视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

冷冻电镜,两篇Science!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2022/08/25 14:22:33
导读: 西湖大学施一公团队在Science发文首次揭示人源IgM-B淋巴细胞受体组装的分子机制,哈工大黄志伟课题组在Science发文揭示人B细胞受体复合物组装的分子机制。

Science:施一公团队首次揭示人源IgM-B淋巴细胞受体组装的分子机制

北京时间2022年8月19日,西湖大学施一公团队在《科学》(Science)上发表了题为《人源IgM B细胞受体的冷冻电镜结构》(Cryo-EM structure of the human IgM B cell receptor)的研究论文。

该论文首次报道了人源IgM同种型B细胞受体(IgM-BCR)的高分辨率三维结构,揭示了膜结合的IgM(mIgM)与Igα和Igβ异源二聚体复合物组装的分子机制,从而回答了B细胞受体如何组装这一重要科学问题,同时也为基于B细胞受体的免疫疗法提供了关键的结构基础。

B细胞也叫B淋巴细胞, 是适应性免疫系统的重要组成部分。它在抗原刺激下可分化为浆细胞和记忆B细胞:浆细胞可合成和分泌抗体,是人体的免疫屏障之一;记忆B细胞则可以“记录”下感染信息,并在体内长期存在,以备不时之需。

B细胞需要抗原与B细胞受体(BCR)的结合,才能进行增殖和分化,产生浆细胞和记忆细胞。这就好比,如果B细胞要组织一场免疫战斗,入侵的抗原是敌人,B细胞受体(BCR)则是探知敌人虚实的先锋。

B细胞的“生命周期”概略示意图

早在1990年,德国马普所的Michael Reth实验室就鉴定发表了BCR的组分,在之后的三十多年中,人们对BCR胞外区如何识别各种抗原并激活B细胞信号通路进行了深入的研究。BCR由膜结合的免疫球蛋白(mIg)和Igα/Igβ异二聚体组成。其中mIg负责与抗原结合,Igα/Igβ参与信号传递。抗原结合以后,BCR在细胞膜表面寡聚化,Igα和Igβ被Lyn激酶磷酸化,之后激活下游信号通路。

BCR被认为是治疗B细胞恶性肿瘤的重要治疗靶点。例如,Polatuzumab vedotin是一种抗体偶联药物,该药物可以结合BCR中的Igβ组分,释放偶联的毒素分子,对B淋巴瘤细胞进行精准杀伤。尽管BCR十分重要,但科学家一直未能看清其结构。一旦获知BCR的结构信息,对于理解B细胞活化以及针对该复合物进行抗体药物的开发,将具有很高的潜在价值。

BCR根据mIg类型的不同,可以分为五种类型,即IgM、IgD、IgG、IgA和IgE。此次施一公团队的研究对象,正是其中的IgM型。实验过程中,他们首先将IgM-BCR的四个组分的cDNA进行密码子优化并克隆到表达载体上,接着通过共表达内质网潴留蛋白pERp1促进IgM二硫键的形成,帮助其正确折叠。之后,在蛋白纯化时加入抗体偶联药物Polatuzumab的Fab片段,最后通过冷冻电镜解析了第一个人源IgM同种型B细胞受体复合物3.3 埃(1埃等于0.1纳米)的高分辨率结构(图1)。

图1 IgM-BCR复合物的整体结构图

该IgM-BCR复合物结构包含一个mIgM和一个Igα/Igβ,它们以 1:1 的化学计量比非共价结合。在Igβ的上方,观察到了Polatuzumab的Fab片段的电子密度,证实了Polatuzumab结合在Igβ氨基末端的柔性区域。

在IgM-BCR的胞外区域,重链的胞外域与 Igα/Igβ的胞外域紧密堆叠。在近膜区域,两条重链中的一条通过连接肽(linker)穿过由 Igα/Igβ包围的中空结构。在跨膜区域,mIgM和Igα/Igβ的跨膜螺旋(TM)形成一个四螺旋束,通过跨膜螺旋之间的氢键来稳定构象(图2)。

图2 IgM-BCR复合物组装的细节图


这样的结构特征暗示了mIgM和Igα/Igβ在细胞内通过共折叠的方式形成复合物。施一公团队通过体外pull-down和体内免疫共沉淀(co-IP)实验, 验证了IgM-BCR的组分通过共折叠的方式在细胞内形成复合物的猜想,同时揭示了TM和linker在复合物组装中的重要作用。

除此之外,该结构揭示了胞外域上的 14 个糖基化位点,并发现三个潜在的表面抗体结合位点,可能有助于用于疾病干预的治疗性抗体或微型蛋白质的理性设计(图3)。和已经批准的抗体偶联药物Polatuzumab vedotin一样,这些特异性结合IgM-BCR的抗体或微型蛋白质,具有治疗B细胞淋巴瘤的潜力。

图3 IgM-BCR糖基化位点分布图

Science的审稿人对该项研究给予了高度评价:“这是B细胞生物学的一大突破,也是一项非常了不起的成就。”

西湖大学生命科学学院施一公教授及其团队博士后宿强为本文的共同通讯作者。西湖大学生命科学学院博士后宿强、清华大学生命科学学院博士生陈梦莹以及西湖大学访问学生、郑州大学博士生史嫣为本文的共同第一作者。西湖大学生命科学学院助理研究员张晓峰、博士后黄高兴宇、博士生黄邦栋,郑州大学刘章锁教授、刘东伟教授,参与了本研究的部分工作。电镜数据采集于西湖大学冷冻电镜平台,计算工作得到西湖大学高性能计算平台的支持。本研究获得了科技部、国家自然科学基金委、西湖教育基金会、西湖大学、西湖实验室的相关经费支持。


Science:哈工大黄志伟课题组发文揭示人B细胞受体复合物组装的分子机制

8月18日,哈尔滨工业大学生命学院/生命科学中心黄志伟课题组在《科学》(Science)上发表题为《两种亚型的人类B细胞受体的冷冻电镜结构》(Cryo-EM structures of two human B cell receptor isotypes)的研究文章,揭示了BCR复合物亚基的组装、识别机制,以及发现不同亚型BCR尽管在膜内具有保守的组装模式,然而在胞外却具有不同的组装模式。

人类适应性免疫细胞(T细胞和B细胞)在病原感染、癌症发生以及自体免疫疾病中起着关键作用。T、B细胞分别通过T细胞受体(TCR)和B细胞受体(BCR)识别抗原信号,把信号跨膜传递至胞内,激活T、B细胞的免疫反应。T、B细胞受体属于一类由多个蛋白组成的最复杂的细胞受体,对T、B细胞的发育、分化、功能起着至关重要的作用。TCR和BCR复合物信号转导,免疫激活的结构基础与分子机制问题一直是免疫学领域的重要基础科学问题。

人IgG-和IgM-BCR复合物结构

人类B细胞受体有5种亚型,在该研究中,该课题组解析了人IgG和IgM两种亚型的BCR复合物结构,BCR复合物结构包含了一个膜结合形式的免疫球蛋白(mIg)同源二聚体,用于识别抗原,以及一个膜结合形式的Igα/β(CD79α/CD79β)异二聚体,用于信号传递(化学计量比为1:1)。其中,mIg二聚体包含了Fab和Fc结构域、连接肽(CPs)和跨膜(TM)螺旋,Igα/β结构由两个胞外Ig样结构域、CPs和TM螺旋组成。IgG和IgM-BCR复合物的组装分别由胞外的IgG-Cγ3和IgM-Cμ4与Igα/β的Ig样结构域,以及连接肽、跨膜螺旋承担。课题组通过两个亚型的结构比较发现,mIgG和mIgM的跨膜螺旋区通过保守的疏水和极性作用与Igα/β 结合。相比之下,在胞外区域,IgG-Cγ3和IgM-Cμ4分别通过“首尾相连”(head-to-tail)以及“肩并肩”(side-by-side)的模式与Igα/β的Ig样结构域结合,其中,Igα的CD loop 旋转了90度,分别与Cγ3和Cμ4结构域结合。结构上观察的不同亚型组装模式是否和活性有关值得进一步研究。

人IgG-和IgM-BCR复合物结构比较

分泌型sIgM通常形成五聚体,但在膜结合的静息态BCR上只观察到IgM的单体状态。结构分析显示Igα的Ig样结构域和膜结合的IgM-Cμ4完全重合,从而解释了膜结合的静息态IgM-BCR为什么处于单体状态。BCR的激活通常伴随着BCR多聚体的形成,静息状态下,由于Igα/β的Ig样结构域与Cμ4或Cγ3结合,在空间上阻断了mIg寡聚化,而当抗原结合后可能会对Fab结构域施加机械力,以触发mIg_Fc的结构变化,从而释放被Igα/β占据的Cγ3或Cμ4的寡聚体界面,导致BCR分子形成寡聚体启动下游信号转导,其潜在机制还有待进一步研究。电子密度分析分别在IgG和IgM-BCR上清晰地鉴定出6个和14个糖基化位点。

分泌型sIgM和膜结合型mIgM-BCR复合物结构比较

上述数据不仅解析了长久以来关于BCR结构与组装机制之谜,且对认识BCR启动免疫反应的分子机制,以及开发靶向BCR的免疫疗法用于治疗相关疾病提供了关键结构基础。

同期《科学》(Science)“观点(Perspective)”栏目发表了评论文章《揭开B细胞受体结构面纱——分子结构为理解和控制B细胞受体活性提供了路径》(Unveiling the B cell receptor structure - Molecular structures provide a road map for understanding and controlling B cell receptor activation),对该研究成果进行了介绍。

近年来,在人免疫细胞受体的结构与分子机制研究方面,黄志伟课题组首先通过解决TCR、BCR复合物的动态复杂性等技术问题,解析人TCR复合物的三维结构,揭示TCR复合物的亚基组装、识别机制(Nature, 2019)。课题组通过进一步解析高分辨率的TCR复合物结构,发现TCR跨膜区域存在“胆固醇结合通道”(Molecular Cell, 2022),胆固醇分子结合于该通道抑制TCR激活,通过去除胆固醇分子引起TCR组成型激活,揭示了TCR激活的结构基础,从而提出TCR的“胆固醇——门栓”控制理论,为理性设计靶向TCR调控T细胞活性的免疫疗法提供理论依据。

哈尔滨工业大学生命学院/生命科学中心黄志伟教授为本论文的通讯作者。生命学院2021级博士研究生马新宇、朱玉威副研究员、董德博士、陈彦博士为该论文的并列第一作者。生命学院2021级博士研究生王书博、张帆研究员、郭长友博士等参与该研究的部分工作。本项目受到国家自然科学基金委、腾讯科学基金、哈工大青年科学家工作室等基金的资助。





[来源:西湖大学WestlakeUniversity、哈尔滨工业大学]

用户头像

作者:管晨光

总阅读量 133w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~