荧光素四钠盐

仪器信息网荧光素四钠盐专题为您提供2024年最新荧光素四钠盐价格报价、厂家品牌的相关信息, 包括荧光素四钠盐参数、型号等,不管是国产,还是进口品牌的荧光素四钠盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光素四钠盐相关的耗材配件、试剂标物,还有荧光素四钠盐相关的最新资讯、资料,以及荧光素四钠盐相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

荧光素四钠盐相关的资料

荧光素四钠盐相关的论坛

  • CNS_08.009_叶绿素铜钠盐

    CNS_08.009_叶绿素铜钠盐

    [align=center][font='黑体'][size=29px]叶绿素铜钠盐[/size][/font][/align][align=center]杨宗琦[/align]叶绿素是植物进行光合作用所必需的催化剂,是由四个吡咯环与镁离子相互配合而形成的镁卟啉类化合物。它是天然生物活性物质之一,具有排毒养颜,抗病强身,抑菌除臭等功效,一方面被广泛应用于日用品、食品、色素、脱臭剂等方面,另一方面在医药上也可用来治疗多种疾病,并应用于各种牙膏的开发中。但游离的叶绿素卟啉环中的镁离子在酸性条件下容易被氢离子取代,生成脱镁叶绿素使色泽褪去,且对光、酸和热比较敏感,使叶绿素的应用受到严重限制。近年来,有不少研究者试图对叶绿素的结构进行修饰,使其变成相对稳定的金属卟啉结构,而叶绿素铜钠盐就是极其重要的一种。叶绿素铜钠盐具有很高的稳定性,在医学上,叶绿素铜钠盐是一类重要的药物,甚至可用叶绿素铜钠盐用于治疗白血病。本文将从基本性质、制备工艺、含量测定等方面介绍叶绿素铜钠盐。[font='黑体'][size=18px]一、基本性质[/size][/font] [align=left]叶绿素,英文名Chlorophyllin,中文别名叶绿素镁钠盐 、叶绿酸粉末、 叶绿素铜三钠,呈墨绿色粉末,着色力强,色泽亮丽,其水溶液呈蓝绿色澄清透明液,[font='宋体'][size=13px][color=#000000]易溶于水,几乎不溶于低醇,不溶于氯仿。水溶液透明、无沉淀。在酸性情况下([/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH 6.5 [/color][/size][/font][font='宋体'][size=13px][color=#000000]以下[/color][/size][/font][font='宋体'][size=9px][color=#000000])[/color][/size][/font][font='宋体'][size=13px][color=#000000]或钙离子存在时,则有沉淀析出。[/color][/size][/font]当其水溶液pH 值小于6 时,染液底部出现粉末状沉淀,这是由于平面空间结构的叶绿素铜钠分子在酸性条件下易于聚集 。叶绿素铜钠盐可以菠菜或蚕粪为原料,用丙酮或乙醇提取叶绿素,添加适量硫酸铜、叶绿素卟啉环中的镁原子被铜置换即生成。[/align]1.1物理化学性质沸点:801.6℃at 760 mmHg分子式:C[font='calibri'][size=13px]34[/size][/font]H[font='calibri'][size=13px]31[/size][/font]CuN[font='calibri'][size=13px]4[/size][/font]Na[font='calibri'][size=13px]3[/size][/font]O[font='calibri'][size=13px]6[/size][/font]分子量:724.148闪点:438.6℃储存条件:密封于2-8℃阴凉干燥处溶解性:易溶于水,略溶于醇和氯仿。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804161897_7669_1608728_3.png[/img] [img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804162109_5211_1608728_3.png[/img]1.2中毒症状和影响,急性和迟发效应系统性铜中毒症状包括:毛细血管损伤、头痛、冷汗、脉搏微弱、肝肾损伤、中枢神经系统兴奋继而抑制、黄疸、抽搐、麻痹和昏迷。休克和肾衰会导致死亡。慢性铜中毒包括肝硬化、脑损伤和脱髓鞘、肾损害;铜沉积在角膜引起人威尔逊病。还有报道铜毒性导致血红蛋白贫血和加剧动脉硬化。目前,其化学、物理和毒性性质尚未经完整的研究。1.3安全操作的注意事项在有粉尘生成的地方,提供合适的排风设备。1.4安全储存的条件,包括任何不兼容性贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。建议的贮存温度:2 - 8℃,对光线敏感[font='黑体'][size=18px]二、制备工艺[/size][/font]工艺流程:原料→预处理→浸提→过滤→皂化→回收乙醇→石油醚洗涤→ 酸化铜代→抽滤水洗→ 溶解成盐→过滤→干燥→ 成品2.1方法一将富含叶绿素的原料( 国内生产以蚕沙为主) 于40~ 50℃烘干后,研细成粉末状。加粉末量3倍的乙醇丙酮混合液( 1/ 1)于40~45℃提取2.5h,抽滤,滤渣用同等体积乙醇丙酮的混合液再提取 一次。合并两次提取液并加NaOH 调pH 值为11,加热皂化( 50°C左右) 30min。皂化是否完全可用石油醚萃取来判断,上层液呈黄色即为皂化完全 。皂化完全后蒸馏浓缩回收混合液( 60°C左右) 直至体积为原来的1/4~ 1/ 3 即可。再用石油醚萃取4次。下层用盐酸调至pH 值为7,加硫酸铜后调pH值为2, 并在50℃下铜代2h。反应结束即有颗粒状沉淀形成,静置冷却。室温下收集沉淀, 先用50~ 60℃水洗涤,再用30% ~ 40% 的乙醇洗涤至乙醇层为浅绿色。再用石油醚洗涤至石油醚层为浅绿色。滤饼用丙酮溶解,用5%的NaOH 乙醇溶液沉淀,pH 值为12,收集沉淀,用无水乙醇洗涤即得产品。在制备过程中反应温度不易过高,调节pH 值时要小心,温度过高以及pH 值过大或过小都能使叶绿素分解 。此为百度文库提供的制备方法。通过查阅知网,我们了解到以下几种从不同原材料出发的制备叶绿素铜钠盐的方法。2.2方法二:螺旋藻制取叶绿素铜钠盐基本思路:利用硫酸铜对螺旋藻进行浸泡铜化,再用丙酮乙醇混合液浸提得到叶绿素的有机溶液,再经过皂化、萃取、浓缩、干燥等步骤将叶绿素改造为叶绿素铜钠盐。具体步骤:材料:螺旋藻主要试剂:AR乙醇(沸点 78.1℃),AR 丙酮(沸点 56.1℃),AR氢氧化钠,AR 石油醚,AR 盐酸,硫酸铜晶体(CuSO[font='calibri'][size=13px]4[/size][/font].5H[font='calibri'][size=13px]2[/size][/font]O),食盐,白砂糖,可溶性淀粉,用时配成各种所需浓度。工艺流程:螺旋藻→粉碎→铜化(5%CuSO[font='calibri'][size=13px]4[/size][/font]溶液)→洗涤、脱水→浸提(丙酮乙醇混合液)→过滤→浓缩→皂化(5%NaOH溶液)→萃取(石油醚)→干燥→叶绿素铜钠盐产品具体步骤:称量 5.0g 粉碎好的螺旋藻于试管中铜化 13h 后,洗涤脱水于锥形瓶中,加入 70:30 的丙酮乙醇混合液 300mL,加盖在室温下浸提 2h,过滤,浓缩,皂化(5%NaOH 溶液),萃取(石油醚),干燥,可制得墨绿色带金属光泽的叶绿素铜钠盐产品。该文献还对叶绿素铜钠盐的稳定性进行实验分析,实验结果表明,螺旋藻叶绿素铜钠盐的耐光性较较差,需在避光条件下保存;热稳定性较好,但不能高于85 ℃;不耐强酸;食盐、白砂糖、淀粉等食品添加剂无不良影响。2.3方法三:剑麻膏中叶绿素铜钠盐的制备基本思路:以从剑麻膏中萃取得到的叶绿素为原料,研究了酸化、铜代、皂化条件对叶绿素铜钠盐产率的影响。该文献指出,叶绿素铜钠盐的制备过程可分为两种,一种是先皂化,后铜代,目前大多数文献都采用这种方法,但由于叶绿素的耐酸性较差,所得产品纯度不够,产率不高 另一种是先铜代后皂化,即将提取出的叶绿素首先脱镁铜代,使叶绿素变成比较稳定的叶绿素铜,再经皂化成盐得到产品。这种方法对反应温度和时间的要求不太苛刻,有利于提高叶绿素的稳定性。故他们采用先铜代后皂化的方法,遵循节能降耗,提高效率的原则,对反应条件进行优化,并对所得叶绿素铜钠盐的性能和质量进行检测。实验试剂与仪器:剑麻膏,由广西武鸣东风农场提供 乙醇、丙酮、盐酸、氢氧化钠、石油醚、硫酸铜均为分析纯。BSA224S电子天平 FZ102 微型植物试样粉碎机 HH-2数显恒温水浴锅 723N可见分光光度计 R201L 旋转蒸发仪。具体步骤:[font='宋体']①[/font]叶绿素的提取称取30 g 剑麻膏于250 mL的三口烧瓶中,用 85% 的乙醇在 60 ℃水浴锅中提取3 h。提取液减压浓缩,得到含有叶绿素的提取膏状物。加入丙酮,萃取叶绿素,回收丙酮,得到叶绿素膏状物。[font='宋体']②[/font]叶绿素铜的制备 叶绿素加入少量乙醇溶解,用 10%的盐酸调 pH 为酸性,这时溶液由绿色变成黄褐色,酸化脱镁 45 min 后,边搅拌边加入10%CuSO[font='calibri'][size=13px]4[/size][/font]溶液进行铜代,有絮状沉淀生成,抽滤,用热水反复洗涤,得叶绿素铜。[font='宋体']③[/font]叶绿素铜钠盐的制备 叶绿素铜用少量乙醇溶解,加入 10% NaOH 溶液,75 ℃皂化 1 h,加入等量的石油醚,充分摇动,静置分层。除去上层黄色的叶黄素等脂溶性杂质,将下层深绿色的叶绿素铜钠盐收集于小烧杯中,水浴蒸干水分,在 60 ℃下烘干,即得目标产物。 该文献还讨论了酸化脱镁的条件优化,他们发现,叶绿素铜的产率随着溶液 pH 的增大而逐渐减小,pH>3时,产率下降。说明当 pH较大时,酸度不够,一部分叶绿素卟啉环中的镁离子没有脱落下来,导致叶绿素铜得率下降。所以,以pH =3 为宜。对于[font='fzktk--gbk1-00'][size=13px][color=#000000]酸化时间对叶绿素铜得率的影响[/color][/size][/font][font='fzktk--gbk1-00'][size=13px][color=#000000],研究发现[/color][/size][/font][font='ssj4'][size=13px][color=#000000],[/color][/size][/font]酸化时间超过 60 min 时,叶绿素铜的产率增大不太明显,说明酸化反应基本完成。为了节约实验时间,酸化时间以 60 min 为宜。对于酸化温度对叶绿素铜得率的影响,发现叶绿素铜得率在45-65℃随着酸化温度的升高呈上升趋势在65-85 ℃产率变化不大,超过85 ℃时,产率突然下降。可能是高温使叶绿素铜中的环状结构氧化,四吡咯环破坏而被降解,使叶绿素铜的产率降低。所以,酸化温度以65℃为宜。对于加铜量对叶绿素铜得率的影响,研究发现随着硫酸铜量的增加,叶绿素铜的得率增加,加入量大于 15 mL 时,增大幅度不明显,基本保持稳定。实验过程中还发现,加铜量太多时,溶液中游离铜的量也会增多,会延长叶绿素铜的洗涤时间。考虑到实验效率和能耗问题,加铜量以15 mL为宜。对于铜代时间对叶绿素铜得率的影响,研究发现叶绿素铜的得率随着铜代时间的延长呈增大趋势,铜代时间超过2h时,叶绿素铜得率的增大幅度不大。所以,铜代时间以2h为宜。对于皂化温度对叶绿素铜钠盐得率的影响,叶绿素铜钠盐的产率随着皂化温度的升高不断提高,当温度高于85℃时,产率稍有下降,这可能是因为生成的叶绿素铜钠盐在较高的温度下会部分分解,导致产率下降,为了保证叶绿素铜钠盐的质量,皂化温度选择75 ℃为宜。对于皂化时间对叶绿素铜钠盐得率的影响,研究发现叶绿素铜钠盐的得率随着皂化时 间的延长而增大,≥60 min 后得率趋于稳定。皂化时间较短时,用石油醚萃取的过程中,分层不明显,醚相呈绿色,说明没有皂化完全。所以,皂化时间以60 min 为宜。对于pH 对叶绿素铜钠盐得率的影响,研究发现,当pH>11 时,叶绿素铜钠盐的得率趋于稳定,在实验过程中发现,当 pH为9或10时,用石油醚萃取酯溶性物质时,界面会有固体颗粒,分层界面不清晰,醚相为绿色,这都是因加碱量不够,导致皂化不完全。所以,皂化时以pH = 12为宜。该文献还对叶绿素铜钠盐的性质进行了探究。对于耐光性,研究表明叶绿素铜钠盐在强光下不稳定,但与叶绿素相比,已经大大提高了耐光性。对于耐热性,实验结果为在90 ℃以内,叶绿素铜钠盐的吸光度基本保持不变,颜色均为绿色 温度高于90 ℃时,吸光度开始有下降趋势,但幅度不大,即使是在110 ℃时,叶绿素的保存率也为96.9%,说明叶绿素铜钠盐的耐热性还是比较理想的,可添加到处理温 度在100 ℃以内的食物中。对于耐酸碱性,从实验数据可以看出溶液的吸光度随着pH的增大而升高,pH在3~6 范围内,吸光度变化幅度不大,溶液颜色呈土绿色 pH = 7时,吸光度值有个比较大的跳跃 在 7~12 范围内,吸光度的变化幅度也不太大,溶液颜色呈碧绿色。在实验过程中发现,当 pH<3时,溶液中会出现大量沉淀,这可能是因为叶绿素铜钠盐在强酸条件下生成了不溶于水的叶绿素铜酸 当pH>11时,因碱性太强,加速脱酯反应,使叶绿素分解,溶液的吸光度迅速下降,但在碱性条件下,因不发生脱镁或碳环裂解反应,却能保持相对稳定的色泽,在使用中只要控制溶液 pH 值在近中性或偏碱水平,就能基本维持叶绿素铜钠盐的稳定性。综上可以得出,采用先铜代后皂化的方法制备叶绿素铜钠盐,即叶绿素提取出来后先脱镁铜代,增加中间产物的稳定性,在后续操作中,不必考虑因温度太高或时间太长而使叶绿素分解的问题,从而提高了产品的产率和纯度。从剑麻膏中萃取制备叶绿素铜钠盐的优化条件是: 酸化时 pH = 3,酸化时间 60 min,温 度 65 ℃ 铜代时硫酸铜加量1.5 g,时间2h 皂化时温度 75 ℃,时间 60 min,pH = 12。在此条件下,产率为 4.46% ,产品为墨绿色粉末,略带氨臭,易溶于水,水溶液呈绿色透明澄清液,微溶于或不溶于乙醇、乙醚、丙酮、氯仿等有机溶剂,有Ca[font='calibri'][size=13px]2+[/size][/font],Mg[font='calibri'][size=13px]2+[/size][/font]存在时,产品中会有少许白色沉淀,在空气中容易吸潮,应隔绝空气保存。[font='黑体'][size=18px]三、含量测定[/size][/font]3.1试剂与材料氢氧化钠乙酸铵甲醇冰乙酸聚酰胺粉:粒径0.150mm~0.180mm。3.2试剂配制氢氧化钠溶液(4mol/L):称取16.0g氢氧化钠,用水溶解并定容至100mL。氢氧化钠溶液(0.1mol/L):称取0.40g氢氧化钠,用水溶解并定容至100mL。乙酸铵缓冲溶液(0.2mol/L):称取7.708g乙酸铵,用水溶解并定容至500mL。解吸液:0.1mol/L氢氧化钠溶液+甲醇=1+10(体积比)。3.3标准溶液配制精确称取经105℃±1℃干燥至恒重并按其纯度折算为100%质量的叶绿素铜钠标准品0.0500g,用水溶解并定容至100mL棕色容量瓶中,此溶液浓度为500μg/mL,当天配制,避光保存。3.4标准工作溶液准确移取500μg/mL标准溶液10mL至100mL烧杯中,加入0.2mol/L的乙酸铵溶液30mL,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min,避光静置5min用约20mL蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。用75mL 解吸液分3次解吸色素:每次倒入约25mL解吸液,浸泡2min,再振摇2min,抽滤并用20mL解吸液洗净抽滤瓶中残液。收集滤液,用解吸液定容至100mL,配制成浓度为50μg/mL的标准溶液,此溶液临用时配制。[font='e-bz'][size=12px][color=#000000] [/color][/size][/font]3.5被测样品溶液后期处理向含有被测样品粉末或样品浆液的100mL烧杯中加入0.2mol/L的乙酸铵溶液30mL,溶解并混匀样液,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min。将样品溶液用约20mL60 ℃±2 ℃蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。再用75mL 解吸液分3次解吸色素,抽滤并用20mL解吸液洗净抽滤瓶中残液,收集滤液,用解吸液定容至100mL。3.6仪器条件测定波长:405nm。比色皿:1cm。3.7标准曲线的制作分别取标准工作液0mL、5.0mL、10mL、20mL、30mL、40mL、50mL至100mL容量中,用解吸液稀释至刻度,配制成浓度为 0μg/mL、5μg/mL、10μg/mL、20μg/mL、30μg/mL、40μg/mL、50μg/mL的标准系列。以0μg/mL溶液为空白,测定其吸光值。以浓度为横坐标,以吸光值为纵坐标绘制标准曲线。试样溶液的测定取经过前处理的样品的制备液,以标准曲线的0μg/mL为空白,测定其吸光值,根据标准曲线获得样品溶液中叶绿素铜钠的浓度。本标准检出限为0.001g/kg,定量限为0.005g/kg。3.8总铜含量试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g [/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,精确至 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.000 2g[/color][/size][/font][font='宋体'][size=13px][color=#000000],置于硅皿中,在不超过 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]500[/color][/size][/font][font='宋体'][size=13px][color=#000000]℃下灼烧至无碳,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1[/color][/size][/font][font='宋体'][size=13px][color=#000000]滴[/color][/size][/font][font='times new roman'][size=13px][color=#000000]~2 [/color][/size][/font][/align][font='宋体'][size=13px][color=#000000]滴硫酸湿润,再次灰化。用质量分数为[/color][/size][/font][font='times new roman'][size=13px][color=#000000]10%[/color][/size][/font][font='宋体'][size=13px][color=#000000]的盐酸溶液分[/color][/size][/font][font='times new roman'][size=13px][color=#000000]3[/color][/size][/font][font='宋体'][size=13px][color=#000000]次(每次[/color][/size][/font][font='times new roman'][size=13px][color=#000000]5mL[/color][/size][/font][font='宋体'][size=13px][color=#000000])煮沸溶解灰分,并过滤[/color][/size][/font]于100mL容量瓶中,冷却后用水定容至刻度,此为试样液。测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]游离铜含量3.9试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取[/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g[/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,加水约[/color][/size][/font][font='times new roman'][size=13px][color=#000000]50mL[/color][/size][/font][font='宋体'][size=13px][color=#000000]溶解后,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1mol/L [/color][/size][/font][font='宋体'][size=13px][color=#000000]盐酸调节[/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH[/color][/size][/font][font='宋体'][size=13px][color=#000000]至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]4.0[/color][/size][/font][font='宋体'][size=13px][color=#000000],定容至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]100mL[/color][/size][/font][font='宋体'][size=13px][color=#000000],过 [/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]滤,此为试样液。[/color][/size][/font][/align]测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]参考文献[align=left][font='宋体'][size=13px][color=#000000]【1】韩敏.直接皂化法制备叶绿素铜钠盐[J].应用化工,:,2014.43(4):704-707.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【2】赖海涛.螺旋藻制取叶绿素铜钠盐的稳定性研究[J].化学工程与装备,:,2020.3(3):14-15.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【3】李祥.剑麻膏中叶绿素铜钠盐的制备及性能测定[J].应 用 化 工,:,2018.47(2):262-267.[/color][/size][/font][/align][align=left][/align][align=left][/align][align=left][/align]

  • 【求助】杂环化合物钠盐的元素测定,前处理方法?

    [font=宋体][size=3]有机原料之杂环化合物:[/size][/font][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]喹啉硫酸钠盐,吡啶盐酸钠盐中测试杂质[/font][font=Times New Roman]Fe[/font][font=宋体],[/font][font=Times New Roman]Cd[/font][font=宋体],[/font][font=Times New Roman]Pb[/font][font=宋体]请教方法:[/font][/size][size=3][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])干法消解需注意什么?有一阵子冒烟很厉害,[/font][font=Times New Roman]500[/font][font=宋体]度要[/font][font=Times New Roman]24[/font][font=宋体]小时以上还够呛[/font][/size][size=3][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])湿法消解用[/font][font=Times New Roman]HNO[sub]3[/sub]+H[sub]2[/sub]O[sub]2[/sub][/font][font=宋体],还是[/font][font=Times New Roman] [/font][font=Times New Roman]HNO[sub]3[/sub]+HClO[sub]4?[/sub][/font][/size][size=3][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])标准加入法可以不消解吗?[/font][/size]

荧光素四钠盐相关的方案

荧光素四钠盐相关的资讯

  • Nature Medicine:武阳丰团队证实,低钠盐可安全降血压、减少心血管事件
    2023年4月13日,北京大学武阳丰教授团队在 国际顶尖医学期刊Nature Medicine上发表了题为: Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial 的研究论文。 该研究发现, 将养老院厨房中的普通盐更换为富钾低钠盐,在2年干预期间,入住老人的收缩压平均下降7.1mmHg,舒张压平均下降1.9mmHg,主要心血管事件减少40%。 与此同时,逐步减少厨房供盐的措施未能取得成功,24小时尿钠、血压及主要心血管病事件均未见显著下降。 高血压是中国居民发生心血管病的最主要危险因素。减少人群钠摄入是全球公认的高血压及慢性病防治重要策略。然而,世界卫生组织的最新报告表明:实现“到2025年将钠摄入量减少30%”的全球目标仍面临巨大的困难和挑战。 集体养老人群中低钠盐和逐步减少厨房供盐的干预效果和安全性评价 (DECIDE-Salt) 研究,正是为了探索适合全人群推广的有效减钠策略。它试图通过一项严格设计的整群随机对照试验,同时评价两种减盐策略的有效性和安全性:一是用富钾低钠盐替换普通食盐,二是逐步减少厨房供盐量。 食用富钾低钠盐作为一种减盐策略,在降低钠摄入的同时,增加钾的摄入,能够实现“双重降压”。阶梯式逐步减少厨房供盐是研究团队开发的一项创新干预策略,以每3个月为一个阶梯,每次减少5%-10%的厨房供盐,试图使养老人群在不知不觉中实现减少钠摄入。 DECIDE-Salt研究于2017年至2020年期间,在山西省长治县和阳城县、陕西省西安市和内蒙古自治区呼和浩特市四地共48所养老机构中开展,纳入1612名符合入组条件 (55岁以上且测量了基线血压) 的入住老人作为评价干预效果的研究对象。研究采用2×2析因、整群随机对照设计,将养老机构按所在地区分层,随机分组。分别于第6、12、18和24月进行随访,测量血压并了解主要心血管病事件发生情况。 研究结果显示:在有效性方面:与24家仍食用普通盐的养老院老人相比,24家更换为富钾低钠盐的养老院老人收缩压、舒张压分别平均降低-7.1mmHg、-1.9mmHg;主要心血管病事件显著减少40%;全因死亡减少16%,但未达到统计学显著性;24小时尿钾显著升高,尿钠下降但未达统计学显著性水平。 在安全性方面:与食用普通盐的养老院老人相比,更换为富钾低钠盐的养老院老人,化验检出高血钾增加、低血钾减少;两年间仅发生3例持续高血钾 (血钾5.5mg/dL) ,低钠盐组2例,普通盐组1例,但均未发生不适症状或其他不良反应;化验检出高血钾的51人中,发生2例死亡,低钠盐组与普通盐组各1例,分别死于髋骨骨折后并发症和肺癌。“阶梯式逐步减少厨房供盐”策略未能取得成功,所有观察指标,包括24小时尿钠、收缩压、舒张压及主要心血管病事件等在逐步减供组和常规供应组间均未见到显著性差异。低钠盐组和普通盐组在基线和干预期间收缩压的变化低钠盐组和普通盐组干预期间心血管事件累计发生风险 2021年武阳丰教授团队发表于《新英格兰医学杂志》 (NEJM) 的SSaSS研究显示, 在患有脑卒中或未控制的高血压人群中使用低钠盐替换普通盐,可显著降低脑卒中、心血管事件和全因死亡风险。与SSaSS研究相比,DECIDE-Salt的研究人群更加宽泛,有一半的养老院在城市,有脑卒中或冠心病的老人仅占1/3,近40%血压正常,近1/4的人基本健康。即使如此,DECIDE-Salt仍取得了远较SSaSS研究更好的降压效果和更好的减少主要心血管病事件的效果。这说明只要能够较好地解决依从性,确保长期坚持食用低钠盐,就会取得良好的心血管病防控效果。 与既往所有的低钠盐临床试验不同,DECIDE-Salt没有将患有慢性肾病或正在服用保钾药物的老人排除在外,而是采取了较为严格的高钾血症高危人群监测计划来及时发现和处理研究期间可能发生高钾血症的情况。研究中,有5.5%的老人患有慢性肾病、5.3%长期卧床、8.3%正在服用有保钾作用的药物。尽管如此,研究结果表明,低钠盐组未增加临床高钾血症和其他严重不良事件。这些结果说明养老人群中推广应用低钠盐是较为安全的,也间接说明将低钠盐向其他发生高钾血症风险较低的人群(如年轻人)推广将更加安全。 DECIDE-Salt研究课题负责人、我国著名心血管病防治专家武阳丰教授指出: DECIDE-Salt的研究结果,为中国减盐行动选择合适的减盐策略提供了重要的循证决策依据。低钠盐简单、易行、安全、有效,具有很大的公共卫生价值,值得政府、企业和社会各界大力推广。消费者应尽可能采用低钠盐替代普通食盐,进行烹饪、调味和腌制食物。论文链接:https://www.nature.com/articles/s41591-023-02286-8
  • 标准解读|食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量
    5月11日,GB 2763.1-2022《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》正式实施,本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021配套使用。最新发布的《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)在广泛征求社会意见、有关部门意见和向世界贸易组织(WTO)成员通报的基础上,经国家农药残留标准审评委员会、食品安全国家标准审评委员会技术总师会议及秘书长会议审查通过,由国家卫生健康委、农业农村部和市场监管总局于2022年11月11日发布,将于2023年5月11日起实施。本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021食品安全国家标准 食品中农药最大残留限量》配套使用。GB 2763.1-2022除前言外,主体部分依然由范围、规范性引用文件、术语与定义、技术要求、索引五大部分组成。一、范围GB 2763.1-2022规定了食品中112种农药共290项最大残留限量。二、规范性引用文件GB 2763.1-2022规范性引用文件共涉及GB/T5009.174花生大豆中异丙甲草胺的残留量的测定等37个检测方法三、技术要求该部分是GB 2763.1-2022的重点部分。其中每种农药的技术要求均由主要用途、ADI值、残留物、最大残留限量表、检测方法构成,主要新增和修订内容如下:1. GB 2763.1-2022规定了112种农药290项最大残留限量。2. 其中22种为新农药项目,新标准规定了22种农药中51 项最大残留量限量。3. 具体新增和修订的农药项目及残留限量可下载标准查看。GB2763.1-2022食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量.pdf
  • 四川新先达发布CIT-3000SY X荧光元素录井仪(XRF)新品
    p style="text-align:center "img src="https://img1.17img.cn/17img/images/201903/pic/3988918d-3565-48c3-ba77-bdb955ae7368.gif!w400x400.jpg" alt="CIT-3000SY X荧光元素录井仪(XRF)"//ppstrongspan style="color: rgb(0, 32, 96) "/span/strong/pp  近日,四川新先达测控技术有限公司在仪器信息网发布CIT-3000SY X荧光元素录井仪(XRF)新品。X射线荧光分析是一种对被测物质从元素成分及含量的角度进行测定的技术,以随钻获取的岩屑粉末为分析对象,从中获得元素组成(组分、含量及分布规律)信息,通过元素组合特征而识别岩性、判断划分地层,进一步开展深层次的数据分析处理,寻找与储集层物性、含油气性规律,实现评价储集层的目的。/pp  CIT-3000SY X荧光元素录井仪(XRF)是依据JC/1085-2008标准开发的,是一款检测岩屑成份的高档精密仪器。该仪器集当今新电子技术、计算机技术和核分析方法于一体,具有微机化程度高、人机界面友好、分析精度高、采用多项专利技术,是目前石油地质录井必备的检测设备。CIT-3000SY具有以下设计特点:1.针对粉末样品测量的上照式光路结构,降低粉末压片后掉灰或垮样污染光管和探测器损坏设备的风险 2.样品台具有高精度定位,保证源距恒定,样品可以旋转测量,对于不均匀的粉末样品可以测出X射线强度的均值,测量结果更加准确 3.真空测量系统,保证了真空度达到极限值,10分秒抽气,确保30分钟不漏气,测量氢元素效果更佳 4.采用S标样校准测量,自动校正工作曲线,无需经常标定 5.根据分析的数据,自动识别矿物性质。/ppstrong  技术指标/strong/pp  分析元素范围:Na-U/pp  元素含量分析范围:1ppm -99.99%/pp  探测器能量分辨率优于150eV/pp  测量范围:1-40KeV/pp  高压:0kV-40kV/pp  管流:0μA-100μA/pp  专业的稳定电源:AC 220V± 1%,50HZ/pp  检测时间:120S~600S(时间随样品而调整)/pp  圆形样品真空腔:直径14cm,高5cm /pp  工作环境温度:温度0-35℃ 样品温度 70℃/pp  工作环境相对湿度:≤99%(不结露)/pp  额定功率:50W/pp  仪器重量:25Kg/pp  仪器尺寸:500(W)X500(D)X450(H)mm/pp  仪器主要特色/pp  1)核心价值/pp  通过岩屑元素组成的分析识别岩性,通过岩性的组成特征判断层位。/pp  2)分析的主要元素/pp  Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Rb、Sr、Y、Zr、Nb、Mo、Ag、Cd、In、Sn、W、Pb、Th、U、Ba等/pp  3)极高的真空度/pp  完美的真空系统,10秒抽气真空度高达10-2Pa,30分钟不漏气,轻元素探测效果提高了70%,保证了Na、Mg、Al、Si极佳的分析效果和理想的重现性能 /pp  4)仪器高分辨率/pp  FAST-SDD探测器,配合专利技术的数字多道分析技术,仪器的分辨率高达100ev,最大限度的降低了元素之间的干扰,分析更加准确。/pp  5)软件操作方便/pp  出厂标定好后,长期使用,自带校准曲线样,无需用户标定。/ppstrong  性能特点/strong/pp  采用数字化谱分析技术,计数率高,无漏计,稳定性好 /pp  国家重点新产品CIT-3000SM系列X荧光分析仪的升级产品 /pp  三重射线保护,全面确保操作人员人身安全,该设备获得国家环保局安全管理豁免 /pp  圆形品仓设计,适应各种样品的检测,可以测量固体、液体、粉末 /pp  抽真空测量,可以最大限度的提高轻元素的检测精度,有利于卤素和其它轻元素检测 /pp  先进的模块化设计理念,保证了仪器后续的高扩展性 /pp  探测器采用美国航天技术的半导体探测器,能量分辨率优于160ev /pp  一体化设计,性能稳定,带蓝牙功能,通过无线蓝牙技术与PC机进行通讯,方便使用 /pp  采用低功率X光管和自主研发的高压电源,性能稳定,故障率低、维护成本低 /pp  自主研发的最优化分析软件可根据样品材质、形状和大小自动设定光管功率,既能延长光管寿命,又能充分发挥探测器性能,大幅度提高测量精度 /ppstrong  仪器配置/strong/pp  仪器主机一台/pp  进口电制冷半导体探测器/pp  X光管(0-40KV)/pp  高压电源/pp  品牌计算机一台/pp  激光打印机一台/pp  真空泵一台/pp  压片机一台/pp  制样模具一套/pp  稳压电源一台/pp  测试软件一套/ppbr//pp  /ppbr//p

荧光素四钠盐相关的仪器

  • 秉承X荧光光谱仪20多年研发经验,天瑞元素录井分析仪EDX5500H再次推动了岩石中元素含量向具体化、快速化方向的发展。将X射线荧光分析(XRF)用于岩屑录井这项技术的独到之处在于:通过岩屑化学元素组合特征的分析来识别岩性,再通过岩性的组合特征分析来判断层位,因此适合于任何钻井条件下的岩屑录井。高效真空形成条件及高灵敏半导体探测器保障对岩心中的元素具有超低的检出限,为录井平台提供更有意义的具体数据特征;更宽的元素检出范围满足多种元素的同时检测需求;同时引入了目前先进的4096道数字多道技术,采用进口超薄铍窗有高激发效率的X射线管,使仪器计数率更高,稳定性更好,适用面更广;优化了光路结构、软硬件可靠性,真空腔体使之性能更好、更便携;独特的抗震性设计,高保护光路设计使得该仪器通过了第三方权威机构高低温、高低频电动振动及湿热等使用认证;在现场测试、在线检测以及各类地质勘察多元素检测中充分发挥作用。 主机标准配置:上照式光路系统直射模式 SDD探测器 数字多道处理器 美国进口高压进口牛津铍窗X射线管 智能测试软件 校正模块内置 封闭式定向散热系统高阻尼可动防震缓冲支脚 定制CCD高清摄像头整套设备包括: X荧光分析主机、电脑、打印机、粉碎机、压片机、真空泵 录井行业应用案例l 岩心成份普查:仅需简单前处理,微量多种元素成分尽在掌握。 l 现时分析能快速、现场追踪岩心数据,圈定油气边界。单个样品30多种元素测试仅需1~4分钟; l 现场分析 独特的减震、超小的真空腔、超稳固样品静态控制结构设计使仪器可以应对各种现场环境的检测任务; 仪器性能优势:仪器外形小巧,简洁大方,可用于车载和实验室,使用方法简单,测试效率高;测试时上照式光路设计加上真空测试腔有效杜绝现场环中粉尘对探测器的污染;准直器极大化设计使样品受激光斑达150mm2 保证测试信号的丰富性,提高测试精确度封闭式定向风冷散热保证X射线管工作温度稳定,延长X射线管寿命;分析样品速度快,快可达60S,并且可同时分析40种元素;高阻尼可动支脚防震设计加上超稳真空控样设计保证了每一个样品与光管、探测器几何关系时刻相一致,屏蔽现场震动所造成的影响;大面积厚晶体SDD探测器,配上Rh靶X光管以及良好的散热性,有力地确保测试高效稳定;X射线屏蔽设计和高分子材料及安全联动装置有效保证无辐射外漏,让测试人员安全放心使用;
    留言咨询
  • 水产品中五氯苯酚及其钠盐残留量的测定 五氯苯酚(PCP)是一种重要的防腐剂,它能阻止真菌的生长、抑制细菌的腐蚀作用,长期以来均被用作皮革品和木材的防霉剂,对防治霉菌与一般 虫类(如白蚁)均有效,其钠盐用于消灭血吸虫中间宿主钉螺和防治稗草等。对鱼类等水生物动物敏感等,水中含量达0.1-0.5ppm即致死。有 机毒品,可通过皮肤吸收,对肝、肾有损害。误食会中毒,严重时导致死亡。但在过去的十年,医学研究发现若经常与含五氯苯酚(PCP)的产品 接触,极有可能影响人体健康,而症状包括头痛、腹痛、呕吐及对中央神经系统有所损害。 1.PCP(五氯苯酚)概述: PCP(五氯苯酚)是纺织品、皮革制品、木材、织造浆料和印花色浆中普遍采用的一种防霉防腐剂。作用:1、防霉2、防腐3、防虫4、杀菌。2.PCP(五氯苯酚)的危害: 经动物试验证明PCP(五氯苯酚)是一种强毒性物质,对人体具有致畸和致癌性。如人类在穿着残留有PCP(五氯苯酚)的纺织品时,会通过皮肤在人体内产生生物积蓄,不仅对人类造成健康威胁,而且PCP在燃烧时会释放出臭名昭著的二恶英类化合物,会对环境造成持久的损害。3.PCP(五氯苯酚)的限: 中国的生态纺织标准和国际生态纺织协会的oeko-tex标准100均对纺织品中的PCP残留量规定了不得超过0.5mg/kg(婴幼儿用品不得超过0.05mg/kg)的限量。 LFGB法规对PCP的限值是不大于0.1mg/kg。检测标准: GB/T 22808-2008 皮革和毛皮 化学试验 五氯苯酚含量的测定 GB/T 25002-2010 纸、纸板和纸浆 水抽提液中五氯苯酚的测定 LY/T 1985-2011 防腐木材和人造板中五氯苯酚含量的测定方法 SC/T 3030-2006 水产品中五氯苯酚及其钠盐残留量的测定 气相色谱法 SN/T 2204-2008 食品接触材料 木制品类 食品模拟物中五氯苯酚的测定 气相色谱-质谱法 仪器:1、GC-9860--Ⅳ型气相色谱仪,配有ECD电子捕获检测器2、专用色谱柱:35%聚二苯基二甲基聚硅氧烷,30m×0.25mm×0.25um3、离心机、匀浆机、涡旋混合机、分析天平等设备色谱条件:柱温:起始温度140℃,保持2min,以10℃/min,升至200℃,保持7min.升至260℃,保持3min;检测器温度:300℃; 进样器温度250℃。载气:氮气
    留言咨询
  • 电子电路板氯化钠盐雾腐蚀试验箱乃针对各种电子、电路板、材质之表面经电镀、阳极处理、喷涂、防锈油、涂料及无机有面皮膜等防腐蚀处理后,测试其制品之耐蚀性。盐雾试验箱主要特点:有用自动/手动加水系统,水位不足时能自动补充水位功能,试验不中断。精密玻璃喷嘴经可调雾气,雾量之喷雾塔之锥形分散器均匀落雾扩散,并自然落于试卡片,并保证无结晶盐阻塞。温度控制器使用数字显示,PID控制误差±0.1℃。电子电路板氯化钠盐雾腐蚀试验箱双重超温保护,水位不足警示解保使用安全。试验室采用蒸气直接加温方式,升温速度快且均匀,减少待机时间。饱合空气桶采用享利定律,予以加热加湿。并提供试验室所需之湿度。电子电路板氯化钠盐雾腐蚀试验箱执行标准与试验方法:GB/T 2423.17-1993盐雾试验GB/T 2423.18-2000盐雾试验GB/T 10125-1997盐雾试验ASTM.B117-97盐雾试验JIS H8502盐雾试验IEC68-2-11盐雾试验IEC68-2-52 1996盐雾试验GB.10587-89盐雾试验CNS.4158盐雾试验CNS.4159CASS加速醋酸铜盐雾试验GB/T 12967.3-91 CASS加速醋酸铜盐雾试验GB10587-89、GB2423.17-93《电子产品基本环境试验规程Ka:盐雾试验方法》试验室温度:盐水试验法(NSS ACSS)35℃±1℃/耐腐蚀试验法(CASS)50℃±1℃电子电路板氯化钠盐雾腐蚀试验箱压力桶温度:盐水试验法(NSS ACSS)47℃±1℃/耐腐蚀试验法(CASS)63℃±1℃盐水温度: 35℃±1℃ 50℃±1℃盐水浓度: 氯化钠溶液浓度5%或氯化钠溶液浓度5%中每升添加0.26克氯化铜(CuCl2 2H2O)压缩空气压力:1.00±0.01kgf/cm2喷雾量: 1.0~2.0ml/80cm2/h (至少收集16小时,取其平均值)试验室相对湿度:85%以上酸碱值PH:6.5~7.2 3.0~3.2电子电路板氯化钠盐雾腐蚀试验箱喷雾方式:连续式喷雾电源:220V
    留言咨询

荧光素四钠盐相关的耗材

荧光素四钠盐相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制