您好,欢迎访问仪器信息网
注册
QUANTUM量子科学仪器贸易(北京)有限公司

关注

已关注

金牌18年 金牌

已认证

粉丝量 0

400-860-5168转0980

仪器信息网认证电话,请放心拨打

当前位置: QUANTUM量子科学 > 解决方案 > 利用亚微米空间分辨同步IR+Raman光谱成像分析PLA/PHA生物微塑料薄片

利用亚微米空间分辨同步IR+Raman光谱成像分析PLA/PHA生物微塑料薄片

2020/05/06 17:40

阅读:220

分享:
应用领域:
石油/化工
发布时间:
2020/05/06
检测样品:
其他
检测项目:
理化分析
浏览次数:
220
下载次数:
参考标准:
NA

方案摘要:

来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且材料相对便宜,但同时也引发了人们对于塑料垃圾在环境中的累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料形式。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当的条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。 虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的有用材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。

产品配置单:

分析仪器

非接触式亚微米分辨红外拉曼同步测量系统

型号: mIRage

产地: 美国

品牌: PSC

面议

参考报价

联系电话

方案详情:

来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且材料相对便宜,但同时也引发了人们对于塑料垃圾在环境中的累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料形式。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当的条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是最终回归自然,安全而又环保。

虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的有用材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。

生物微塑料薄片-1.jpg

图1. O-PTIR红外拉曼同步测量系统结构示意图

光热红外(O-PTIR)光谱是一种新兴的光谱分析技术,可以提供几百纳米尺度上高空间分辨的振动光谱,且远低于传统红外显微镜的衍射极限(~10-20 μm)。在O-PTIR光谱学中,高频率调制下的强红外光束源,如量子级联激光器(QCL),用于照射样品。当红外光束波数与样品分子振动频率相匹配时,红外光被吸收,能量被转化为热。当被激发的分子回到基态时,温度会以光源调制的频率发生波动,这些波动会反过来引发相应的体积变化(光声效应)和折射率变化(光热效应)。这些振动被具有远低于传统红外源空间衍射极限的高度聚焦的可见激光束所探测,同时在同一位置上伴随O-PTIR信号产生一个拉曼散射信号,从而实现真正的同时红外吸收和拉曼散射测量,并具有亚微米级的空间分辨率。

O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了它的许多限制。首先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射极限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于透射FTIR的谱图,从而消除了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。

本工作中,作者首先对这PHA和PLA的结合面进行了固定波数下的红外成像(图2)。通过对比可以发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用O-PTIR技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。

生物微塑料薄片-2.jpg

图2. 使用O-PTIR技术实现PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比。

为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了每间隔200 nm的线性红外扫描分析(图3)。从羰基(C=O)伸缩振动区和指纹区(图3 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图3 C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。

生物微塑料薄片-3.jpg

图3. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合O-PTIR图谱(C)。 


为获取更详细的界面处PHA/PLA组分的空间分布规律,同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)被用来分析羰基拉伸区域采集到的红外谱图(图4A和4B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过O-PTIR技术对该区域进行了同步红外和拉曼分析(图5C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。

相关研究的更详细信息请参考最新发表在Journal of Molecular Structure上的最新文章(Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy, DOI: 10.1016/j.molstruc.2020.128045)。 

生物微塑料薄片-4.jpg

图4.  PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。


下载本篇解决方案:

资料文件名:
资料大小
下载
PSC-技术资料-20191220(材料).pdf
1781KB
相关仪器

更多

热电制冷器件评价装置

型号:Peltier Evaluation System

面议

Lake Shore低温温度传感器

型号:DT-670 / Cernox...

面议

STVP系列连续流低温恒温器

型号:STVP系列

面议

相关方案

利用AFM+SEM二合一显微镜-FusionScope揭秘半导体陶瓷材料微观机理

近日,奥地利TDK公司与格拉茨技术大学(Graz University of Technology)合作,利用Quantum Design公司新推出的具有AFM-SEM原位同步技术的FusionScope多功能显微镜对BaTiO3陶瓷的晶界势垒进行了直接测量,并与相关理论结果进行了对比。此外,通过向陶瓷内添加不同含量的SiO2,明确了晶界势垒能量变化的相关微观机理。

材料

2023/11/13

利用AFM+SEM二合一显微镜-FusionScope表征纳米线阵列

近日,德国Technische Universitat Braunschweig相关课题组通过低温刻蚀法制备了具有高深宽比的纳米线阵列并对其进行了系统性的研究。该研究针对刻蚀气氛,刻蚀时间,刻蚀功率和刻蚀温度等条件对最终制备的纳米结构的形貌进行了深入研究。文中使用先进的AFM/SEM二合一显微镜-FusionScope对不同刻蚀结果的高度、形貌、均匀性和粗糙度等方面进行了细致的分析和总结。

材料

2024/09/11

利用FusionScope进行纳米力学测试,测试动态全程可见

AFM/SEM二合一显微镜-FusionScope作为一款全新的集成式显微镜,拥有强大的材料形貌表征能力。设备通过SEM侧向视野,精准定位探针位置,针对性地对目标区域进行扫描。 在力学测试中,FusionScope通过SEM提供的视野,研究者可以实现对特定样品表面的力学性能测试,并且能够清晰地观察探针对样品的压痕过程。无论是想要探究材料的硬度、弹性模量还是断裂韧性,能在FusionScope中得到答案!

材料

2024/09/11

利用AFM+SEM二合一显微镜-FusionScope表征3D等离子体纳米结构

近日,格拉茨技术大学相关团队提出了基于聚焦电子束诱导沉积(Focused Electron Beam Induced Deposition,FEBID)方法制备具有准确纳米尺度3D几何结构的等离子体纳米结构。同时,作者通过FusionScope多功能显微镜和透射电镜(TEM)对相应的3D纳米结构进行了原位几何尺寸的表征。然后,使用扫描透射电子显微镜的电子能量损失谱仪(STEM-EELS)对所制备的3D纳米结构的等离子性能进行表征。所测量的结果与相关模拟计算结果相比,两者结果相互吻合,证明了通过FEBID的方法制备3D等离子体纳米结构的可行性。

材料

2024/01/10

推荐产品
供应产品

QUANTUM量子科学仪器贸易(北京)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位