您好,欢迎访问仪器信息网
注册
冠乾科技(上海)有限公司

关注

已关注

铜牌7年 铜牌

已认证

粉丝量 0

400-860-5168转4149

仪器信息网认证电话,请放心拨打

当前位置: Grant Tech > 解决方案 > 指定位点的化学掺杂在有机半导体晶体表面的电子分布表征解决方案

指定位点的化学掺杂在有机半导体晶体表面的电子分布表征解决方案

2022/07/27 16:08

阅读:119

分享:
应用领域:
半导体
发布时间:
2022/07/27
检测样品:
集成电路
检测项目:
特性
浏览次数:
119
下载次数:
参考标准:
布鲁克纳米表面

方案摘要:

本文描述了一种独特的、特定位点的n型掺杂机制,用两种有机半导体的单晶做实验,用特定位点的兴奋剂消除电子陷阱并增加背景电子浓度,使晶体拥有更优异的导电性。掺杂晶体组成的场效应晶体管(FET)的电子传输特性得到显著改善。增强了FET的电特性。表面化学掺杂是专门针对晶体层间边界,即已知的电子陷阱,钝化陷阱并释放流动电子设计的掺杂方法。化学方法掺杂对晶体的电子传输的影响是巨大的,FET中电子迁移率增加了多达10倍,并且其与温度相关的行为从热激活转变为带状。研究结果表明新的位点掺杂有机半导体的策略与传统的随机分布取代的氧化还原化学不同, 这个有趣的结果表明针对特定位点的掺杂可能是一种富有成效的新的有机半导体材料掺杂的策略,拓展了有机半导体材料在电子学方面的应用前景。

产品配置单:

分析仪器

布鲁克 扫描探针显微系统 Dimension Icon

型号: Dimension Icon

产地: 美国

品牌: 布鲁克

面议

参考报价

联系电话

布鲁克Dimension Edge 扫描探针显微镜系统

型号: Dimension Edge

产地: 美国

品牌: 布鲁克

¥150万 - 200万

参考报价

联系电话

方案详情:

几十年以前,发现晶体和薄膜的π共轭的科学家通过化学掺杂(例如导电聚合物)发现分子可以制成高导电性,甚至是金属性。这一发现引发全世界对这些材料的兴趣,并标志着有机电子学领域新的转折点。从此化学掺杂在科学研究和应用中开始发挥核心作用。p型和n型有机半导体薄膜已经广泛用于降低有机发光二极管显示器的工作电压, 但是到目前为止对化学掺杂有机半导体的掺杂协议、机制以及掺杂后的电子特性的研究都不如对传统半导体的研究。


本文作者描述了一种独特的、特定位点的n型掺杂机制,用两种有机半导体的单晶做实验,用特定位点的兴奋剂消除电子陷阱并增加背景电子浓度,使晶体拥有更优异的导电性。掺杂晶体组成的场效应晶体管(FET)的电子传输特性得到显著改善。增强了FET的电特性。表面化学掺杂是专门针对晶体层间边界,即已知的电子陷阱,钝化陷阱并释放流动电子设计的掺杂方法。化学方法掺杂对晶体的电子传输的影响是巨大的,FET中电子迁移率增加了多达10倍,并且其与温度相关的行为从热激活转变为带状。研究结果表明新的位点掺杂有机半导体的策略与传统的随机分布取代的氧化还原化学不同, 这个有趣的结果表明针对特定位点的掺杂可能是一种富有成效的新的有机半导体材料掺杂的策略,拓展了有机半导体材料在电子学方面的应用前景。


本文报告了两项与有机半导体化学掺杂有关的发现。第一项是对特定有机半导体晶体表面的台阶边缘可以选择性地刑场n型掺杂。作者利用两种半导体晶体材料“Cl2-NDI和PDIF-CN2”形成n沟道FET。将Cl2-NDI和 PDIF-CN2培养成板条状晶体,物理厚度范围为 1 至 50 μm,并将晶体层压到镀金涂层上,通过将两种晶体的(001)表面暴露于正硅烷蒸汽形成n型掺杂  图1a),不同厚度的晶体经过掺杂后台阶密度由AFM高分辨图形给出。(图1d)。作者对掺杂前和掺杂后的FET进行了电特性分析。


解决方案1.jpg

第二项是掺杂诱导的在台阶边缘的电子分布可以通过扫描开尔文探针显微镜(SKPM)进行可视化 。SKPM图像直观的解释了有机半导体晶体中的化学掺杂引起的电荷分布, 并验证了有机半导体材料系统中的微观掺杂效应。图 2b,2d 中的 SKPM 图像,对应于形貌图2a,2c,电势分布与两个掺杂晶体的每个台阶边缘重合, 正电位条纹和负电位条纹清晰可见。特别每个台阶边缘的正条纹,两侧的是负电位条纹。图3a显示的插图是原子力显微镜探针在阶台阶边缘进行线扫描。

解决方案2.jpg

Dimension ICON系统是一款性能强大的综合性实验平台,集形貌力学电学磁学热学电化学和纳米操纵等众多微纳表征技术与一体。Dimension Icon系统是世界上应用最广泛的大样品台原子力显微镜。上至300 mm直径的超大样品台设计,可以满足各类尺寸样品的测试需求。布鲁克的扫描电势显微镜( SKPM)拥有低噪声的AM-KPFM以及高灵敏度的FM-KPFM两种模式, 集高分辨表面扫描、高灵敏的电势扫描、量化的力学性能与一体,成为在半导体材料的研究、器件失效分析领域越来越重要的一种应用。

解决方案3.jpg

该文章中使用Bruker Dimension® Icon™和Multimode原子力显微镜来表征h-BN和GNR样品。Bruker Dimension® Icon™原子力显微镜为工业界和科研界纳米领域的研究者带来了全新的应用体验,具有高水平的性能、功能和配件选择,其测试功能强大, 操作简便易行。融合Dimension系统数十年的技术经验,广大客户反馈,结合工业领域的设备需求,Dimension Icon进行了全面革新。全新的系统设计,实现了前所未有的低漂移和低噪音水平。现在用户只需要几分钟就可获得真实准确的扫描图像。MultiMode® 测试平台作为历史悠久的经典机型,由于其卓越的分辨率与性能享誉至今。Multimode 8-HR 原子力显微镜通过高速PeakForce Tapping ®、增强的 PeakForce QNM®、全新的 FASTForce Volume和独家布鲁克探针技术,在成像速度、分辨率和纳米机械性能方面有了进一步的改进,使得综合性能显著提升。

解决方案4.jpg


解决方案5.jpg


注:本文转载自布鲁克纳米表面仪器部

下载本篇解决方案:

资料文件名:
资料大小
下载
DimensionIcon-冠乾科技_CN.pdf
2000KB
相关方案

SiC外延片测试方案

外延材料是实现器件制造的关键,主要技术指标有外延层厚度、晶格布局,材料结构,形貌以及物理性质,表面粗糙度和掺杂浓度等。本文介绍了关于以上指标的测试解决方案。

半导体

2023/03/15

纳米红外光谱探测细胞外囊泡的结构和异质性

布鲁克纳米红外光谱仪(nanoIR)采用光热诱导共振技术(AFM-IR)实现微小区域红外信号的采集。红外激光照射到样品上,样品吸收辐射光产生热膨胀,这种热膨胀引发探针的震荡,通过监控探针的震荡强度获得红外吸收强度。AFM-IR利用原子力探针作为样品红外吸收的传感器,实现了超高灵敏度的光谱和红外成像探测,化学成像分辨能力可以达到10nm。近期,澳大利亚悉尼大学悉尼药学院团队将纳米红外光谱方法引入到单个EV结构的检测中,展示了其在同一EVs和不同EVs群体之间揭示个体EVs异质性的能力。

生物产业

2022/08/18

Optonor激光测量物体振动解决方案

振动可以实时测量,更可以用数字方式测量,准确记录振幅和相位的数值数据,让研究者可以更好的研究物体振动,准确性大大提高。生成的动画能够使用户更好地理解对象的动态行为,可以用全场扫描法对频谱进行分析。

电子/电气

2021/03/11

三维光学轮廓仪在光学领域的解决方案

光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证最终元器件的性能指标,是光学元件加工领域的关键问题之一。 光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响最终器件的性能。此外,各种新型光学元件也需要检测其表面轮廓,比如非球面,衍射光学元件,微透镜阵列等。除了最终光学元件的加工精度以外,各种光学元件加工工艺也需要检测中间过程的三维形貌以保证最终产品的精度,包括注塑、模压的模具,光学图案转印时的掩膜版,刻蚀过程的图案深度、宽度等。

电子/电气

2021/03/08

推荐产品
供应产品

冠乾科技(上海)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 冠乾科技(上海)有限公司

公司地址: 浦东新区秀浦路800号50号楼1502室 联系人: 乔小姐 邮编: 201315 联系电话: 400-860-5168转4149

友情链接:

仪器信息网APP

展位手机站