视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

信号增强高达100万,科学家最新研究开启GeV固态原子天线新纪元!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2024/08/21 21:51:52
导读: 本文的研究揭示了掺锗的金刚石空位中心(GeV)作为原子天线在光学增强领域的巨大潜力。GeV展现出在纳米尺度上的极高光学场增强能力,能够实现近场强度增强高达一百万倍。

科学背景】

原子光学天线是未来光学技术发展的重要趋势。其作用是实现极端的光场增强,推动光与物质之间的相互作用,离不开先进的光学材料和精确的实验技术。传统的纳米天线在光场增强和纳米尺度光学应用中发挥了关键作用,但其性能常受到环境诱导的非辐射过程的限制,这限制了其在更精细应用中的潜力。

近年来,美国芝加哥大学Alexander A. High教授团队发现,金刚石中的IV族色心,如锗空位(GeV),作为固体中的原子光学偶极子,展示出了卓越的光学相干性和高场增强能力。这些原子光学天线利用其量子力学性质,可以在纳米尺度上实现巨大的光场增强。与传统纳米天线相比,原子光学天线不仅在场强度上具有显著优势,而且由于其较低的非辐射衰减率,能够在非常小的尺度上展现出优异的光学性能。

这种原子光学天线的独特优势使得其在光谱学、传感和量子科学等领域得到了广泛应用。例如,利用GeV天线进行的实验表明,其在近场的光强度增强高达一百万倍,能够有效检测和操控附近的碳单空位,并通过福斯特共振能量转移(FRET)实现单个中性空位的荧光检测。这种极高的灵敏度和精确度为新兴的光学应用提供了前所未有的机会,并推动了相关技术的发展。

科学亮点

1. 实验首次实现了掺锗金刚石空位中心(GeV)作为原子天线的应用

本研究首次将掺锗金刚石空位中心(GeV)作为原子天线进行实验验证。通过利用GeV的光学特性,我们成功地演示了其在光场增强和局部光强度放大的应用潜力。


2. 实验通过共振激发和数值模拟,测量了GeV的近场光强度增强

共振激发: 在实验中,我们对GeV进行共振激发,观察到其产生的驻波近场电磁场具有显著的增强效应。测量结果表明,在距离小于1纳米的范围内,GeV近场的光强度增强高达百万倍。

数值模拟: 通过数值模拟,我们计算了GeV的散射光场强度,展示了其在特定条件下的巨大场增强。模拟结果显示,与共振激发场相比,散射场的强度可以达到高达10^8倍的增强程度。

对比分析: 与传统的纳米天线相比,GeV作为点状量子发射体具有较低的非辐射衰减率和非常窄的线宽,这使得其对共振频率的扰动具有极高的灵敏度,并能够实现超常的场增强效果。


3. 实验应用及前景展望

检测与操控: 我们利用GeV天线探测并操控了附近的碳单空位(VC),并通过福斯特共振能量转移(FRET)首次实现了来自单个中性空位的可检测荧光。

未来应用:GeV原子天线的独特特性为光谱学、传感和量子科学等领域的应用提供了新机遇,并可能推动相关技术的发展和新应用的探索。

科学图文

图1: 锗germanium,GeV天线。

图2: 锗GeV天线感测、调控和光学激发近端空位。

图3: 零声子线zero-phonon line,ZPL劈裂与泵浦阈值功率负相关。

图4: 比较非共振激发,揭示了场增强。

图5:相比于银纳米球,锗GeV天线效应。

科学启迪

本文的研究揭示了掺锗的金刚石空位中心(GeV)作为原子天线在光学增强领域的巨大潜力。首先,GeV展现出在纳米尺度上的极高光学场增强能力,能够实现近场强度增强高达一百万倍,这为科学研究和技术应用提供了前所未有的机会。其原子级别的尺寸和低非辐射衰减率使其在生成和操控局部电磁场方面具有独特的优势,与传统的纳米天线相比,这种增强效应与物理尺寸基本解耦,从而避免了小型金属散射体因欧姆损耗导致的响应下降问题。

此外,GeV的高光学相干性和窄线宽使其在光谱学和传感应用中具有极高的灵敏度,能够检测和操控邻近的碳空位(VC)并实现荧光显微探测。这种特性不仅拓宽了原子天线在光谱学和量子科学中的应用范围,还在单分子拉曼光谱、光诱导催化等领域提供了新的研究工具。特别是通过福斯特共振能量转移(FRET)技术,GeV天线可以驱动来自单个中性空位的可测量荧光,为单个量子系统的研究提供了新的途径。

原文详情:Li, Z., Guo, X., Jin, Y. et al. Atomic optical antennas in solids. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01456-5


[来源:仪器信息网] 未经授权不得转载

用户头像

作者:仪器 Go

总阅读量 6820 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~