACS Au上。该工作的第一作者是中国科学院大连化学物理研究所502组博士研究生罗序达。该工作得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 银纳米棒簇有序阵列构筑及SERS检测水中农药残留研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文小组与美国西弗吉尼亚大学教授吴年强小组及技术生物与农业工程研究所研究员黄青小组合作,在银纳米棒簇有序阵列构筑及基于其表面增强拉曼散射(SERS)效应检测水中农药残留方面取得进展,相关成果以卷首插画论文发表在《先进材料》(Adv. Mater. 2016, 28, 4871-4876)上。  拉曼散射光谱能够提供分子振动的指纹信息,是化学、生物、环境等领域中最具应用前景的分析技术之一。然而拉曼散射效应非常微弱,拉曼散射光强度约为入射光强度的10-6~10-9,所以需要利用贵金属纳米结构SERS基底来大幅度增强拉曼散射信号。对于理想的SERS基底,首先应具有高密度的“热点”(一般位于10nm的贵金属纳米结构间隙处,具有显著增强的局域电磁场),从而保证其具有高sers灵敏度 其次,要求sers信号分布均匀一致,即信号可信度高。贵金属纳米棒簇拥有大量狭窄的缝隙,因而能够产生高密度的sers“热点” 并且纳米结构有序阵列具有优异的结构均一性,能够提供高的sers信号可重复性和可信度。因此,如果能够成功制备贵金属纳米棒簇有序阵列,将有望实现高灵敏度、高可信度sers检测。 p=""  该团队副研究员朱储红利用多孔阳极氧化铝和单层胶体球构成的复合模板,采用电沉积法成功构筑了银纳米棒簇有序阵列。这种分级有序纳米结构阵列的SERS增强因子高达108,并具有较好的信号均匀性和重现性,其信号特征峰强度的相对标准偏差小于10%。时域有限差分法模拟结果表明,相邻纳米棒顶端之间约2纳米宽的间隙内,具有强电磁场耦合产生的“热点” 该有序阵列的高增强因子正是源于这些密集分布的“热点”。采用该SERS基底能够同时检测水中多种痕量农药,例如甲基对硫磷和2,4-二氯苯氧乙酸等。该工作为大面积、可重复制备高度有序的纳米棒簇阵列提供了一种低成本的简便方法。相关研究结果表明银纳米棒簇有序阵列在基于SERS效应检测水中农药残留方面具有重要的应用前景。  相关工作得到国家重点基础研究发展计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。  文章链接  图1. 卷首插画  图2. 银纳米棒簇有序阵列同时检测水中的甲基对硫磷和2,4-二氯苯氧乙酸得到的SERS光谱。曲线I:水中0.3μ M甲基对硫磷和2μ M的2,4-二氯苯氧乙酸混合农药的SERS光谱 曲线II:0.3μ M甲基对硫磷的SERS光谱 曲线III:2μ M的2,4-二氯苯氧乙酸的SERS光谱。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制