异构体混合物

仪器信息网异构体混合物专题为您提供2024年最新异构体混合物价格报价、厂家品牌的相关信息, 包括异构体混合物参数、型号等,不管是国产,还是进口品牌的异构体混合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异构体混合物相关的耗材配件、试剂标物,还有异构体混合物相关的最新资讯、资料,以及异构体混合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

异构体混合物相关的资料

异构体混合物相关的论坛

  • 中检所标准品同分异构体混合物吗?

    大家有没有用过中检所的抗生素标准品的?如头孢氨苄、阿莫西林等,我正在用,结果用液质联用检测出两个色谱峰,质谱结果显示,这两个峰都是同一种物质,猜测标准品不纯,是同分异构体的混合物,大家有没有类似的遭遇?

异构体混合物相关的方案

异构体混合物相关的资讯

  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸沃特世科技(上海)有限公司蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。一、色谱条件与标记后的多聚糖样品的分离可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。二、2-AB标记的多聚糖定量及结构鉴定由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。实验流程:一、2-AB 标记糖链使用GlycoPro le试剂盒,Prozyme公司使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。1.使用50&mu l的标记反应液2. 65度反应4-5小时3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO)2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制)3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时5 .将反应液按步骤4处理除去过量的标记试剂二、使用MassPrep亲水作用样品处理板除去过量的标记试剂所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度4.用 90% ACN清洗处理板两次5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献(1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column(2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine(3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。图1. 离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图。针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105 Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。成果优势利用高场离子云扫描分析技术,对四种二糖异构体 (海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 30 Td,E代表电场场强,N代表中性气体数密度,Td是Townsend数),分离分辨率一般在40-200,不足以解决目前生物分子异构体解析研究的迫切需求。  针对以上难题,清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在Mini β质谱仪器系统(PURSPEC科技(北京)有限公司)上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上(图1)。超高场离子云扫描技术采用强迫振荡的物理原理,在超高场(约1×105Td)条件下实现异构体离子的离子云分离,通过扫描激发振荡电压可以获得异构体离子的高分辨IM谱图。    图1.离子云扫描分析技术的仪器设置、原理和性能表征。(a)Mini β质谱仪器系统。(b)实验装置示意图。(c)离子云扫描技术原理。强迫振动下的两种异构体离子(紫色和蓝色)的离子轨迹。(d)获得的离子云扫描谱图  利用高场离子云扫描分析技术,对四种二糖异构体(海藻糖、麦芽糖、纤维二糖和乳糖,图2a)开展了结构分析(图2b),并对乳糖和纤维二糖的混合物进行了离子云扫描分析(图2c),并与传统串联质谱分析(图2d)结果对比。从图2d可见,乳糖和纤维二糖具有到相同的碎裂模式,无法通过串联质谱技术加以区分。但这两种异构体可以通过离子云扫描实现完全分离(图2c)。此外,离子云扫描分析技术也展现出优异的定量分析特性(图2e和2f)。    图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7

异构体混合物相关的仪器

  • 1260 Infinity II SFC/UHPLC 混合型系统1260 Infinity II SFC/UHPLC 混合型系统使您可以在一台仪器上执行超临界流体色谱 (SFC) 和超高效液相色谱 (UHPLC) 分析。该系统在 SFC 模式下支持高达 600 bar 的压力,在 UHPLC 模式下支持高达 800 bar 的压力。两种模式之间的切换可轻松实现并可完全自动化。在两种正交的分离模式下运行,能够实现智能筛选以获得最佳方法。此功能可提供有关复杂混合物的全面信息,实现更高的分析效率和更高的结果可信度。优势包括:更高的仪器利用率,更快的投资回报,以及极致的应用灵活性。特性用于 SFC 和 UHPLC 的单一系统,可提供最高的应用灵活性并保护您的投资性能范围宽,SFC 模式下支持高达 600 bar 的压力,UHPLC 模式下支持高达 800 bar 的压力支持 0.1–90 μL 的宽进样量范围,可实现灵活的进样而无需更换样品定量环独特的 FEED 进样技术可确保卓越的进样精度以及与液相色谱近似的灵敏度Multisampler 能够处理多达 6144 个样品,适用于高通量应用能够兼容各种安捷伦质谱仪,增加了 SFC/MS 功能现有 1100、1200 或 1260 液相色谱系统的升级选件可提供最大的便捷性和最大程度节省预算低溶剂消耗量和更少的废液为您带来真正的绿色化学分析使用饮料级 CO2 将运行成本降低至原来的 1/15–1/10
    留言咨询
  • SYNAPT所具备的无需妥协的定性与定量性能、精简的工作流程和无与伦比的平台通用性,为复杂混合物和分子的详尽表征开辟了新的途径。极佳的UPLC/MS/MS性能强大的数据独立型和数据依赖型解决方案CID与ETD碎裂功能多种实验类型选择升级至三维的数据分辨率极佳的UPLC/MS/MS性能将StepWave和UPLC分离与定量飞行时间(QuanTof)技术相结合,实现最高的峰容量和数据质量。StepWave是目前最灵敏和最可靠的离子源,具有&ldquo 主动&rdquo 选择离子和&ldquo 被动&rdquo 防止中性污染物的独特功能。与其他所有质谱分析器不同,QuanTof能够提供高质量数高分辨率、精确质量数和准确的同位素比例、宽的动态范围(谱图内和定量)和m/z范围,并且都可以在最快的采集速率实现,即便是对于高基质负荷的样品也是如此。强大的数据独立型和数据依赖型解决方案无与伦比的适用范围和效率,适用于复杂混合物的分析。通用型UPLC/MSE采集技术可以记录每个可检测的分子离子的碎片离子数据,与其它&ldquo 数据独立型分析&rdquo (DIA) 技术相比,具有卓越的占空比;同时我们的信息学技术可以为各种各样的应用提供精简的数据分析流程。要想获得更高效、更有效的靶向MS/MS,请选用最新的&ldquo 非数据独立型&rdquo 工作流程。使用高分辨率MRM工作流程,可获得更低的定量限;而使用FastDDA可实现更高的MS/MS灵敏度,扩大研发实验中的化合物覆盖范围。CID与ETD碎裂功能TriWave的双碰撞室结构可提供碰撞诱导解离(CID)和/或电子转移解离(ETD)碎裂,并且同时得到高分辨率和精确质量数,从而获得更好的MS/MS检测结果。ETD选件性价比高,可以实现最佳性能(碎裂效率)和灵活性,且易于和使用和维护。高解析度四极杆包括4KDa、8KDa或32KDa质量数范围,适用于从小分子到大分子的MS/MS测定。多种实验类型选择沃特世的离子源结构可与各种技术相结合:对于分离,可结合UPLC、nanoUPLC、HDX Automation、APGC和UPC2;对于电离,可结合ESI、APCI、APPI、ASAP、 DESI、DART和LDTD。它们可快速互换,在几分钟内即可使用。对于直接进样分析方法,可升级至HDMS功能和T-Wave 离子淌度技术,后者可提供最佳的电离后选择性与特异性。在与高性能可以与大气压离子源快速切换MALDI选件结合时,这一点具有非常明显的优势。升级至三维的数据分辨率!保留。迁移。质量。某些情况下,色谱和质量数分辨率还不能满足要求。可简单、快速、独特地升级至SYNAPT 高清晰质谱功能和高效T-Wave离子淌度技术,从而可在分子大小和形状的基础上获得另一个分离维度。利用分子碰撞截面特性这一项独特的功能,可以提供最高水平的选择性、特异性、灵敏度和结构分析。其优点还包括同分异构体分离、消除干扰、生成更干净的谱图,以及更准确地识别化合物ID。注意:本页面内容仅供参考,所有资料请以沃特世官方网站()为准。
    留言咨询
  • 全新的 Agilent 6560C 离子淌度 Q-TOF LC/MS 系统将色谱、离子淌度和质谱相结合,可提供出众的分离能力与选择性。6560C Q-TOF LC/MS 还可揭示传统 LC/MS 系统无法提供的结构信息,包括通过高分辨率多重性分解 (HRdm) 分离同类异构体。该系统采用创新的电动离子漏斗技术,可显著提高灵敏度,同时保持有利的低场漂移管设计。这使您能够直接测量准确的碰撞截面 (CCS) 并保留不稳定目标物。无论您是寻求对代谢组学样品进行更全面的分析,表征复杂的聚合物混合物,还是要了解生物分子的结构变化,离子淌度质谱都能提供新的信息。 特性:能够在没有标准品的情况下实现基于第一性原理的碰撞截面准确测量。将 UHPLC、离子淌度和高分辨率质谱相结合,提供极高的分离能力。更好地分离各类复杂的同质异位物质,例如脂类和多聚糖。深入表征不同结构构象和同分异构化合物。采用低能量漂移管设计,保证气相中分子的结构保真度。多重分解可显著提高灵敏度和动态范围,提升达一个数量级。使用安捷伦高分辨率多重性分解 (HRdm 2.0) 软件进行后处理,可实现高达 200 的全谱离子淌度分辨率。用于蛋白质定量结构分析的碰撞诱导去折叠 (CIU) 技术包括诱导分子碎裂的源内活化。在不影响 UHPLC 兼容的分离度的情况下,可使用高达 5 Hz 的采集速率。利用安捷伦 VacShield 真空盾,无需放空即可取出毛细管。性能指标:MS 灵敏度S/N (RMS) 50:1. Measured with 1pg reserpine on columnMS 质量准确度(正离子)1 ppm RMSMS 采集速率50 幅谱图/秒MS/MS 质量准确度(正离子)2 ppm RMSMS/MS 采集速率30 幅谱图/秒TOF 质量分辨率 (FWHM) 在 m/z 2722 处为 42000,与采集速率无关TOF 质量范围m/z 20-20,000四极杆分离质量范围m/z 20-4000四极杆分辨率 (FWHM)1.3 Da(自动调谐)支持的附加软件MassHunter BioConfirmClassifierMassHunter VistaFluxLipid AnnotatorMass Profiler Professional无需放真空的维护VacShield 真空盾技术温度质量稳定性1 ppm / 3 °C离子淌度分辨率 (FWHM)200离子源Dual-AJSMultiMode (ESI+APCI)Dual-ESIGC/APCIAPCINanoESI谱图内动态范围5 个数量级软件平台MassHunter工作原理:安捷伦 LC/Q-TOF 系统结合 e-MSion 的 ExD 池实现 ECD 功能结合使用 e-MSion 的 ExD 池与安捷伦 LC/Q-TOF 系统,通过快速有效的电子捕获解离 (ECD) 显著改善蛋白质形式的整体表征。ECD 可以实现更出色的多聚糖和二硫键定位表征,以及不稳定翻译后修饰的鉴定。e-MSion ExD 可诱导侧链断裂,从而区分同质异位素氨基酸和影响生物药物质量的其他降解产物,而 Q-TOF 的主要功能(如传输效率、灵敏度或分辨率)保持不变。
    留言咨询

异构体混合物相关的耗材

  • BTEX 气体混合物(6 种成分)
    BTEX 气体混合物(6 种成分)苯 乙苯 甲苯 间二甲苯 邻二甲苯 对二甲苯1 ppm /氮中, 104 升 @ 1,800 psi货号# 34414 (ea.) 1 ppm /氮中, 110 升@ 1,800 psi货号# 26361 (ea.) 1 ppm /氮中, 110 升@ 1,800 psi (Pi-marked Cylinder)货号.# 34414-PI (ea.) 100 ppb /氮中, 104 升@ 1,800 psi货号.# 34428 (ea.) 100 ppb /氮中, 110 升@ 1,800 psi货号# 26362 (ea.) 100 ppb /氮中, 110 升@ 1,800 psi (Pi-marked Cylinder)货号# 34428-PI (ea.)
  • 臭氧前体/PAMS 混合物
    臭氧前体/PAMS 混合物(57 种成分/EPA 浓度为 ppbC)乙炔 40 间 - 乙基甲苯 25 正辛烷 30苯 30 邻-乙基甲苯 30 正戊烷 25正丁烷 40 对 - 乙基甲苯 40 1 - 戊烯 251 - 丁烯 30 正庚烷 25 顺式-2 - 戊烯 35顺式-2 - 丁烯 35 正己烷 30 反式-2 - 戊烯 25反式-2 - 丁烯 25 1 - 己烯 60 丙烷 40环己烷 40 异丁烷 25 正丙苯 30环戊烷 20 异戊烷 40 丙烯 25正癸烷 30 异戊二烯 40 苯乙烯 40间 - 二乙基苯 40 异丙苯 40 甲苯 40对 - 二乙基苯 25 甲基环己烷 30 1,2,3 - 三甲基苯 252,2 - 二甲基丁烷 40 甲基环戊烷 25 1,2,4 - 三甲基苯 402,3 - 二甲基丁烷 50 2 - 甲基庚烷 25 1,3,5 - 三甲基苯 252,3 - 二甲基戊烷 50 3 - 甲基庚烷 25 2,2,4 - 三甲基戊烷 302,4 - 二甲基戊烷 40 2 - 甲基己烷 25 2,3,4 - 三甲基戊烷 25正十二烷 40 3 - 甲基己烷 25 正十一烷 30乙烷 25 2 - 甲基戊烷 20 邻二甲苯 25乙苯 25 3 - 甲基戊烷 40 间/对 - 二甲苯(组合) 40乙烯 20 正壬烷 2520-60 ppbC (十亿分之几表示为含碳量) /氮中, 104升@ 1,800 psi货号# 34445 (ea.) 20-60 ppbC (十亿分之几表示为含碳量) /氮中, 110 升 @ 1,800 psi货号.# 26370 (ea.) 20-60 ppbC (十亿分之几表示为含碳量)/氮中, 110 升 @ 1,800 psi(Pi-瓶标注压力)货号# 34445-PI (ea.)
  • 校准气混合物 | N6107198
    产品特点:校准气混合物我们的校准气混合物是Arnel 炼厂气分析仪和天然气分析仪专用产品订货信息:校准气混合物产品描述部件编号带注射适配器的 RGA 校准混合气14 L Cylinder 120 psiN6107198不带适配器的 RGA 校准混合气14 L Cylinder 120 psiN6107199带注射适配器的 NGA 校准混合气14 L Cylinder 240 psiN6107200不带适配器的 NGA 校准混合气14 L Cylinder 240 psiN6107201
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制