多晶粉末衍射仪

仪器信息网多晶粉末衍射仪专题为您提供2024年最新多晶粉末衍射仪价格报价、厂家品牌的相关信息, 包括多晶粉末衍射仪参数、型号等,不管是国产,还是进口品牌的多晶粉末衍射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多晶粉末衍射仪相关的耗材配件、试剂标物,还有多晶粉末衍射仪相关的最新资讯、资料,以及多晶粉末衍射仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

多晶粉末衍射仪相关的厂商

  • 布鲁克(北京)科技有限公司是布鲁克在中国的全资子公司。布鲁克中国的总部位于北京海淀区,在上海和广州设有分公司。布鲁克AXS公司负责中国区X射线类产品的销售和售后服务工作,主要产品有X射线多晶衍射仪、X射线单晶衍射仪、X射线荧光光谱仪和三维X射线显微镜。关注AXS微信公众号,获取更多X射线分析技术和产品介绍。
    留言咨询
  • 天台银宇特种粉末材料有限公司,本公司建于1985年,至今已有30多年历史,前身是机电部上海材料研究所联营厂系浙江大学技术开发单位,也是上海高桥石化等院校技术伙伴单位,专业生产金属粉末不锈钢过滤器及制品,技术力量强,生产工艺先进,并引进全套生产检测设备,产品广泛应用石油化工,航天,机械仪表,电子,制药,食品,环保气液两相的过滤分离等等!
    留言咨询
  • 400-860-5168转2205
    合肥科晶材料技术有限公司是美国MTI公司与中科院合肥物质科学研究院于1997年合资(MTI公司占80.23%的股份)兴办的高新技术企业,位于安徽省合肥市科学路10号,注册资金4200万元, 公司董事长江晓平博士毕业于东北大学(1981)。在中科院金属所授教师昌绪院士获博士学位(1988),并在美国麻省理工学院师从M.C.Flemings教授任博士后研究员(1988-1991)。是较早回国创业的留学生之一。曾获教育部“优秀留学生”称号。  公司专业从事光电晶体材料的生长、定向、切割、研磨、抛光、镀膜等,拥有成套先进加工设备和工艺。公司员工大都具有10年以上晶体生长、定向、切割、研磨、抛光等丰富而专业的加工经验,公司率先在行业内成立了MgAl2O4,LaAlO3, SrTiO3等十多种氧化物基片质量标准。拥有先进而完善的检测手段: 万能工具显微镜、rocking curve摇摆曲线测定仪、X Ray定向仪、AFM原子力显微镜、XRD粉末衍射仪等,加工的产品达到超光滑(小于5A)、超洁净(1000级超净室检验、100级超净台和100级超净袋封装)、超平(厚度公差最高达3um)。 目前主要产品有高温超导薄膜基片;磁性铁电/压电外延薄膜基片;半导体基片;金属单晶/多晶基片;溅射靶材(包括近50余种陶瓷靶材、单晶靶材、金属靶材和合金靶材等)以及各种粉料、包装盒等。晶体基片从A~Z达上百种,规格型号上千种,是目前全球最大的能批量生产单晶基片的厂家之一;产品从原材料采购、生产制作、包装检验,每一步都严格控制,确保品质。从而保证了产品质量优、价位低、交货迅速。  为满足客户需求,公司从01年开始推出材料实验室成套设备,包括“混料-压料-烧料-分析料”(混料机、压片机、箱式炉、真空管式炉和小型X射线衍射仪)以及“定向-切割-研磨-抛光”(X射线定向仪、低速外圆锯、金刚石线切割机、802自动抛光机和1502自动抛光机等)。在过去的一里年又新增添了成套新型能源材料制备相关设备产品,其中包括“混料-烧料-分析-涂层-成型-封装-测试”(球磨机、高温高压炉、材料分析仪、涂层机、轧机、切片机、封装机、电池分析仪)。公司自主研发生产可提供上百款产品不同规格尺寸、温度、高温高压及超快速升温产品其中包括:箱式炉、气氛炉、管式炉、井式炉、RTP快速升温炉、高温高压炉及电池研发相关等实验室设备,设计独特、人性化,性能优异,质量可靠,性价比高,环保节能、返修率低,广泛应用于材料、物理、化学、冶金、灰化、齿科、新型能源研发等领域,受到客户极端好评,同时,由于我们产品的优良性能,科晶的设备更是远销美国,欧洲,日本等许多国家,令挑剔的外国客商也称赞不已。   为了更好的服务客户,我公司设有材料制备体验中心、电池研发制备体验中心及材料检测中心,可对外提供晶体材料生长、切磨抛、样品检测等相关服务,欢迎客户带样品来我公司实验室进行试加工,以方便客户了解我们产品的性能;同时我公司的专业技术人员也可以提供技术建议与方案,使客户能够了解买到最适合的加工工艺及设备;另外,我公司还提供完善的售后服务,您在购买产品后遇到疑难问题时,我们将全力为您排忧解难。  科晶公司成立二十年来,我们正以实际行动努力将自己打造成国内晶体材料及材料制备相关设备领域的第一品牌。相信不久的将来,科晶的品牌同样会在国际市场上成为专业与杰出性价比的代名词。美丽的科学岛期待您的光临,科晶期待您的光临。
    留言咨询

多晶粉末衍射仪相关的仪器

  • XD2/3型多晶X射线衍射仪用于晶体物质结构定性定量分析。该产品功能齐全,灵活适应各种物质微观结构的测试、分析和研究。产品采用了θ-θ测角仪立式、中空轴、射线管座与测角台一体化的结构,可对粉末、大块不规则固体、液体样品进行测试。 结构新,采用立式测角仪结构,更加方便的样品放置方式,对于操作、维护的工作力度大为简化,更加直观的使用,便于清理实验后的样品台。 进口NaI闪烁晶体计数探测器,分辨率及长时间使用稳定性好。 X射线管套采用整体铜棒材加工定位精度、射线防护性更好;采用了转轮式快门,开关速度快,故障率低,射线阻断性好,机柜外辐射剂量低。 X射线光源的数字控制电路作了进一步的改善,X光机的工作功率完全由计算机遥控设定。高压与管流的加载过程受微电脑控制自动操作,使用更加简单,运行更加可靠。中文视窗操作界面,全新改版的PDP衍射数据处理软件包,支持多种数据输出方式。
    留言咨询
  • D8 ADVANCE X射线衍射仪,采用创造性的达芬奇设计,通过TWIN-TWIN光路设计,成功实现了BB聚焦几何下的定性定量分析和平行光几何下的薄膜掠入射GID分析、薄膜反射率XRR分析的全自动切换,而无需对光。通过TWIST TUBE技术,使用户可以在1分钟内完成从线光源应用(常规粉末的定性定量分析、薄膜的GID、XRR)到点光源应用(织构、应力、微区)的切换,让烦人的光路互换、重新对光等问题从此成为历史!高精度的测角仪可以保证在全谱范围内的每一个衍射峰(注意不是一个衍射峰)的测量峰位和标准峰位的误差不超过0.01度,布鲁克AXS公司提供全球保证!先进的林克斯阵列探测器可以提高强度150倍,不仅答复提高设备的使用效率, 而且大幅提高了设备的探测灵敏度。技术指标: ●Theta/theta 立式测角仪 ●2Theta角度范围:-110~168°●角度精度:0.0001度 ●Cr/Co/Cu靶,标准尺寸光管 ●探测器:林克斯阵列探测器、林克斯XE阵列探测器 ●仪器尺寸:1868x1300x1135mm ●重量:770kg 主要功能●TWIN / TWIN 光路布鲁克获得专利的TWIN-TWIN光路设计极大地简化了D8 ADVANCE的操作,使之适用于多种应用和样品类型。为便于用户使用,该系统可在4种不同的光束几何之间进行自动切换。该系统无需人工干预,即可在Bragg-Brentano粉末衍射几何和不良形状的样品、涂层和薄膜的平行光束几何以及它们之间进行切换,且无需人工干预,是在环境下和非环境下对包括粉末、块状物体、纤维、片材和薄膜(非晶、多晶和外延)在内的所有类型的样品进行分析的理想选择。●动态光束优化(DBO)布鲁克独有的DBO功能为X射线衍射的数据质量树立了全新的重要基准。马达驱动发散狭缝、防散射屏和可变探测器窗口的自动同步功能,可为您提供无与伦比的数据质量——尤其是在低2Θ角度时。除此之外,LYNXEYE全系列探测器均支持DBO:SSD160-2,LYNXEYE-2和LYNXEYE XE-T。●LYNXEYE XE-TLYNXEYE XE-T是LYNXEYE系列探测器的旗舰产品。它是目前市面上一款可采集0D、1D和2D数据的能量色散探测器,适用于所有波长(从Cr到Ag),具有高计数率和好的角分辨率,是所有X射线衍射和散射应用的理想选择。LYNXEYE XE-T具有优于380 eV的能量分辨率,着实出色,是市面上性能好的的荧光过滤器探测器系统。借助它,您可在零强度损失下对由铜辐射激发的铁荧光进行100%过滤,而且无需金属滤波片,因此数据也不会存在伪影,如残余K?和吸收边。同样,也无需用到会消除强度的二级单色器。布鲁克提供独有的LYNXEYE XE-T探测器保证:交货时保证无坏道!应用:●物相定性分析●结晶度及非晶相含量分析●结构精修及解析●物相定量分析●点阵参数精确测量●无标样定量分析●微观应变分析●晶粒尺寸分析●原位分析●残余应力●低角度介孔材料测量●织构及ODF分析●薄膜掠入射●薄膜反射率测量●小角散射
    留言咨询
  • XRDynamic 500 能以最高效率推动无与伦比的 XRD 数据质量。尽享囊括各种应用的多功能平台所带来的优势,为粉末 XRD、非环境 XRD、PDF 分析、SAXS 等提供最佳解决方案。 使用直观,具有全自动光学和校准程序,它能使每个人从新手变为专家,在最大限度减少误差的同时快速收集顶级质量的 XRD 数据。开箱即用:一流的分辨率/信噪比TruBeam™ 理念:更大的测角半径,真空光路完全自动化:X-射线光学和光束几何结构变化效率:仪器使用率提高 50%自校准:仪器和样品最大便捷性XRDynamic 500 的 TruBeam™ 理论结合了大测角半径、真空光路和全自动 X-射线光学/光束几何结构变化。借助具有优化工作流程的直观软件,使用各种仪器配置测量一系列样品。采用标准 Bragg-Brentano 配置,实现了一流的分辨率 (LaB? 第一个标准峰的 FWHM 0.021° )。出色的信噪比,测量背景减少50% 以及最低的寄生空气散射。快速重新配置以进行优化的非环境 XRD 实验或有着专用 SAXS 仪器质量的 SAXS 测量。
    留言咨询

多晶粉末衍射仪相关的资讯

  • 综述:粉末X射线衍射法在药物多晶型研究中的应用
    p style="text-align: justify text-indent: 2em "目前,研究药物多晶型的方法有单晶X射线衍射法(SXRD)、粉末X射线衍射法(PXRD)、红外光谱法(IR)、拉曼光谱法(RM)、差示扫描量热法(DSC)、热重法(TG)、毛细管熔点法(MP)、光学显微法(LM)、偏光显微法(PM)、固态核磁共振(SS-NMR)等。其中,粉末X射线衍射法比其他方法更具有优势,即其是非破坏性的,药物暴露于高温、低温或高湿的环境下也可以进行研究。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202007/uepic/6924c99a-db14-45ce-9a74-0a6982682580.jpg" title="摄图网_500655146_医疗药片(企业商用)_副本.jpg" alt="摄图网_500655146_医疗药片(企业商用)_副本.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "PXRD的基本原理是一束单色X射线穿过晶体被原子的电子云散射并以不同角度弯曲的过程。每一种药物晶体结构与其粉末X射线衍射图谱一一对应,即使对于含有多成分的固体制剂而言,其中原料药与辅料各自对应的粉末X射线衍射图谱不会发生变化,可作为药物晶型定性判断的依据。定量方面,除了《中华人民共和国药典》(ChP)2015年版四部通则中提及的标准曲线法外,多变量拟合法(又称为全谱拟合法)的应用也越来越广泛,其优势在于只需要提供药物结构信息,无需标样,操作过程简单,测定结果准确等。本文查阅相关文献归纳总结 PXRD 在药物多晶型定性与定量分析等方面的研究应用。/pp style="text-align: justify text-indent: 2em "strong1 粉末X射线衍射法在药物多晶型定性分析的应用/strong/pp style="text-align: justify text-indent: 2em "PXRD在药物多晶型定性应用上体现在2个方面:①对原料药多晶型的鉴定。②对固体制剂中原料药的鉴定。对于原料药的鉴定,PXRD直接表征或者其他方法辅助PXRD对原料药进行鉴定;对于固体制剂而言,则需重点考虑赋型剂(辅料)的影响。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/75432a3f-a80f-45ea-bdfa-93fddbf868a6.jpg" title="摄图网_400063188_线条科技背景(企业商用)_副本.jpg" alt="摄图网_400063188_线条科技背景(企业商用)_副本.jpg"//pp style="text-align: justify text-indent: 2em "1.1 原料药/pp style="text-align: justify text-indent: 2em "1.1.1 PXRD表征并鉴定原料药多晶型PXRD鉴定原料药多晶型是从已有数据库中查到原料药的晶体结构数据并产生相应的模拟图谱,与实测图谱比对,能快速判定该药物的多晶型物是什么。多晶型物相互之间的区分,通过比对实测图谱中衍射峰位置、强度及d值来进行。/pp style="text-align: justify text-indent: 2em "1.1.2 PXRD联合其他方法在药物多晶型上的应用/pp style="text-align: justify text-indent: 2em "PXRD鉴定结构相似的多晶型物,所得到的粉末衍射图谱差异较小,难以判定,需结合其他方法鉴定多晶型物。有研究者用同步加速器X射线粉末衍射和透射电镜(TEM)联用的方法证实并区分了罗昔非班(roxifiban)2种多晶型物Ⅰ和Ⅱ。关键在于电子衍射技术的使用,克服了粉末衍射数据在低对称晶体系统中确定宽视差单晶格困难的缺点。有些多晶型物是经过一定处理产生如熔融重结晶,DSC只能对其进行单向测定,不能很好地解释在DSC测定过程中的晶型变化,需借助PXRD对此过程发生的现象进行表征。有研究者用DSC测定灰黄霉素(griseofulvin)多晶型Ⅰ在熔融过程中的变化,PXRD表征此变化中观察到的晶型,最终鉴定出2种新多晶型物Ⅱ和Ⅲ。此外,人工神经网络(ANNs)分析方法的提出为传统分析技术提供了选择,已经应用于各种图谱分析。相关研究者将漫反射傅里叶变换红外光谱(DRIFTS)与PXRD结合并得到相应图谱数据,通过ANNs分析盐酸雷尼替丁晶体(ranitidine-HCl)确定2种多晶型Ⅰ和Ⅱ的纯度。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202007/uepic/665761df-de31-479c-9094-c5452fafd8a2.jpg" title="摄图网_401491749_医疗实验(企业商用)_副本.jpg" alt="摄图网_401491749_医疗实验(企业商用)_副本.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "1.2 固体制剂/pp style="text-align: justify text-indent: 2em "PXRD对固体制剂中原料药多晶型的研究主要考察赋形剂或小分子添加剂对其的影响。这些辅料的晶型多数是无定型的。不同的赋形剂或小分子添加剂影响着固体制剂中原料药的晶型或导致原料药非晶化。原料药与赋形剂或小分子添加剂形成的固体制剂的研磨方式也会使原料药的晶型改变,如低温或室温研磨。但在粉末图谱中原料药衍射峰并未受到赋形剂或小分子添加剂衍射峰的干扰。/pp style="text-align: justify text-indent: 2em "strong2 粉末X射线衍射法在药物多晶型定量分析的应用/strong/pp style="text-align: justify text-indent: 2em "2.1 多变量拟合法/pp style="text-align: justify text-indent: 2em "多变量拟合法是通过峰型函数将理论数据与实测数据拟合,改变峰型参数和结构参数使得理论谱与实测谱不断接近,得到完整的理论衍射谱。多变量拟合法提供较多的物相信息,分析更加完整,故多变量拟合法在药物晶型定量分析上应用更为广泛。/pp style="text-align: justify text-indent: 2em "2.1.1 图谱模式拟合法/pp style="text-align: justify text-indent: 2em "X射线粉末衍射图的模式拟合程序是分析定量固体制剂中具有单斜晶体或斜方晶体的药物的潜在有力手段。将X射线粉末衍射数据拟合成解析表达式,通过最小二乘法进行优化, 从而确定体系中每个组分的质量分数。/pp style="text-align: justify text-indent: 2em "2.1.2 化学计量法/pp style="text-align: justify text-indent: 2em "基于化学计量学的PXRD利用全谱图方法,结合布拉格衍射和漫散射分析,从而提高信噪比、灵敏度和选择性。有研究者利用3种化学计量算法(经典最小二乘回归CLS、主成分回归PCR、偏最小二乘回归PLS)预测由2种结晶材料和2种无序材料组成的整合4组分系统中个别组分浓度所建立的校准与传统的衍射-吸收单变量校准进行统计学比较,发现多变量校准增强了线性关系,降低了预测误差,而传统的单变量校准受到峰值失真,变量选择等的影响,其中PLS建模为组分浓度的量化提供了最好的统计结果。/pp style="text-align: justify text-indent: 2em "2.1.3 Rietveld法/pp style="text-align: justify text-indent: 2em "Rietveld法是采用步进扫描获取X射线粉末衍射数据的方法,与计算机软件技术相结合, 使衍射数据处理过程简化。经过不断地发展提高了各种传统数据的质量,在其内容上越来越丰富,应用也越来越广泛。/pp style="text-align: justify text-indent: 2em "2.2 标准曲线法/pp style="text-align: justify text-indent: 2em "《中华人民共和国药典》(ChP)2015年版四部通则9015规定通过配制2种或多种晶型比例的混合物,建立混合物中的各种晶型含量与特征峰衍射强度关系的标准曲线,可以实现对原料药的晶型种类和比例的含量测定。/pp style="text-align: justify text-indent: 2em "strong3 小结/strong/pp style="text-align: justify text-indent: 2em "药物多晶型的研究在制药行业中已是关注焦点,本文主要归纳了PXRD对药物多晶型定性和定量方面的应用。PXRD对原料药晶型的表征普遍为粉末图谱对比,这种方法简单、快速,但是结构相似的多晶型物的粉末图谱差异较小,难以区分,需联合其他方法来解决这类问题,并且PXRD也能有效地说明其他方法对多晶型物的测定。所以,联合技术的应用将会成为药物多晶型研究领域的一种发展趋势。不同的赋形剂和小分子添加剂(辅料)或研磨方法均会对固体制剂中的原料药多晶型产生不同的影响,PXRD对原料药多晶型的变化能够直接地通过粉末图谱表达出来,作为判定辅料和原料药的有力手段。多变量拟合法相比标准曲线法能提供更多的物相信息,与计算机软件的结合,使处理数据更加简单化,分析更加完整,逐渐成为药物多晶型定量研究的潜力手段。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(127, 127, 127) "i文章摘自:夏婉莹,郝英魁,唐辉,傅琳,蒋庆峰.粉末X射线衍射法在药物多晶型研究中的应用[J].中国新药杂志,2019,28(01):40-43./i/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) "strong【近期会议推荐】/strong/span/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/ad9574be-e083-43ad-a522-22d4dbb606cc.jpg" title="1125-480.jpg" alt="1125-480.jpg"//ppbr//ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse" align="center"tbodytr class="firstRow"td width="595" colspan="4" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"pspan style="color: rgb(227, 108, 9) "strong“X射线衍射技术及应用进展”主题网络研讨会(07月23日)/strong/span/p/td/trtrtd width="90" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p13:30-14:00/p/tdtd width="195" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p原位X射线衍射技术在材料研究中的应用/p/tdtd width="65" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p程国峰/p/tdtd width="178" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all "p中国科学院上海硅酸盐研究所研究员/p/td/trtrtd width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p14:00-14:30/p/tdtd width="198" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p赛默飞实时XRD系统及其特色应用/p/tdtd width="65" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p居威材/p/tdtd width="178" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p赛默飞世尔科技(中国)有限公司应用工程师/p/td/trtrtd width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p14:30-15:00/p/tdtd width="198" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p高分子材料的X射线衍射表征/p/tdtd width="65" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p张吉东/p/tdtd width="178" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p中国科学院长春应用化学研究所研究员/p/td/trtrtd width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p15:00-15:30/p/tdtd width="198" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p单晶X射线衍射技术及其在药物研究中的应用/p/tdtd width="65" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p钟家亮/p/tdtd width="178" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p中国医药工业研究总院副研究员/p/td/trtrtd width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p15:30-16:00/p/tdtd width="198" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pX射线衍射技术在药物晶型研究方面的应用/p/tdtd width="65" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p周丽娜/p/tdtd width="178" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p天津大学工程师/p/td/tr/tbody/tablep style="text-align: center "span style="color: rgb(227, 108, 9) "strong点击链接或扫描下方二维码,即可进入报名页面,获得与专家及时交流的机会!/strong/span/pp style="text-align: justify text-indent: 2em "1、报名链接:/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/X0723/" target="_self"https://www.instrument.com.cn/webinar/meetings/X0723//a/pp style="text-align: justify text-indent: 2em "2、参会报名二维码/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: justify text-indent: 2em "img src="https://img1.17img.cn/17img/images/202007/pic/15f59e8e-4a82-4c71-865f-8173a9fe0267.jpg" width="250" height="250" border="0" vspace="0" title="" alt="" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 250px height: 250px "//ppbr//p
  • 1002万!中国海洋大学X射线多晶粉末衍射仪、多波束测量系统、全站仪等设备采购项目
    一、项目基本情况项目编号:HYHAQD2023-0188项目名称:X射线多晶粉末衍射仪、多波束测量系统、全站仪等设备采购项目预算金额:900.0000000 万元(人民币)最高限价(如有):900.0000000 万元(人民币)采购需求:简要技术需求详见招标公告附件。预算金额及最高限价:第一包:402.04万元,第二包:75.00万元,第三包:59.00万元,第四包:135.96万元,第五包:138.00万元,第六包90.00万元。合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止。项目编号:SDSHZB2023-114项目名称:中国海洋大学超净工作台、冷冻研磨机、高速冷冻离心机等设备采购项目采购方式:竞争性磋商预算金额:102.0000000 万元(人民币)采购需求:超净工作台、冷冻研磨机、高速冷冻离心机等设备采购(接受进口产品),预算金额:102万元,其他内容详见附件本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年05月09日 至 2023年05月15日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:邮箱(panghaosheng@sdhyha.com)方式:本项目采用网上获取方式(扫码填报信息+邮箱发送资料): (1)扫码填报信息:投标人扫描附件内二维码,选取所要参与的项目点击“我要缴费”,根据提示完善投标人信息后保存提交(经办人选择逄昊晟)。 (2)投标人电汇标书费。 (3)投标人将法人授权委托书原件和被授权人身份证原件的扫描件、标书费汇款凭证的扫描件发至邮箱(panghaosheng@sdhyha.com)。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国海洋大学     地址:山东省青岛市崂山区松岭路238号        联系方式:崔老师 0532-66781979      2.采购代理机构信息名 称:海逸恒安项目管理有限公司            地 址:山东省青岛市崂山区香岭路1号北大资源博雅3号楼22层2203室            联系方式:逄昊晟 0532-85761207            3.项目联系方式项目联系人:逄昊晟电 话:  0532-85761207X射线多晶粉末衍射仪、多波束测量系统、全站仪等设备采购项目采购内容及项目要求.docx114-技术要求.pdf
  • 多晶X射线衍射技术的应用要点
    现代化商用多晶X射线衍射仪具备无损、便捷、测量精度高等很多优点,同时配备有先进的陶瓷光管、高精度的测角仪、高灵敏度的探测器以及各种分析计算软件,因此它的应用范围是非常广泛的,不仅可以实现材料物相的定性表征,还可以对很多参数实现定量化的分析。常规的分析包括:材料的晶型结构分析、点阵参数的测定、物相定量、晶粒尺寸和结晶度计算等,还可以对材料的宏观微观应力以及取向织构进行测定;同时还包括诸如小角散射、薄膜衍射、反射率测定以及微区分析等新的技术。而在X射线衍射分析表征中,样品的制备过程、仪器参数设定以及数据分析这三个步骤往往决定了X射线衍射数据结果的质量。本文主要从这三方面进行阐述,与大家分享下多晶X射线衍射的应用要点。一、样品制备X射线衍射实验的准确性和实验得到的信息质量结果与样品的制备有很大关系,在进行材料的X射线衍射分析时应合理制备样品。样品制备主要分为粉末样品的制备和块状类样品的制备。1. 粉末样品首先要控制它的颗粒粒径,原则上要保证颗粒尺寸适中并且均匀,对于大多数样品来讲可以通过研磨加过筛的方式来实现;而对于受外力易产生晶体结构变化的样品而言,通常采用不研磨直接过筛的方式进行处理。在样品的整个研磨过程中要掌握研磨力度柔和均匀的原则,适中的粒度可以让样品中大部分或全部的晶粒参与衍射,从而可以获得反应样品真实晶体结构信息的实验数据;如果研磨不充分,会造成样品的粒度粗大,从而会引起参与衍射的晶粒数目减少,衍射强度降低,峰形变差,分辨率降低的情况;如果用力过度研磨,对材料的晶体结构会产生不同程度的破坏,衍射强度会降低,同时晶粒细化会带来衍射峰的宽化效应,不利于得到结构清晰的衍射谱图。至于研磨的程度,一般研磨到没有颗粒感,类似面粉的滑腻感即可,也不能研磨的过细。过筛这一步是为了保证样品粒径的均匀性,如果样品颗粒尺寸不够均匀,会产生一定的择优取向。图1是一个矿物样品的分析案例,红色谱图是未经研磨和未经过筛处理的样品,而黑色谱图是样品经过研磨和过筛处理的。从叠加图中可以明显看到:样品经过研磨过筛后,粒径尺寸适中且均匀,这就保证了参与衍射的晶粒数目。在X射线衍射谱结果中,经过处理的样品不论从衍射峰数目、强度、峰型和分辨率都要优于未处理的样品,从而确保了分析结果的真实性。图1 经过处理与未经过处理的矿物样品的叠加X射线衍射谱图在粉末样品的装填方面,需要准备的样品量一般在3g左右,最小不少于5mg。压片方法采用常规的正压法操作,在压片过程中让粉末样品最好能够铺满整个样品槽,关键要让粉末样品压平,如果样品表面不平整、存在凹凸起伏的情况,会导致出射的角度变大或变小,直接引起大角度的某些衍射峰偏移,还会造成入射X射线散射至任意方向,导致探测器接收到的峰值降低。这对于精修分析而言,会造成最终解析的晶体结构常数出现严重错误。压片过程中需要注意的是不要用力压太紧,否则容易影响样品的自由取向。2. 块状类样品从样品形态区分,常见的块状类样品有块状、板片状、圆柱状。在分析过程中需要把握样品的测试面面积、表面洁净度与表面平整程度。测试面的面积通常要大于1cm2,如果面积太小可以将几块样品粘贴在一起进行测试,同时样品的底面要与测试面相平行,从而保证衍射面的水平状态;在测试前,应该尽可能将测试面磨成平面,并进行简单的抛光,这样做不但可以去除金属表面的氧化膜,还可以消除表面的应变层,之后再用超声波清洗去除表面的杂质,保证测试面的平整光滑。二、仪器参数设置1. 扫描参数的设定X射线衍射的扫描方式主要分为步进扫描和连续扫描,步进扫描是将扫描范围按照一定的步进宽度(如常用的0.01度/步或0.02度/步)将整个扫描范围分成若干步,在每一步停留若干秒,并将这若干秒内记录到的总光强度作为该数据点处的强度,一般用于角度范围内的精细扫描,可以获得高质量的衍射数据结果,用于定量分析、线形分析以及精确测定点阵常数、Rietveld全谱拟合精修等应用;而连续扫描是测角仪从起始2θ角度到终止2θ角度进行的匀速扫描,其具备较高的扫描效率。这里面有两个关键参数——步长和扫描速度。步长一般是根据衍射峰的半高宽来决定,最好要小于全谱中最尖锐衍射峰半高宽的1/2。步进扫描的停留时间或者连续扫描的扫描速度要根据步长(数据点间隔)进行设定,要搭配合适,遵循步长小扫速慢,步长大扫速快的原则。否则,在图谱中会出现基线噪声过大和上下波动增大的情况,会把一些可能的弱峰掩盖掉。图2是一个陶瓷样品的分析案例,采用连续扫描模式、5度/分钟的扫描速度分别使用0.01度/步和0.02度/步的步长进行分析测试,可以看出快速扫描速度配合稍大步长的分析效果要好于小步长;下图按照步长小扫速慢,步长大扫速快的原则进行测试,都可以较为准确的表征出晶体的结构信息,特别是慢速扫描的数据质量更高。图2 不同扫描速度与步长匹配得出的X射线衍射谱图对于扫描范围而言,表1列举了一些常见材料的扫描角度范围,对于需要进行精修的衍射数据截止扫描角度一般要到100度或120度。表1 常见材料的扫描角度范围扫描总时间的计算对于衡量总体测试时间成本以及合理选取扫描参数是很有必要的。步进扫描和连续扫描的计算如式(1)、式(2)所示:如从3度到90度使用步进扫描模式采集某样品的衍射谱,步长设定为0.02度/步,停留时间为0.2秒/步,则通过计算可以得到测量总时间为14.5分钟。连续扫描的总测量时间根据式(2)计算,但是实际的总测试时长还需要包括光源移动到起始角度的时间。2. X射线光源的参数设置(1)X射线管的管电压和管电流X射线管的工作电压一般为靶材临界激发电压的3~5倍,以铜靶为例,它的Kα能量为8.04KeV,为了获得靶材的有效激发,电压通常设置为40kV,这里需要说明的是,电压一般不能低于20kV,否则就不能对Cu靶的特征X射线进行有效激发。选择管电流时功率不能超过X 射线管的额定功率,较低的管电流可以延长X 射线管的寿命。除非特殊要求,通常X射线管使用的负荷不超过最大允许负荷的80%左右。(2)靶材的选择依据样品元素成分来合理地选择工作靶的种类,应保证样品中最轻元素(原子序数小于等于20的元素除外)的原子序数比靶材元素的原子序数稍大或相等。如果靶材元素的原子序数比样品中的元素原子序数大2~4的话,那么X射线将被大量吸收因而产生严重的荧光现象,不利于衍射的分析效果(比如分析Fe试样,应该尽量使用Co靶或Fe靶,如果采用Ni靶,则背底噪音会很高)。如果采用不同的靶材对相同材料进行分析,所获得的谱图相同吗?使用不同的靶材,首先其特征X射线波长是不同的,而材料晶体结构的晶面间距值是其固有的。根据布拉格方程可知,样品衍射峰的角度决定于实验使用的波长,因此,采用不同靶材测试相同材料所得衍射图谱中衍射峰的位置是不相同的、呈规律性变化的,与靶材的种类是无关的。(3)狭缝的选择狭缝的大小主要依据材料的表征目的以及探测器的类型来进行选择,原则就是在保证强度的情况下提高分辨率。一般的衍射仪配置有三种可变的狭缝(发散狭缝、防散射狭缝和接收狭缝),另外两个索拉狭缝的层间距是固定的。发散狭缝越大,衍射强度越高,但峰型的宽化越明显;防散射狭缝用于限制由于不同原因产生的附加散射进入探测器,有助于降低背景;接收狭缝越小,分辨率越高,强度越低,反之。分析测试时尽量让发散狭缝和防散射狭缝保持一致,接收狭缝尽量小,这样可以提高衍射谱的分辨率和信噪比,从而获得高质量的衍射结果,还可以起到保护探测器的作用。(4)样品放置高度的控制样品的放置高度对于获得高准确度的数据结果是非常重要的,高度的略微偏移都会对实验结果产生影响,具体来讲就是会造成衍射峰的位移以及衍射峰强度的变化。通过图3可以看出:低于正确的高度,衍射峰向左偏移,同时峰强降低;如果是高于正确的高度,衍射峰向右偏移,样品表面与防散射刀片的间隙更小,衍射峰强明显降低。图3 样品的不同放置高度所得到的衍射谱图三、数据分析1.获取的数据信息和物相定性分析首先,从X 射线谱的峰型中可以得到包括峰位、峰强以及峰型轮廓宽度形状的这些信息,通过衍射峰的峰位和峰强可以对物相进行定性定量分析,同时还可以通过计算获得点阵常数和晶体结构的相关结果;通过峰型轮廓宽度形状可以得到样品峰型的展宽,进而可以计算出晶粒尺寸和微观应力。物相定性分析是X射线衍射分析的基础,最重要的环节就是将样品谱图与标准卡片进行比对,以确定样品的物相组成。比对的过程中要遵循以下4点原则:(1)计算材料的晶面间距d值,这是材料晶体结构所固有的;(2)材料低角度的衍射线与标准卡片的匹配情况;(3)重点关注谱图中的强衍射线;(4)要尤为重视特征线。2.衍射谱比对功能的运用将衍射谱进行叠加比对是衍射数据分析中较为常用的一个方法,比如鉴定药物晶型结构的一致性,通常就采用谱图比对的方法进行晶型分析。在《药典》中明确规定判断两个晶态药物晶型状态的一致性,应满足“衍射峰数量相同、衍射峰强弱顺序一致、衍射峰角度误差范围在±0.2°内以及相同角度衍射峰相对峰强度误差在±5%内”这四个条件。以一批送检的降糖药为例,判断其晶型状态的一致性。首先对两种药物进行谱图叠加比对,如图4所示,可知这两个样品满足“衍射峰数量相同和衍射峰强弱顺序一致”这两个条件。图4 药物X射线衍射谱叠加图而后对两个样品进行衍射峰峰位和强度的定量比对,通过计算可以得出:两个样品的峰位一致,符合“二者2θ值衍射峰位置误差范围在±0.2⁰内”的条件;同时相同位置衍射峰的相对峰强度存在偏差,有的甚至超过了15%,因此不符合“相同位置衍射峰的相对峰强度误差在±5%内”的条件。表2 样品衍射峰的峰位和强度比较通过谱图定性比较和衍射峰的定量计算,比对结果满足前三个条件,但是晶粒生长方向存在差异造成相同角度衍射峰相对峰强度的误差超出了《药典》中给定的范围。X射线衍射谱的比对法可以为挑选药物晶型和优化药物生产工艺参数提供帮助。在分析表征过程中,需要根据样品特性以及表征目的把握好样品制备、仪器参数设置以及数据分析这三方面的要点,以获得准确、高质量的X射线衍射数据,充分发挥出多晶X射线衍射的技术优势,为科学研究、技术创新以及材料评价等方面持续提供强有力的数据支撑。附:作者简介黎爽,高级工程师,2008年就职于北科院分析测试研究所至今,主要应用电子显微镜、X射线衍射仪等大型科学工具作为表征手段,从事材料的电子显微分析、晶体结构表征以及相关科研工作。针对新材料的研究表征,建立了多种特色分析技术,涵盖了材料制备和分析测试表征等方向。特色分析技术广泛应用于日常科研工作中,已通过专业领域内多项能力验证和国家司法鉴定能力验证项目考核。

多晶粉末衍射仪相关的方案

多晶粉末衍射仪相关的资料

多晶粉末衍射仪相关的论坛

  • 多晶衍射标定和EDX

    多晶衍射标定和EDX

    诸位师兄长辈。本人做了稀有金属:TiO2(pdf卡片-21-1276)和Tb4O7(pdf卡片-13-0387)混合物,球磨后粉末的TEM,得到下图的多晶环。本人尝试进行了初步标定,但是存在最里圈的环,推测不出是什么成分。愿诸位抽空,有空帮我看看。这里还有一些思考问题,希望得到解答:1.做选区多晶衍射,混合物中单种成分含量在多少时,能打出环或者斑点出来?2.EDX成分含量检测的精度在多少? 当EDX检测不出该种成分的时候,做选取多晶衍射能否打出该种成分的斑点或者环?3.做TEM选区多晶衍射标定,是否也跟xrd一样,强度高的峰,更容易出环?4. 从R值的比例来看,内圈环的半径很小,说明晶面间距很大,我的推测可能是Fe的氧化物,这样的分析可能不可能?http://ng1.17img.cn/bbsfiles/images/2014/10/201410270944_520155_2799647_3.jpg

  • 【分享】晶体结构的X-射线粉末衍射法测定(摘要)

    晶体结构的X-射线粉末衍射法测定(摘要)梁敬魁中国科学院物理研究所,北京,100080 随着计算机技术的发展和应用,以及X-射线源和中子源强度、衍射仪分辨率的提高,利用多晶衍射数据进行复杂晶体的结构分析成为可能。目前这方面的工作已有很多报导,其中主要有最大熵法 、能量最小法 、Monte Carlo法 以及利用单晶结构分析方法,从粉末衍射数据测定晶体结构,测定了在不对称晶胞中含60个原子,178个原子参数的 的复杂晶体结构 。本文仅综述这一种测定方法。一、粉末衍射图谱的指标化、晶系、空间群和点陈常数的测定 衍射图谱的指标化方法很多,目前比较常用的有效方法是计算机程序法。例如TREOR尝试法计算机程序 ,Iio晶带分析计算程序 、DICVOL二分法计算机程序等 。在指标化的基础上确定空间群和计算点阵常数。二、重叠峰的分离 根据粉末衍射图谱、利用单晶体结构分析方法测定晶体结构。独立的强衍射峰的数目需为不对称晶胞内原子数目的10-15倍,或待测参数3-5倍,由于粉末衍射图衍射线的重叠,往往达不到这一要求。重叠峰的分离是粉末法测定晶体结构的关键问题。1. 利用衍射峰形函数分离重叠峰 衍射峰形函数可用Rielevld法的峰形函数 和Fourier合成法 峰形函数表征。在晶体结构未知的情况下,应用一步迭代法 、二步迭代法 以及直接法统计关系 等方法进行全谱的拟合,使拟合结果与实验结果符合。2. 导数图解分峰法 在光谱学中应用导数技术,可以比较好地从平滑的数据中确定重叠峰的数目和位置。对于平滑的重叠峰,二阶导数的最小值和四阶导数的最大值是很明锐的,可以很容易判断其位置,其衍射峰强度可通过二阶导数或四阶导数两旁的卫星小峰的高度和距离来计算。三、结构振幅|F|输入单晶结构分析程序 从各分离衍射峰的相对强度可推算出相庆的结构振幅|F|,根据晶体结构的特点,将|F|输入相应的单晶结构分析程序,例如在晶体结构含有重原子,通常可用三维Paiierson函数法,一般情况可用直接法。 根据结构分析结果所得的电子密度图r(r)或|E|图,可以确定原子的位置,但由|F|有误差,且粉末衍射数据少,在r(r)或|E|图可能会出现不少杂峰,只有峰值较大的才比较可靠,可能对尖结构中的某些原子,对于那些较小的峰,并不一定该位置存在有原子,比较可靠的作法是在第一步只确定一些重原子的位置,而后在用Fourier变换或差值Fourier变换来确定其它原子。四、差值Fourier变换和Rieiveld法修正 在得出初步相角值的情况下,原则上可用Fourier合成法求解全部原子的位置,但由于粉末衍射数据的完备性和准确度不够,经多次循环后获得稳定的电子密度图,可能仍未能达到满意的结果,在这种情况下一般应采用差值Fourier合成法,使计算和观察的结构振幅Fourier合成的级数断尾效应趋于相互抵消,差值Fourier合成可发现失落的原原子,修正原子位置的偏离以及热运动参数。如果差值Fourier合成仍不能获得满意的结果,可将已确定的原子位置输入Rielveld程序,修正后可以得到一套新的|F|值,再进行差值Fourier变换,确定其它原子,可一直重复上述过程,直到满意为止。最生将所得的全部原子参数的初始值输入Rieiveld法程序进行合谱拟合精修。五、示例 LeBai 完全用实验常用X-射线衍射仪,收集粉末衍射数据,用Fourier合成法峰形函灵敏分离重叠峰,成功地测定了空间群为Pnc2、单胞体积为 、在不对称晶胞中含有29个独立原子、74个原子位置参数,比较复杂的 的晶体结构。

多晶粉末衍射仪相关的耗材

  • HOLO / OR衍射分束器
    HOLO / OR衍射分束器HOLO / OR衍射分束器• 将输入光束分成几个衍射级• 1维数组或2维矩阵输出• Nd:YAG和CO2激光器的设计• 与单模或多模激光器兼容通用规格Input Beam Mode:SM or MMHOLO / OR衍射分束器是衍射光学元件(DOE),可将输入激光束分成几束,称为衍射级。这些衍射级可以布置成一维光束阵列或二维光束矩阵,其中各个光束斑以限定的分离角分布。 HOLO / OR衍射分束器可用于Nd:YAG谐波(355nm,532nm和1064nm)以及CO2激光器。 HOLO / OR衍射分束器用于材料加工应用(包括平行材料加工和激光划片)中,以提高激光系统的生产量,并用于美学处理(例如分式处理)。注意:衍射光学元件不可在其设计波长范围之外使用。如果衍射光学元件的表面被油或其他物质弄脏,则会降低其性能。建议在处理这些光学器件时始终戴手套或手指套。Edmund Optics为激光应用提供了一系列来自HOLO / OR的衍射光学元件,包括:衍射扩散器:用于将输入激光束转换为具有均匀分布的定义形状衍射分束器:用于将输入激光束分成一维阵列或二维矩阵输出衍射光束整形器:用于将近高斯激光束转换为具有均匀平顶强度分布的定义形状衍射光束采样器:用于传输输入激光束,同时产生两个可用于监视高功率激光的高阶光束衍射轴心:用于将输入激光束转换为可聚焦到环的贝塞尔光束衍射涡旋相位板:用于将高斯轮廓光束转换为甜甜圈形能量环标题产品编码1064nm, 25.4mm Dia., 9x9 Spot Matrix, DiffractiveBeamsplitter#14-684532nm, 25.4mm Dia., 9x9 Spot Matrix, DiffractiveBeamsplitter#14-685532nm, 11mm Dia., 5x5 Spot Matrix, DiffractiveBeamsplitter#14-6861064nm, 20mm Dia., 9x9 Spot Matrix, DiffractiveBeamsplitter#14-687532nm, 20mm Dia., 9x9 Spot Matrix, DiffractiveBeamsplitter#14-6881064nm, 25.4mm Dia., 1x6 Spot Array, DiffractiveBeamsplitter#14-689355nm, 25.4mm Dia., 1x6 Spot Array, DiffractiveBeamsplitter#14-6901064nm, 18mm Dia., 5x5 Spot Matrix, DiffractiveBeamsplitter#14-6911064nm, 18mm Dia., 9x9 Spot Matrix, DiffractiveBeamsplitter#14-6921064nm, 25.4mm Dia., 7x7 Spot Matrix, DiffractiveBeamsplitter#14-69310.6μm, 27.94mm Dia., 1x2 Spot Array, DiffractiveBeamsplitter#14-6941064nm, 20mm Dia., 1x2 Spot Array, DiffractiveBeamsplitter#14-695
  • THz衍射镜片
    THz衍射镜片 在很多THZ应用中都要求对光束进行处理。目前常采用的的方法是抛物柱面镜和衍射光学元件。尽管衍射光学元件是最近才开始采用的,但是仍有不少人采用,因为它可以实现THZ波的空间分布的改变。为了满足THZ波段的衍射需求,我们提供下列衍射光学元件(DOE):- THz Fresnel 透镜 - THz光束分配器主要参数: 参数 Type of DOE THz Fresnel 透镜 THz beam divider 材料 HRFZ-Si HRFZ-Si 最大外型尺寸, mm 55 55 最大光学尺寸, mm 50 50 厚度, mm 1 1 工作波长范围, μm 60-250 60-250 衍射效率*, % 40 80 膜层 两面高透两面高透*衍射效率是某个衍射级的衍射光和入射光的比例。我们的衍射元件可以实现最高达到96%的衍射效率。THz Fresnel 透镜 Fresnel透镜是最简单的衍射元件,用以聚焦单设THz波。该透镜不像其他衍射透镜一样会产生球差。 衍射透镜有两个焦距:一个主焦距,一个次焦距。主焦距I1/I的衍射效率是40%,次焦距I2/I的衍射效率这个已经在实验中得到了证明。用自由电子激光器作光源,矩阵探测器来探测的实验已经证明了这一点。生产焦距从100mm甚至更长的透镜是有可能的,焦距的公差是5%。我们可以用公式X=1.22*λ*F/D 来计算Airy disk的尺寸,这里λ是波长,F是焦距,D是光学直径。 THz 光束分配器光束分配器可以把入射波改变成特定功率空间分布的几个电磁波。(+1和-1级)衍射效率为40(+/-2)%,其他的衍射角可以从20度到80度。
  • 粉末试样制样环(压片环)
    压样环尺寸:Φ40×34×4.5mm(外径×内径×厚度)广泛应用于红外光谱压片机、XRF光谱仪配用粉末压片机、全自动粉末压片机等设备配套使用耗材。在地矿所实验室、钢厂、电解铝车间和水泥厂等连续生产的工厂里,每天需要对产品或生产过程进行理化分析,从而保证生产产品的质量。自荧光和衍射分析方法引入上述行业后,分析检测样品就变得直接和简单,即对测试样品做平面处理后再进行荧光和衍射,可直接得出分析结果。在传统的样品制作中,需要对选取的样品进行粉碎,通过压样机高压制作成扁平试验样片,为保持样品的完整性,通过采用硼酸包边形式,但这种样品制作的时间 长,而且所做样品质地不均,容易出现硼酸污染,科研院所在长期的工作中发现,采用柔韧性和延长性好的材料制作的制样环,对于试验样的制作、试验结果的准确 性,有着极高的实用价值。网上价格仅供参考,详情咨询报价为准,谢谢合作!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制