您好,欢迎访问仪器信息网
注册
束蕴仪器(上海)有限公司

关注

已关注

金牌7年 金牌

已认证

粉丝量 0

400-860-5168转4058

仪器信息网认证电话,请放心拨打

当前位置: 束蕴仪器 > 解决方案 > 应用分享 | PHI X射线光电子能谱仪在光学中的应用

应用分享 | PHI X射线光电子能谱仪在光学中的应用

2024/06/13 14:38

阅读:31

分享:
应用领域:
半导体
发布时间:
2024/06/13
检测样品:
其他
检测项目:
带隙(Band Gap)
浏览次数:
31
下载次数:
参考标准:
其他

方案摘要:

带隙(Band Gap),亦被称为禁带宽度,是半导体材料的重要参数之一。它不仅揭示了价电子被束缚的紧密程度,还是衡量半导体光学性能优越与否的重要指标。

产品配置单:

分析仪器

PHI X射线光电子能谱仪

型号: PHI GENESIS 500

产地: 日本

品牌: ULVAC-PHI

面议

参考报价

联系电话

方案详情:

带隙(Band Gap),亦被称为禁带宽度,是半导体材料的重要参数之一。它不仅揭示了价电子被束缚的紧密程度,还是衡量半导体光学性能优越与否的重要指标。此外,带隙决定了激发该半导体所必须的较小能量阈值。在光电转换器件,如太阳能电池和发光二极管等领域,带隙的测量对深入理解半导体的电学和光学特性,以及探索其实际应用价值,具有不可替代的物理和现实意义。过去,科研人员主要通过循环伏安法或结合UPS与光学吸收法来测量带隙和能级排列。然而,随着反光电子能谱技术(Inverse Photoemission Spectroscopy,简称IPES)的日渐成熟,越来越多的研究开始采用IPES结合UPS的方法来进行材料带隙的精确表征。

即使是对同一材料的带隙测量,循环伏安法、UPS+光学吸收法以及IPES等不同的技术手段给出的实验结果往往是存在明显差异。这种不一致性引发了诸多疑问:“为何我的实验结果与文献报道的数据存在出入?”、“是否表征方法本身存在误差?”、“IPES技术的准确性如何?”、“测试设备是否存在问题或偏差?”、“为何实验结果与理论预测值存在较大差异?”、“究竟哪个结果更接近真实、可靠的值?”这些问题反映了带隙测量领域的复杂性和挑战性,也强调了进一步研究和验证各种表征方法的必要性。 

针对上述关于带隙测量方法和存在的疑问,我们进一步探讨光学带隙(Optical band gap)与电学带隙(Electrical band gap)之间的差异。光学带隙,通常关联于材料在吸收光子后,价带电子从基态跃迁至激发态并产生激子(exciton)所需的较小能量,需要注意的是激子是电子和空穴的束缚态(bound electron-hole pair),它们被静电库仑力束缚在一起。与此不同,电学带隙涉及将价带电子激发至导带,形成未束缚的电子-空穴对(unbound electron-hole pair)所需的较小能量。光学带隙与电学带隙之间关键区别在于激子结合能,即激子中电子与空穴之间由于静电库仑力而形成的束缚能量。图1清晰展示了两者之间的差异:光学带隙(Egopt)描述了电子从基态S0跃迁至激发态S1时所需吸收的光子能量;而电学带隙(Egec)实际上包含了光学带隙所表示的能量差以及激子束缚能(Eb,通常在0.1~1.2 eV)。这也是许多材料电学带隙通常大于光学带隙的原因之一。这种理解有助于我们更准确地解释和比较不同实验方法所得到的带隙数据,同时也为解决相关疑问提供了理论支持。 

图1. 光学带隙Egopt和电学带隙Egec的差异[1]

在无机半导体材料,诸如硅和砷化镓中,电子与空穴之间的库仑相互作用相对较弱,导致激子结合能较小。因此,在这些材料中,光学带隙与电学带隙之间的差异通常微乎其微,可以认为两者近乎相等。然而,当我们转向有机半导体领域时,情况则截然不同。在这里,电子与空穴之间的相互作用明显增强,激子结合能明显增大,我们不得不考虑光学带隙与电学带隙之间的差异。

UPS+IPES组合已成为精确测定电学带隙的有效方法之一,因此在研究中的应用日益普遍。IPES技术通过入射电子与未占据态的耦合作用,随后发生辐射衰变释放光子,借助光子探测器捕捉这些光子,从而精确获取样品的导带信息。然而,传统IPES方法面临一个明显挑战:入射电子能量通常超过10 eV,对材料,特别是有机材料造成明显的辐照损伤,这极大地影响了IPES测量结果的可靠性。[2]为应对这一难题,UIVAC-PHI公司创新性地推出了低能量反光电子能谱(Low-Energy Inverse Photoemission Spectroscopy, 简称 LEIPS)技术。LEIPS将入射电子能量准确控制在5 eV以下,从而在无损条件下有效测量材料的真实导带信号。结合UPS技术,LEIPS为全方面表征材料的能带电子结构提供了强有力的工具。这一技术革新不仅提高了测量的准确性,还为材料科学研究和应用开发带来了新的机遇。

参考文献

[1] https://www.liquisearch.com/band_gap/optical_versus_electronic_bandgap.

[2] H. Yoshida, Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chemical Physics Letters 539–540 (2012) 180–185. http://dx.doi.org/10.1016/j.cplett.2012.04.058.


下载本篇解决方案:

资料文件名:
资料大小
下载
04应用分享-浅谈光学带隙和电学带隙差异.docx
43KB
相关仪器

更多

PHI X射线光电子能谱仪

型号:PHI GENESIS 500

面议

PHI 硬X射线光电子能谱仪

型号: PHI GENESIS 900

面议

PHI 710俄歇电子能谱仪

型号:PHI 710

面议

飞行时间二次离子质谱仪

型号:PHI nanoTOF3+

面议

相关方案

全新台式D6 PHASER应用报告系列(六)— 织构分析- X射线衍射XRD

大多数金属样品在加工过程中由于加工技术而表现出一定程度的织构结构。比如电镀层在形成时,织构往往与电流传导方向相关。金属经锻造、轧制、挤压、拉拔等加工时,由于加工应力的作用将形成形变织构,而具有形变织构的金属经退火后又会出现退火织构。

材料

2024/09/11

应用分享 | 布鲁克三维X射线显微镜在油气地质领域的应用

布鲁克三维X射线显微镜(3D X-ray Microscopy, 3D XRM)在地质油气领域的应用极为普遍,能够为岩石、沉积物和流体行为的研究提供高分辨率的三维成像。这项技术在岩石物理、储层特性分析和微观结构研究中具有重要的应用价值。

地矿

2024/09/11

晶体日记(二十一)- 死而复生的晶体- X射线衍射XRD

仪器的进步带来了很多便利,常见的一句话是现在的D8 VENTURE 真好用,好的晶体分分钟就测完了。挑晶体的时间比测试的时间还长。确实现在的处境不是等机时,而是好多D8 VENTURE空在那里等样品。

材料

2024/09/11

应用分享 | AES俄歇电子能谱专辑之应用案例(一)

俄歇电子能谱仪(AES),作为表面分析技术领域的纳米探针,在固体材料表面纳米尺度的元素成分分析及形貌表征方面发挥着重要作用。

材料

2024/09/11

束蕴仪器(上海)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 束蕴仪器(上海)有限公司

公司地址: 上海市松江区新桥镇千帆路288弄3号楼602室-1 联系人: 蒋健林 邮编: 201106 联系电话: 400-860-5168转4058

仪器信息网APP

展位手机站