紫外表征方法

仪器信息网紫外表征方法专题为您提供2024年最新紫外表征方法价格报价、厂家品牌的相关信息, 包括紫外表征方法参数、型号等,不管是国产,还是进口品牌的紫外表征方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外表征方法相关的耗材配件、试剂标物,还有紫外表征方法相关的最新资讯、资料,以及紫外表征方法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

紫外表征方法相关的厂商

  • 以色列Ofil紫外成像仪是光学和数字紫外线检测和成像技术的世JIE领XIAN制造商。成立于1993年,总部在以色利。Ofil紫外成像仪开发和销售创新解决方案,这些解决方案正在全球范围内用于监测电气装置和环境危害。我们的数字检测系统对于电气故障的诊断、预防和预测是不可或缺的。我们的紫外线偏振系统有助于绘制海上溢油扩散图并控制其清洁效果。Ofil紫外成像仪利用其紫外线光学专有技术,不断开发紫外线增强成像解决方案,以应对全球电网不断变化的需求。多年来,Ofil以其创新、高质量和快速响应的方法赢得了全球的认可。DayCor?系列产品提供以下解决方案:电力设施的维修操作电动列车的预测性维修操作以色列Ofil紫外成像仪介绍石油化工电网部件制造商高压实验室和研究所用于国土安全的紫外线信号检测环境组织的漏油监测
    留言咨询
  • 400-631-8366
    服务科学,世界领先--赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.com。 联系方式:电话:800-810-5118, 400-650-5118(支持手机)售前咨询电子邮箱:sales.china@thermofisher.com售后服务电子邮箱:cru.cn@thermofisher.com 扫一扫,关注 “赛默飞世尔”官方微信 关于材料表征部门材料表征部门提供的仪器可以分析和测量粘度、弹性、可加工型,以及塑料、食品、化妆品、医疗和涂料行业里与温度相关的机械变化,还有各种液体或固体的测量。主要产品包括:HAAKE哈克品牌转矩流变仪,HAAKE哈克品牌旋转流变仪,拉伸流变仪,各式挤出设备以及不同型号的粘度计。欲了解更多信息,请登录 www.thermoscientific.cn/products/rheometers.html 材料表征邮箱:info.mc.china@thermo.com
    留言咨询
  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询

紫外表征方法相关的仪器

  • 闪烁体是一类吸收高能粒子或射线后能够发光(探测器灵敏波段)的材料,可分为有机和无机两大类,按其形态又可分为固体、液体和气体三种。 当闪烁体受到高能粒子或射线照射后能够发生能级跃迁,且产生的紫外可见光强度可被光电探测器探测到。当X射线与闪烁体作用时,一个X射线光子,可以产生多个光子,与紫外可见光不同,因为X射线的能量足以使物体电离,使电子脱离能级的束缚。能量越高的X射线光子,通过产生俄歇电子,康普顿散射等产生更多的电离电子(二次电子),二次电子热能化退至激发能级,通过荧光或磷光的方式发光。因此闪烁体对辐射具有能量分辨率。在医学上,闪烁体是核医学影像设备的核心部件,通过它可以快速诊断出人体各器官的病变大小和位置。闪烁体在行李安检、集装箱检查、大型工业设备无损探伤、石油测井、放射性探测、环境监测等领域也都发挥着不可替代的作用。闪烁体还是制造各类对撞机中电磁量能器的重要材料,它可捕捉核反应后产生的各种粒子的信息,是人类探索微观世界及宇宙演变的重要工具。稳态瞬态荧光-闪烁体综合性能表征系统可综合测试稳态瞬态光致发光以及X射线辐射发光。X射线辐射样品仓安装可控屏蔽快门,在辐射光源最大功率下关闭快门时,样品位置辐射剂量小于10uSv/h,辐射防护满足国标GBZ115-2023《低能射线装置放射防护标准》的要求。 该系统可根据用户需要搭建以下功能● 稳态荧光/瞬态荧光● 稳态X射线荧光/瞬态X射线荧光● X射线荧光成像● 显微荧光/显微荧光寿命成像● 温度相关光谱 X射线荧光成像瞬态X射线荧光寿命测试技术参数X射线荧光成像TYP 39分辨率卡的X射线图像。测试1mm厚的YAG(Ce)时,分辨率可以达到20pl/mm以上。
    留言咨询
  • 材料表征 400-801-8117
    产品包括实验室加工设备药物制剂工艺设备旋转流变仪粘度计更多信息:请访问赛默飞世尔科技材料表征的展台,展位号:SH100279。或使用简易域名登陆:http://mctc.instrument.com.cn。
    留言咨询
  • TriboLab CMP 利用其前身产品 (Bruker CP-4) 超过 20 年的 CMP 领域专业知识,为业界领先的 TriboLab 平台带来了一套完整的功能。基于本套设备产生的高精度和高可重复性使得在整个 CMP 流程中能够进行高效的鉴别、检查和连续功能测试。TriboLab CMP 是市场上唯一能够提供广泛的抛光压力 (0.05-50 psi)、速度(1 至 500 rpm)、摩擦、声发射和表面温度测量的工艺开发工具,可准确、完整地描述 CMP 工艺和耗材。用于 CMP 的小型研发规模专业系统布鲁克的TriboLab CMP工艺和材料表征系统是专为晶圆抛光工艺而设计,是具有可靠、灵活和高效的台式设备。重现全尺寸晶圆抛光工艺条件,无需在生产设备上停机提供无与伦比的测量可重复性和细节检测允许在小样品上进行测试,比全晶圆测试节省大量成本板载诊断系统可以更好地了解抛光过程比市场上任何其他系统提供更多的瞬态抛光过程的参数从接触抛光盘开始直至整个测试过程都能收集数据通过更完整、更详细的数据实现早期流程开发决策具有灵活的样品类型、尺寸和安装配置抛光任何平面材料,几乎能使用任何修正盘,任何抛光液,和任何抛光垫轻松使用 100 mm 以下的小尺寸晶圆可同时安装多个样品,测试更灵活
    留言咨询

紫外表征方法相关的资讯

  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 浅谈纳米材料的表征与测试方法
    p style="text-align: justify text-indent: 2em "纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。/pp style="text-align: justify text-indent: 2em "strong1 纳米材料的表征/strong/pp style="text-align: justify text-indent: 2em "纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "纳米材料的表征/span/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title="纳.png" alt="纳.png"//strong/pp style="text-align: justify text-indent: 2em "strong2 纳米材料的测试技术/strong/pp style="text-align: justify text-indent: 2em "2.1 光子相关光谱法(photo correlation spectroscopy,PCS)/pp style="text-align: justify text-indent: 2em "PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。/pp style="text-align: justify text-indent: 2em "2.2 X 射线衍射法(X-ray diffraction,XRD)/pp style="text-align: justify text-indent: 2em "X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。/pp style="text-align: justify text-indent: 2em "2.3 X 射线小角散射法(small angle X-ray scattering,SAXS)/pp style="text-align: justify text-indent: 2em "SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。/pp style="text-align: justify text-indent: 2em "2.4 电子显微镜法(electron microscopy)/pp style="text-align: justify text-indent: 2em "电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。/pp style="text-align: justify text-indent: 2em "SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。/pp style="text-align: justify text-indent: 2em "TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。/pp style="text-align: justify text-indent: 2em "由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。/pp style="text-align: justify text-indent: 2em "2.5 扫描探针显微镜法(scanning probe microscopy,SPM)/pp style="text-align: justify text-indent: 2em "SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。/pp style="text-align: justify text-indent: 2em "近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。/pp style="text-align: justify text-indent: 2em "2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS)/pp style="text-align: justify text-indent: 2em "XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。/pp style="text-align: justify text-indent: 2em "2.7 俄歇电子能谱法(aguer electron spectroscopy,AES)/pp style="text-align: justify text-indent: 2em "AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。/pp style="text-align: justify text-indent: 2em "2.8 其他方法/pp style="text-align: justify text-indent: 2em "除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。/pp style="text-align: justify text-indent: 2em "strong3 结束语/strong/pp style="text-align: justify text-indent: 2em margin-bottom: 15px "纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。/pp style="text-align: justify text-indent: 2em "基于此,仪器信息网将于span style="color: rgb(255, 0, 0) "2019年12月18日/span组织举办strong第二届“纳米表征与检测技术”主题网络研讨会/strong(a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="免费报名中"ispan style="color: rgb(255, 0, 0) "免费报名中/span/iispan style="color: rgb(255, 0, 0) "/span/i/a),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title="540_200.jpg" alt="540_200.jpg"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="报名链接:第二届“纳米表征与检测技术”主题网络研讨会"strongspan style="color: rgb(255, 0, 0) "报名链接/span/strong:istrongspan style="color: rgb(112, 48, 160) "第二届“纳米表征与检测技术”主题网络研讨会/span/strong/i/a/pp style="text-align: center "strong扫一扫,参与报名/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title="报名.PNG" alt="报名.PNG"//pp style="text-align: center "strong扫一扫,进入纳米表征与检测技术群/strong/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title="群.PNG" alt="群.PNG"//strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""文章摘自:/i/strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""span style="font-family: " microsoft="" font-size:="" background-color:=""谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21./span/i/strong/p
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。

紫外表征方法相关的方案

紫外表征方法相关的资料

紫外表征方法相关的试剂

紫外表征方法相关的论坛

  • 微球表面PEG的红外表征

    我用TEOS水解做硅纳米颗粒,同时加了PEG4000做表面活性剂,分离纯化之后做红外表征的时候没有看到PEG的特征峰,例如2940cm-1附近的CH2的伸缩峰。我用没有加PEG的硅颗粒比较,发现没有什么不同 (附图)http://ng1.17img.cn/bbsfiles/images/2012/08/201208021906_381325_2300477_3.gif有没有人知道是怎么回事啊?

  • 纤维透明表征能不能用紫外分光光度计测试呢

    我是一个刚进实验室的学生。做实验时要表征纤维的透明度,查资料许多材料的光学性能、凝胶化都是用紫外分光光度计测得,纤维这种形态的可以测吗?请问应该怎么测?望有高人能指点迷津。

  • [求助] 请教各位关于黑色粉末包覆红外表征

    这几天做实验遇到了点麻烦,我制备了有机物包覆的铁粉(几个微米),想漫反射红外光谱和拉曼光谱表征它,可是铁粉颜色太深,有可能表征不出来,不知到朋友们又没有遇到类似的问题。如何解决的呢?谢谢给各位了!

紫外表征方法相关的耗材

  • 石墨烯材料及其他新型低维材料检测表征服务
    泰州石墨烯研究检测平台是泰州市政府与泰州巨纳新能源有限公司共同成立的国内 石墨烯性能测试与结构表征的综合性研究及检测机构。平台目前建有近千平方米的检测洁净室,拥有高分辨拉曼光谱仪、原子力显微镜、三维共聚焦显微镜、电子束曝光系统、近场光学显微镜等国际先进的新材料性能检测及结构表征设备。平台致力于在石墨烯等高新碳材料以及新型低维材料(如各类二维材料、量子点)等领域提供全面专业的检测及表征服务。泰州石墨烯研究检测平台相关检测服务:微区形貌表征:表面洁净度、平整性、层数或厚度判定、均匀性分析等原子结构表征:原子缺陷、层间堆垛方式、电子能带结构等光学性能表征:紫外到红外波段透射、反射、吸收性能等成分检测及分析:元素含量与比率、官能团分析等电学、力学、热学、电化学性能表征等各种定制研究检测服务(如二维材料的光电响应测试)等检测项目检测内容描述二维材料光电响应测试二维材料的光电响应测试定制化分析实验方案协助制定、数据分析整体解决方案原子力显微镜(AFM)检测石墨烯层数/厚度,尺寸,AFM图像光学显微分析石墨烯层数/厚度,尺寸,对比度分析,光学显微图片荧光显微分析发光样品显微图片3D显微分析石墨烯均匀性,表面起伏度,表面残余物检测拉曼(Raman)光谱分析(单谱)石墨烯洁净度,层数,掺杂浓度,缺陷含量等拉曼(Raman)光谱分析(单谱+成像)石墨烯洁净度,层数,掺杂浓度,缺陷含量等扫描电子显微镜(SEM)检测样品微观形貌(分辨率)超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息生物型透射电镜获取显微形貌,适合对分辨率不高但是衬度要求高的高分子、生物型样品透射电子显微镜(TEM)检测获取显微形貌截面离子束抛光用离子束抛光,去除表面应力层,适合复杂样品的EBSD的采集,以及截面样品的SEM观察离子束平面研磨高分辨透射电子显微镜(TEM)检测样品高分辨形貌(分辨率),衍射图(结晶度,晶格取向等)低真空场超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息变温光学显微镜获取样品的显微形貌,具有明场、暗场、偏光、微分干涉等模式电子背散射衍射—STEM检测获取微观取向信息,可用于晶粒度、晶界、织构、应力等分析X射线光电子能谱(XPS)表面元素含量及化学价态(氧含量分析,成键态),结晶性能等紫外可见吸收光谱分析200-3300nm薄膜、溶液的透射率,吸收率等红外光谱分析(FTIR)红外波段透射(350-7800cm-1),有机物官能团分析等X射线荧光光谱分析元素的定量和半定量分析直读光谱分析获取样品的成分灰分测试获取样品的灰分能谱仪分析获取样品的元素成分和分布,微区域元素的定性和半定量分析等离子体发射光谱元素分析分析样品中无机元素的准确成分及定量辉光放电质谱分析H以外的所有元素,包括常用分析方法难以测定的C,N,O,P,S等轻元素超低检测限,大多数元素的检测限为0.1~0.001ug/G碳硫元素分析C和S的比例元素分析C H O N S的比例元素分析同位素质谱元素分析:C、N、S百分含量同位素质谱:13C、15N含量离子色谱-阴离子阴离子含量分析电感耦合等离子体质谱痕迹量元素测定电子探针元素定性分析、定量分析X射线衍射分析结晶度、晶粒大小、层间距等显微红外分析微区样品红外光谱采集液相色谱分析样品有机物质的含量圆二色光谱分析液相色谱质谱联用分析样品有机物质的含量及具体成分气相色谱易挥发的有机物质的含量气相色谱-质谱联用易挥发的有机物质的具体成分核磁共振分析氢谱、碳谱石墨烯薄膜热传导性能测试石墨烯热导率热重分析测试材料的质量随温度的变化,可用于分析构成的比例热差分析测定样品在程序控制温度下产生的热效应,可分析融点、成分构成、热性能、相转变、结晶动力学等信息同步热分析测量样品的热流、转变温度和重量变化三种信息力学性能测试(氧化石墨烯纸/薄膜等)拉伸应力、拉伸强度、扯断强度、剪切剥离力、杨氏模量等电阻测试(薄膜样品)薄膜面电阻等比表面积测试(BET)测试样品比表面积椭圆偏振分析平板材料或者薄膜的折射率、反射率、膜厚、吸收系数测定电学性能测试(Transport)迁移率,掺杂浓度等纳米粒度分析纳米粒径的分布微米粒度分析微米粒度的分布PH值测试测量PH值
  • Styragel色谱柱——用于表征聚合物
    Styragel色谱柱——用于表征聚合物Styragel色谱柱设计专用于表征聚合物,分为三大系列:用于分析低-中分子量的HR系列,用于高温应用的HT系列,以及用于超高分子量样品的HMW系列。特别控制的聚乙烯二乙烯苯配方,为您的GPC应用提供重现的分析结果。Styragel HR 色谱柱(高分辨)Styragel HR(High Resolution,高分辨)系列色谱柱,专门设计用于低-中分子量样品的分析。色谱柱用坚硬的5μm苯乙烯二乙烯苯颗粒填充,为低分子量样品提供分析所需的最大化分辨率和柱效。Styragel HT 色谱柱(耐高温)Styragel HT(High Temperature,高温)系列色谱柱,专门设计用于中-高分子量范围。色谱柱使用坚硬的10μm苯乙烯二乙烯苯颗粒填充,能够在室温或高温条件下使用而仍保持极佳的分辨率。其所具有的窄的粒径分布,使得柱床结构更稳定,也就是使得Styragel HT柱特别耐用。Styragel HMW 色谱柱(高分子量分析)Styragel HMW(High Molecular Weight,高分子量)系列色谱柱,专门设计用于对剪切力敏感的、超高分子量的聚合物分析。色谱柱使用坚硬的20μm苯乙烯二乙烯苯颗粒填充,而且安装的是特殊设计的大孔径柱筛板,使对聚合物分子的剪切效应最小化。能够在室温或升温条件下使用,有极好的柱寿命。色谱柱规格方面,您可以选择传统的7.8mm内径规格,或者是更节约溶剂的4.6mm内径规格。如前所提的三大Styragel系列柱,均提供4.6mm内径柱;有单一孔径柱,也有混合型柱床柱(E)。使用内径较小的Styragel柱,能够为您节约溶剂消耗及环保处理费用高达2/3。当使用具有低谱带展宽体积的GPC系统时,我们的4.6mm内径柱可媲美7.8mm内径柱的高性能。Styragel 保护柱Styragel 4.6mm id x 30mm保护柱,设计用于提高您的Styragel分析柱的柱寿命。该保护柱能够配合沃特世任一系列的GPC柱使用。色谱柱的选择与优化选择合适的色谱柱,对于优化性能至关重要。为一个分析应用挑选最佳色谱柱的规则非常直接:它只对您希望分离的分子提供分离。不要选择色谱柱的排阻上限值比您希望保留分离的最大分子所需的排阻上限还要大的色谱柱。如果希望测量分子量广泛分布时,使用混合柱床(mixed-bed)或扩展范围(extended-range)色谱柱是恰当的选择,这能够对所有分子量大小提供一致的分离能力。Styragel色谱柱提供混合柱床和窄分子量范围柱床两种规格。混合床色谱柱,用字母“E”来标记代表拓展分子量范围(Extended range),特别适合作为筛选柱,适用于当您的样品的分子量范围未知、或是要测量的样品具有广泛的分子量分布时的情况。窄分子量范围柱,在更集中的分子量范围内,提供较大的孔容和更高的分辨率,对于要获得更精确分子量的应用是更有力的工具。Styragel HR系列(高分辨)柱的标准曲线图Styragel HT系列(高温柱)的标准曲线图Styragel HMW系列(高分子量柱)的标准曲线图Styragel柱产品规格货号一览表 7.8 x 300mm 4.6 x 300mm色谱柱 分子量范围 部件号 部件号 部件号 部件号 部件号 部件号 (THF) (DMF) (甲苯) (THF) (DMF) (甲苯)Styragel HT2 100-10,000 WAT054475 WAT054480 WAT054476Styragel HT3 500-30,000 WAT044207 WAT044208 WAT044206 WAT045920 WAT045925 WAT045915Styragel HT4 5,000-600,000 WAT044210 WAT044211 WAT044209 WAT045935 WAT045940 WAT045930Styragel HT5 50,000-4×10 6 WAT044213 WAT044214 WAT044212 WAT045950 WAT045955 WAT045945Styragel HT6 200,000-1×10 7 WAT044216 WAT044217 WAT044215 WAT045965 WAT045970 WAT045960Styragel HT6E 5,000-1×10 7 WAT044219 WAT044220 WAT044218 WAT045980 WAT045985 WAT045975Styragel HR0 .5 0-1,000 WAT044231 WAT044232 WAT044230 WAT045835 WAT045840 WAT045830Styragel HR1 100-5,000 WAT044234 WAT044235 WAT044233 WAT045850 WAT045855 WAT045845Styragel HR2 500-20,000 WAT044237 WAT044238 WAT044236 WAT045865 WAT045870 WAT045860Styragel HR3 500-30,000 WAT044222 WAT044223 WAT044221 WAT045880 WAT045885 WAT045875Styragel HR4 5,000-600,000 WAT044225 WAT044226 WAT044224 WAT045895 WAT045900 WAT045890Styragel HR4E 50-100,000 WAT044240 WAT044241 WAT044239 WAT045805 WAT045810 WAT045800Styragel HR5 50,000-4×10 6 WAT054460 WAT054466 WAT054464Styragel HR5E 2,000-4×10 6 WAT044228 WAT044229 WAT044227 WAT045820 WAT045825 WAT045815Styragel HR6 200,000-1×10 7 WAT054468 WAT054474 WAT054470Styragel HMW2 100-10,000 WAT054488 WAT054494 WAT054490Styragel HMW7 500,000-1×10 8 WAT044201 WAT044202 WAT044220 WAT046805 WAT046810 WAT046800Styragel HMW6E 5,000-1×10 7 WAT044204 WAT044205 WAT044203 WAT046820 WAT046825 WAT046815Styragel保护柱 WAT054405 WAT054415 WAT054410脂溶性凝胶柱Styragel分子量范围选择指南脂溶性凝胶柱Styragel柱溶剂选择指南聚合物 GPC溶剂 柱贮存溶剂(Styragel柱)
  • Styragel色谱柱-用于表征聚合物
    用于非水相样品的GPC色谱柱 Styragel色谱柱 — 用于表征聚合物Styragel色谱柱设计专用于表征聚合物,分为三大系列:用于分析低-中分子量的HR系列,用于高温应用的HT系列,以及用于超高分子量样品的HMW系列。特别控制的聚乙烯二乙烯苯配方,为您的GPC应用提供重现的分析结果。 Styragel HR 高分辨色谱柱Styragel HR(High Resolution,高分辨)系列色谱柱,专门设计用于低-中分子量样品的分析。色谱柱用坚硬的5μm苯乙烯二乙烯苯颗粒填充,为低分子量样品提供分析所需的最大化分辨率和柱效。 Styragel HT 高温色谱柱Styragel HT(High Temperature,高温)系列色谱柱,专门设计用于中-高分子量范围。色谱柱使用坚硬的10μm苯乙烯二乙烯苯颗粒填充,能够在室温或高温条件下使用而仍保持极佳的分辨率。其所具有的窄的粒径分布,使得柱床结构更稳定,也就是使得Styragel HT柱特别耐用。 Styragel HMW 高分子量色谱柱Styragel HMW(High Molecular Weight,高分子量)系列色谱柱,专门设计用于对剪切力敏感的超高分子量的聚合物分析。色谱柱使用坚硬的20μm苯乙烯二乙烯苯颗粒填充,结合以特殊设计的高孔缝度10μm筛板,使对聚合物分子的剪切效应最小化。能够在室温或高温条件下使用,有极好的柱寿命。 Styragel 保护柱Styragel 4.6mm id x 30mm保护柱,设计用于提高您的Styragel分析柱的柱寿命。该保护柱能够配合沃特世任一系列的脂溶性Styragel GPC柱使用。 订货信息:Styragel柱产品规格货号一览表色谱柱分子量范围7.8 x 300mm4.6 x 300mm*部件号(THF)部件号(DMF)部件号(甲苯)部件号(THF)部件号(DMF)部件号(甲苯)Styragel HT2100-10,000WAT054475WAT054480WAT054476Styragel HT3500-30,000WAT044207WAT044208WAT044206WAT045920WAT045925WAT045915Styragel HT45,000-600,000WAT044210WAT044211WAT044209WAT045935WAT045940WAT045930Styragel HT550,000-4×106WAT044213WAT044214WAT044212WAT045950WAT045955WAT045945Styragel HT6200,000-1×107WAT044216WAT044217WAT044215WAT045965WAT045970WAT045960Styragel HT6E5,000-1×107WAT044219WAT044220WAT044218WAT045980WAT045985WAT045975Styragel HR0.50-1,000WAT044231WAT044232WAT044230WAT045835WAT045840WAT045830Styragel HR1100-5,000WAT044234WAT044235WAT044233WAT045850WAT045855WAT045845Styragel HR2500-20,000WAT044237WAT044238WAT044236WAT045865WAT045870WAT045860Styragel HR3500-30,000WAT044222WAT044223WAT044221WAT045880WAT045885WAT045875Styragel HR45,000-600,000WAT044225WAT044226WAT044224WAT045895WAT045900WAT045890Styragel HR4E50-100,000WAT044240WAT044241WAT044239WAT045805WAT045810WAT045800Styragel HR550,000-4×106WAT054460WAT054466WAT054464———Styragel HR5E2,000-4×106WAT044228WAT044229WAT044227WAT045820WAT045825WAT045815Styragel HR6200,000-1×107WAT054468WAT054474WAT054470———Styragel HMW2100-10,000WAT054488WAT054494WAT054490———Styragel HMW7500,000-1×108WAT044201WAT044202WAT044200WAT046805WAT046810WAT046800Styragel HMW6E5,000-1×107WAT044204WAT044205WAT044203WAT046820WAT046825WAT046815Styragel保护柱—WAT054405WAT054415WAT054410——— *4.6x300mm溶剂节约型Styralgel色谱柱,能够提供与常规7.8x300mm Styragel色谱柱相同的高分辨能力,同时具有减少三分之二有机溶剂消耗的优点。注意!因所使用流速较低,对色谱系统的溶剂输送能力要求较高(精密度与稳定性)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制