视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

仪器表征,科学家首次揭示微应变对钠分层氧化物正极材料合成的影响!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2024/08/21 21:24:19
导读: 研究发现过渡金属空间分布调控钠分层氧化物正极微应变,影响相变与电荷异质性,揭示缺陷反向传播模式,优化合成策略提升结构稳定性,为高性能电池材料设计提供新方向。

科学背景

随着高能量密度和长寿命电池的需求不断增加,研究人员越来越关注电池材料的微应变及其对电池性能的影响。微应变是由结构缺陷(如位错和堆垛层错)引起的,这对能源材料的机械强度和循环稳定性产生了重大影响。尤其在钠分层氧化物正极材料中,微应变被认为是导致容量衰退和结构破坏的关键因素。然而,微应变在电池材料合成过程中的起源和影响仍未完全明确,这成为了当前研究的一个挑战。

为了解决这一问题,布鲁克海文国家实验室(美国能源部的实验室) Xianghui Xiao, 美国阿贡国家实验室Gui-Liang Xu & Khalil Amine教授合作进行了一系列原位和实时的多尺度表征,包括同步辐射X射线衍射和显微镜观察,来探讨过渡金属在前体颗粒中的空间分布对微应变的影响。研究发现,过渡金属的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着强烈的调控作用。这一意外发现揭示了缺陷从核心向外壳的反直观传播模式,并为优化合成策略提供了新方向。

通过这些研究,科学家们提出了基于微应变筛选的合成策略,以减少晶格中的微应变和结构缺陷,从而显著提升了电池材料的结构稳定性。这些成果标志着向设计无缺陷电池材料的合成方法迈出了关键一步。

科学亮点

1. 实验首次在钠分层氧化物正极的实际合成过程中,系统地进行微应变筛选,并应用了多尺度原位同步辐射X射线衍射(SXRD)和显微镜表征技术。


2. 实验通过结合原位SXRD和全场X射线显微镜的观察,揭示了过渡金属在前体颗粒中的空间分布对纳米尺度相变、局部电荷异质性和微应变积累的强烈影响。


3. 实验结果:

过渡金属的空间分布:发现过渡金属的空间分布在钠分层氧化物正极的合成过程中扮演了关键角色,主导了相变机制。

微应变的积累:在合成过程中,微应变在颗粒内部积累,导致了缺陷的形成和增长,其传播方式呈现出反直观的外向模式。

结构稳定性的改善:通过对微应变的深入分析,提出了一种更为合理的合成路线,能够显著减少晶格中的微应变和晶体缺陷,从而提升结构稳定性。


科学图文

图1: 前驱体的形貌和化学性质。

图2:固态合成过程中的结构演变。

图3:合成过程中的结构缺陷和化学演变。。


图4:颗粒裂纹及其消除。

图5:电化学性能。

图6:测试分析。

科学结论

本文揭示了过渡金属在钠分层氧化物正极合成过程中对微应变的显著影响。通过原位同步辐射X射线衍射和显微镜技术的多尺度表征,研究发现,过渡金属在前体颗粒中的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着关键的调控作用。这一发现颠覆了传统观念,揭示了缺陷的成核和生长在颗粒内部向外传播的反直观现象。这种对微应变的深刻理解指导了更加合理的合成策略,即通过优化合成条件来减轻微应变和晶体缺陷,从而显著提高电池材料的结构稳定性。这一研究成果不仅提供了新思路来改善电池材料的性能,还为无缺陷电池材料的设计合成奠定了重要基础,为未来高能量密度和长寿命电池的研发提供了有力支持。

参考文献:Zuo, W., Gim, J., Li, T. et al. Microstrain screening towards defect-less layered transition metal oxide cathodes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01734-x


[来源:仪器信息网] 未经授权不得转载

用户头像

作者:仪器 Go

总阅读量 6974 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~