您好,欢迎访问仪器信息网
注册
北京卓立汉光仪器有限公司

关注

已关注

品牌合作伙伴
白金16年 白金

已认证

粉丝量 0

400-628-5299

仪器信息网认证电话,请放心拨打

当前位置: 卓立汉光 > 公司动态
公司动态

卓立汉光逐梦光电25载:客户反馈是产品创新的重要源泉 ——访北京卓立汉光仪器有限公司张志涛总经理

2024年8月14日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛在北京中建雁栖湖景酒店召开。在此期间,8月12日还举办了第三届高光谱成像应用研讨会暨怀柔光电产业发展论坛。特别值得一提的是,本次活动正值北京卓立汉光仪器有限公司(简称:卓立汉光)成立25周年。在这个具有里程碑意义的时刻,仪器信息网特别采访了北京卓立汉光仪器有限公司张志涛总经理,请其为大家分享本次活动的亮点,以及卓立汉光对未来发展的展望。北京卓立汉光仪器有限公司 张志涛总经理25年—服务于客户,也受益于客户2024年8月12-15日,卓立汉光举办了第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛,及第三届高光谱成像应用研讨会暨怀柔光电产业发展论坛。今年也正值卓立汉光的25周年,如此大型的学术交流及市场活动,对卓立汉光来说,有什么特别的意义?有哪些特殊的环节或者独特之处?对此,张志涛表示:“我们致力于搭建一个用户交流的平台,希望通过这种方式,客户之间有更多的信息分享和合作。同时我们也会分享最新的产品和技术,与客户进行真挚的交流,听取客户的反馈,并持续改进产品,以满足客户的需求和期望,给已经陪伴卓立汉光走过25年的老客户更大的信心。”张志涛解释说,“随着业务的不断扩展,卓立汉光逐渐意识到客户之间存在许多潜在的联系,客户群体中有着丰富的交叉合作机会。比如,一些客户专注于硬件系统开发,而另一些则在算法或特定应用领域深耕。基于此,卓立汉光希望通过创建这样一个平台,促进信息共享和横向合作,进而激发新的创新火花。”其实,在与客户深入交流的过程中,卓立汉光也受益很多。张志涛分享到:“客户反馈是我们产品改进和创新的重要源泉,与具有专业知识的合作伙伴进行横向合作可以有效解决某些技术难题。例如,我们在客户沟通中得到他们关于高光谱数据量过大的困扰问题,针对此我们给出了相对应的解决方案。不仅如此,在荧光系统的算法开发方面,卓立汉光也是通过横向合作的方式解决了长期以来无法攻克的技术难题。”会议现场本次活动正值卓立汉光25周年之间,据悉,与历届活动不同,本次卓立汉光特别将25周年的庆典元素融入到所有的市场宣传活动当中,还特别注重回顾过往并与客户建立更深层次的联系。据张志涛介绍,卓立汉光精心挑选了一些长期合作伙伴,并对他们进行了深入的点对点访谈,以收集关于产品和服务的反馈、建议乃至批评。半导体、生命科学将是未来的增长点谈到卓立汉光的客户群体,张志涛分享到,“科研市场仍然是公司的重要支柱之一。卓立汉光的客户群体最初几乎完全来自科研市场。过去20多年间,卓立汉光的科研市场保持着10%至15%的稳定增长率。期望今年在科研领域仍能有10%左右的增长。” 除了科研市场之外,近年来卓立汉光也在大力拓展工业客户。采访过程中,张志涛特别提到了半导体和生命科学两大领域的重要性。其特别强调说,“对卓立汉光而言,尽管公司在生命科学领域的应用还处于起步阶段,但我们已经拥有很多成熟的产品,如inder930拉曼测量系统、RTS共聚焦拉曼显微系统等,可以应用在生命科学等领域。”据悉,卓立汉光下一步也会针对于这两个应用方向,推出来更多的核心产品和系统来满足科学研究和产业端的应用。在探讨产品研发策略时,张志涛从深度和广度两个维度进行了阐述。第一,深度层面,公司正专注于核心器件和核心模组的研究与开发,旨在解决“卡脖子”的问题,并支撑公司现有系统级产品的推出和研发,特别是解决核心部件国产化的问题,以应对国际形势的风险。第二,广度层面,在目前公司产品线的基础上,卓立汉光不仅推出了很多极端条件下的产品解决方案,还正在进行产品之间的整合、联用,比如拉曼和电镜的联用等,实现多维度信息获取,为行业提供了更有效的解决方案。在新产品推出方面,张志涛着重介绍了条纹相机和高光谱两款产品。据介绍,条纹相机在科研端,尤其是新兴材料、新型半导体材料、光化学光物理等领域取得了良好应用,市场反馈积极,已销售多套产品。张志涛分享到,“过去条纹相机一直被日本和欧洲垄断,经过我们多年攻关推出的相关产品,可以非常好的填补国内商业化条纹相机产业的空白。”此外,针对高光谱系统成本和数据处理难题,张志涛透露,“我们花了四五年的时间一直在解决这个问题。今年新推出的高光谱产品,用户可以自定义读取数据,极大的提升了用户体验。”卓立汉光产品展示双利合谱产品展示“始终保持产品的市场竞争力是国产仪器面临的最大挑战”近年来,国产仪器利好消息不断,对此,张志涛分析到,“国家对新质生产力、国产替代等发展的需求,为整个科学仪器行业的发展提供了很好的机会。过去几年时间里,也涌现出了很多新的科学仪器公司。”不过,张志涛也指出,机遇的同时也面临着挑战:“这个过程中最大的挑战就是如何始终保持产品具有良好的市场竞争力。”张志涛分析到,“科学仪器领域需要具备工匠精神,因为这个行业涉及光学、机械、电子、计算等多个方面,细节处理至关重要,不可能一蹴而就。 只有产品得到客户的认可,公司才能稳定、长期、持续地发展。”对于卓立汉光而言,张志涛特别强调了“产品为本,客户第一”的理念。“注重产品质量和服务,坚持以产品为核心是公司持续发展的关键所在,同时公司也始终坚持将客户需求放在首位。”谈及卓立汉光过去25年的发展,在公司工作22年并见证公司一路走来发展壮大的张志涛表示:“我们非常自豪能够见证并参与公司的成长。25年前,卓立汉光创始人怀揣着创建一家中国人自己的光电仪器公司的梦想。25年来,卓立汉光始终坚持以客户为中心,以产品为本,每一步都走得非常扎实。如今卓立汉光已稳步成长为中国光电仪器知名供应商之一。”展望未来,张志涛满怀信心的讲,“希望能够把卓立汉光打造成为一个知名的光电仪器公司,不仅在国内享有盛誉,更希望在全球范围内获得认可。”据悉,为了完成这一目标,尽管面临经济不景气的大环境,卓立汉光在过去几年还是大幅增加了研发投入,期待卓立汉光早日实现目标。后记:2024年8月14日至16日,第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛在北京怀柔成功举办。自2020年首届研讨会在怀柔拉开帷幕以来,逐梦光电系列研讨会便受到了业界的高度关注和广泛支持,180余名行业专家报告,2000余名线下参会者,线上近40万观众参与。其中刚举办的第五届逐梦光电研讨会来自不同高校院所40余名行业专家齐聚一堂,吸引了线下400余名参会者,线上近15万观众参与,共同探讨光电领域的发展与未来趋势。这不仅是一场学术交流的盛会,更是光电产业发展的风向标。与会专家们围绕光电分析仪器的创新研制、核心技术的突破应用等热点话题展开了深入的讨论。分享了新的研究成果,探讨了光电技术在钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等多个领域的应用,并对未来技术发展趋势进行了展望。一直以来,卓立汉光致力于推动光电技术的研发与应用。此次研讨会的成功举办,不仅展示了公司在光电领域的实力和创新能力,也为行业内人员提供了宝贵的学习与合作机会。让我们共同期待下一届逐梦光电研讨会,继续深化探讨光电技术的前沿课题,推动光电仪器在更广泛领域的应用,为行业的发展贡献智慧和力量。此外,值此卓立汉光成立25周年之际,卓立汉光还将举办一系列25周年相关活动,敬请期待! “逐梦光电”25周年

媒体关注

2024.08.22

直播预约 | 重庆大学——邓业浩《太阳能电池的热力学原理》

“名师讲堂”系列专题会聚焦分子光谱、光电探测、高光谱与影像、超快光谱等前沿技术在材料、生医、能源科学等热门领域的前沿发展与应用,卓立汉光邀请行业内专家学者以网络在线形式进行学术探讨与交流,为光电技术科研工作者建立全新、高效、开放的学习与交流平台。54期名师讲堂马上就要开讲啦!直播预约8月22日上午10:00—11:00,重庆大学教授——邓业浩为大家带来讲座《太阳能电池的热力学原理》。直播期间更有丰富好礼相送,欢迎届时参加!主要内容一般从半导体的p-n结模型去描述太阳能电池,但分析一些问题往往比较棘手,且难以获得直观理解。比如:为什么太阳能电池的开路电压总是比其禁带宽度低至少~0.3 V?为什么聚光电池的效率可以超越S-Q极限?本报告从热力学的角度理解太阳能电池。首先介绍一个“卡诺热机“版的太阳能电池模型。再通过比较该模型和实际电池,为上述相关问题提供更直接的答案。我们将发现,太阳能电池的本质还是一个热机。本报告为具有不同背景的太阳能电池科研人员提供有意义的参考。讲师介绍邓业浩,重庆大学物理学院教授,博士生导师,国家高层次青年人才。中科院长春光机所硕士,美国北卡罗莱纳大学教堂山分校博士。主要研究新型半导体光电器件,应用于能源和信息领域,涵盖材料生长、器件设计,到先进表征。其中新型太阳能电池的研究成果多次通过美国国家可再生能源实验室的权威认证,并被收录进第57版太阳能电池效率世界纪录表。以通讯或第一作者在 Nature Energy, Science Advances, Joule, Advanced Materials等学术期刊发表论文20余篇。相关工作3次被Nature Energy进行亮点报道。是Nature, Nature Energy 等期刊的审稿人。邮箱:dengyh@cqu.edu.cn参与方式通过扫描下方二维码或点击【阅读原文】,预约本场直播。https://vkpym.xetlk.com/sl/2UwsWS直播福利1.凡在线观看直播的观众,均可以参加“直播互动抽奖”活动!名额多多,奖励丰厚,欢迎大家踊跃报名。2.免费入群交流,获取行业新动态。温馨提醒:请备注“姓名+单位+名师讲堂“添加客服希望通过名师讲堂我们可以共同学习光电知识8月22日,让我们不见不散!相关产品光电探测器光谱响应度标定系统

企业动态

2024.08.22

湖北工业大学程正旺团队:具有匹配带隙和功函数的p–n结促进高效可见光催化析氢

近日,湖北工业大学理学院(芯片产业学院)程正旺等提出了一种基于匹配带隙和功函数的p-n异质结,不仅促进了可见光吸收,还极大地提高了光生载流子的分离与迁移效率,实现了高效、稳定的PEC可见光析氢。今天小编为大家分享该研究成果,希望对您的科学研究或工业生产带来一些灵感和启发。应用方向:清洁能源,光电催化,分解水制氢,异质结正文:光电催化分解水制氢(H2)为解决能源消耗与环境污染问题提供了重要的解决方案,在实现我国“双碳”战略目标方面具有重要意义。然而,受限于单一催化剂有限的光吸收能力和光生电子-空穴对的复合,导致可见光条件下的光电催化效率并不理想。因此,如何设计和合成高效、稳定的分解水光电催化剂成为领域内的核心课题。针对上述科学问题,湖北工业大学理学院(芯片产业学院)程正旺等提出了一种基于匹配带隙和功函数的p-n异质结,不仅促进了可见光吸收,还极大地提高了光生载流子的分离与迁移效率,实现了高效、稳定的PEC可见光析氢。该工作以“Construction of nanorod-shaped TiO2/Cu3N p–n heterojunction for efficient visible-light hydrogen evolution”为题发表在国际期刊Journal of Materials Chemistry C上。程正旺等采用磁控溅射法,将p型Cu3N薄膜沉积到一维 n型TiO2纳米阵列上,形成了TiO2/Cu3N p-n异质结。得益于合适的能隙和内建电场的协同作用,形成的TiO2/Cu3N p-n异质结不仅将带隙从TiO2的3.09 eV减小到TiO2/Cu3N的2.01 eV,光响应范围也从从紫外区扩展到可见光区域。此外,光生电子-空穴对的分离和转移效率明显改善,平均载流子寿命延长了3倍。进一步地,在> 420 nm可见光照射和-0.97 V vs. RHE(可逆氢电极)条件下,光电流密度从TiO2的-0.33 mA/cm2提高到TiO2/Cu3N的-4.66 mA/cm2,提高了约14.12倍。此外,构建的TiO2/Cu3N异质结表现出稳定的PEC析氢性能,相应的可见光分解水产氢速率达到6.98 µmol/cm2/h。以上结果表明:构建具有合适带隙和功函数的p-n异质结是提高TiO2光电催化性能的一种有效途径,并且有望应用于其他光电催化剂。本项研究为设计和制备高效、低成本、无毒的PEC分解水电极和其他光电子化学应用提供了一条有效的途径。图1. 样品制备流程示意图。图2. TiO2/Cu3N样品的X射线衍射图谱(XRD)。图3. TiO2 (a),Cu3N (b)和TiO2/Cu3N的莫特-肖特基曲线(MS);TiO2/Cu3N界面的TEM图像;理论计算的平面平均电势,(e) TiO2(101),(f) Cu3N(110)。图4. 直接带隙TiO2、TiO2/Cu3N ((αhν)2~hν)和间接带隙Cu3N ((αhν)1/2~hν)的紫外-可见漫反射光谱(DRS) (a)和相应的Tauc图(b)。图5. (a) 稳态光致荧光(PL)光谱,(b) 时间分辨PL (TRPL)光谱。图6. (a) TiO2、Cu3N及TiO2/Cu3N的表面光电压谱(SPV);(b) 在-0.97 V vs. RHE和> 420 nm光照射条件下,TiO2、Cu3N及TiO2/Cu3N的光电流密度-电压曲线;(c) 电化学阻抗Nyquist图。图7. (a) TiO2/Cu3N在> 420 nm可见光照射下PEC产氢H2的循环稳定性。(b)本研究中TiO2/Cu3N的平均产氢速率与报道的TiO2基异质结结果的比较。图8. > 420 nm可见光照射下,TiO2/Cu3N p-n异质结的光生载流子迁移与光电催化分解水析氢机理图。关于此文章的更多细节请查看原文链接:https://doi.org/10.1039/D4TC00916A配置推荐本文中TiO2及TiO2/Cu3N发光测试使用卓立汉光公司的OmniFluo990稳态瞬态荧光光谱仪完成。OmniFluo990为模块化搭建结构,通过搭配不同的光源、检测器和各类附件,为紫外/可见/近红外发光测试提供综合解决方案,也为光电催化分解水制氢催化剂的研发提供有利工具。免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发。

应用实例

2024.08.20

用于液滴捕获、相变监测和形态学研究的单束梯度力气溶胶光学镊的表征

导言大气气溶胶粒子可以吸收和反射太阳辐射,被激活成云滴,参与冰核过程,并为化学反应提供反应界面。因此,气溶胶在空气污染、大气化学和气候变化中扮演着重要角色。气溶胶粒子可以有复杂的组成,包括无机、金属和矿物成分、元素碳和有机碳,以及一定量的水。气溶胶粒子还可以有不同的形态。例如由无机盐和有机成分组成的气溶胶粒子可以通过相变具有固态、部分吞噬或核-壳以及均一形态。气溶胶组成和含水量的变化导致粒子形态和相态的演变,同时改变其他物理化学性质,如pH值、极性、界面张力和光化学。分享一篇来自浙江大学裴祥宇团队的新研究成果,本文以“Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies”为题发表于期刊Atmospheric Chemistry and Physics,原文链接:https://doi.org/10.5194/acp-24-5235-2024 浙江大学裴祥宇老师为共同第一作者。希望对您的科学研究或工业生产带来一些灵感和启发。正文单粒子分析对于更好地理解颗粒转化过程及其预测环境影响至关重要。在本研究中,浙江大学的裴祥宇老师团队开发了一种气溶胶光学镊(AOT)拉曼光谱系统,用于实时研究悬浮气溶胶滴的相态和形态。该系统包括四个模块:光学捕获、反应、照明与成像以及检测。光学捕获模块使用532纳米激光器和100倍油浸物镜,在30秒内稳定捕获气溶胶滴。反应模块允许调整相对湿度(RH)并引入反应气体进入滴悬浮室,促进研究液-液相变。照明与成像模块采用高速摄像机监测被捕获的液滴,而检测模块记录拉曼散射光。裴祥宇老师团队捕获了含氯化钠(NaCl)和3-甲基戊二酸(3-MGA)的混合滴,以检查RH依赖的形态变化。当RH降低时,发生了液-液相分离(LLPS)。此外,作者引入了臭氧和蓖麻油/松节油来原位生成二次有机气溶胶(SOA)颗粒,这些颗粒与被捕获的滴碰撞并溶解在其中。为了确定被捕获滴的特性,作者使用基于Mie理论的开源程序,从拉曼光谱中观察到的回音壁模式(WGMs)中检索直径和折射率。结果发现,当RH降低时,混合滴形成了核-壳形态,由不同SOA前体生成的滴的相变对RH的依赖性不同。AOT系统是评估动态大气过程中形态和相态的现场实验平台。图1.(a) 本研究中使用的气溶胶光学镊装置示意图。(b) 滴液粒子悬浮室的设计。(c) 系统主要部件的照片,包括悬浮室、水汽发生器、激光器、摄像机和卓立汉光公司的Omni-λ5004i光谱仪。相变确定方法:当一个透明或弱吸收的球形颗粒被捕获时,它可以作为一个高质量的光学腔体,发生强烈的光学共振,从而产生增强的拉曼散射。这些共振可以在颗粒的拉曼光谱中观察到峰值,通常被称为回音壁效应(WGMs)。原则上,可以通过WGMs推断出颗粒的形态,因为折射率中的不均匀性会破坏WGMs的循环。WGMs衰减的起源在于颗粒被分离成亲水核和疏水壳时存在的径向均匀性。因此,当使用Mie散射模型拟合均匀液滴的拉曼光谱时,最佳拟合的误差会大幅增加。对提取的半径和折射率的研究显示它与均匀球体的拟合之间存在明显的差异。因此,颗粒大小和折射率发生显著变化的点可以作为核壳相分离发生的点。如下图所示,当液滴部分包裹且非球形时,光谱中的WGM峰值消失。总的来说,单个液滴在经历形态转变时拉曼光谱会发生相应的动态变化。图2. 基于光谱特征识别滴液形态的例子。(a) 捕获的水性NaCl滴的拉曼散射特征图。(b) 不同滴液形态的光谱:上子图显示了均匀水性饱和NaCl滴的典型光谱。中间子图显示了当SOA在饱和NaCl滴表面形成薄壳时的光谱。底部子图显示了当SOA继续在饱和NaCl滴表面凝聚时,WGMs峰值减弱的光谱。(c) WGM分裂时间序列的例子:红色峰值逐渐从一分为二,并且强度变弱,当SOA被加入到滴中时,表明形成了核-壳形态。在实验过程中,通常首先捕获一个均匀的滴液。随后,随着相对湿度(RH)的降低,滴液可能会经历相分离,转变成部分吞噬或核-壳形态。这些转变对回音壁模式(WGMs)有明显影响。当滴液转变为部分吞噬状态时,其对称结构被破坏,导致WGMs的猝灭。相比之下,当滴液呈现核-壳结构时,由于滴液的径向均匀性受到干扰,WGMs会减弱。因此,对部分吞噬或核-壳滴液应用MRSFIT可能会导致检索直径和折射率变得不可信,导致拟合误差异常高。为了解决这个问题并为核-壳滴液检索直径和折射率,作者采用了另一种名为Mie共振壳层拟合(MRSFIT)的程序,由Vennes和Preston开发。MRSFIT专门设计用来将观察到的Mie共振与使用Mie理论预测的核-壳颗粒的共振相拟合。MRFIT提供的模式分配指导了核-壳滴液的适当参数选择。捕获滴液后,可以从光谱中识别其形态,如图2所示的例子。图3. (a) 检索到的直径(Dp)和折射率(n)。(b) 测量室内前后的相对湿度(RH)。(c) 捕获的水性NaCl滴液的拉曼光谱时间序列图2和图3中的拉曼信号及数据使用卓立汉光公司的Omni-λ5004i光谱仪测量得到。由于物质特殊的结构,拉曼散射得到增强,使得峰值可在光谱中观察到,从而形成回音壁效应。而回音壁效应的改变情况在此研究中对于推断物质的形态有着非常重要的作用,因为单个液滴在经历形态转变时拉曼光谱会发生相应的动态变化,从拉曼光谱的变化中可以分析液滴的相变过程。图4.液-液相分离和NaCl/3-MGA溶液的混合。(a) 通过WGM拟合获得的滴液直径和折射率,蓝点代表滴液直径,红点代表折射率。(b) 室内相对湿度(RH)的变化,红线代表进入室内前的RH,绿线代表离开室内后的RH。(c) 时间分辨的拉曼光谱,WGMs用深红色标记。虚绿线和虚紫线分别表示液-液相分离和液-液相混合的发生。图5. α-蒎烯SOA涂覆在饱和NaCl滴液上的实验。(a) 使用均匀滴液模型检索到的滴液直径(蓝点)和折射率(红点),以及不同时间点的滴液实时图像。(b) 使用核-壳滴液模型检索到的壳层直径(蓝点)和核心直径(红点)。颜色越深,拟合误差越小。在点状绿线和点状紫线之间,蓝点代表壳层直径,而粉红点代表核心直径。(c) 流出室外的气流的相对湿度(RH)。(d) 在底部添加了柠檬烯SOA(紫色条),导致形成了核-壳形态。虚绿线和虚紫线分别表示液-液相分离和液-液相混合的发生。总结在这项研究中,作者开发并表征了一种新型的单束梯度力气溶胶AOT系统。建造了一个具有双层设计的定制滴液粒子悬浮室,提供了修改的多功能性,并实现了快速液滴捕获。作者对这个AOT系统进行了全面的特性表征和性能评估。AOT系统证明了在30秒内高效捕获微米级滴液的能力,显著提高了捕获效率。此外,室内设计的灵活性允许通过改变中间部分气孔的形状和大小来调整气流交换率和方向,以满足特定的实验要求。为了评估该悬浮室的性能,作者捕获了NaCl滴液,并使用MRFIT算法检索它们的直径和折射率。实验获得的滴液尺寸与理论值非常接近,证实了悬浮室性能。此外,作者研究了滴液的相对湿度(RH)依赖性形态,使用与3-MGA混合的NaCl滴液来测量分离相对湿度(SRH)和相变相对湿度(MRH)。作者还在原位生成并向无机滴液中添加了α-蒎烯和柠檬烯SOA。实验中滴液的第二相形成,使作者能够研究其混溶性和湿度依赖性形态。本文的发现表明,AOT系统可以有效地用于研究典型大气SOA的物理和化学性质。浙江大学裴祥宇老师简介裴祥宇,助理研究员,获哥德堡大学化学博士学位,2018至2019年于哥德堡大学从事博士后研究。长期从事大气科学、大气污染及气溶胶方面的研究。在国际有影响力的期刊发表论文30余篇。相关产品推荐本研究采用的是北京卓立汉光仪器有限公司Omni-λ5004i光谱仪,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1199_1565.html免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.08.20

用户速递 | 广西大学林涛团队:高效零维无铅钙钛矿闪烁体用于X射线成像

近日,广西大学物理科学与工程技术学院林涛博士团队提出了一种新的常温液相方法实现了零维无铅类钙钛矿单晶(Cs3Cu2X5 (X = Cl, I))的快速结晶。这一类晶体被用于构造高效的闪烁体,并用于实现X射线成像探测。闪烁体材料在医疗诊断、核物理和安全检测等领域中具有重要应用。传统闪烁体如碘化铯(CsI)和掺铈钇铝石榴石(LYSO)虽然性能优异,但其合成条件苛刻,成本高昂。近年来,铅基钙钛矿纳米晶体(如CsPbX3)因其低成本、低温合成性和优异的光电性能被视为潜在替代材料。然而,铅的毒性和材料本身的不稳定性限制了其广泛应用。针对上述挑战,广西大学物理科学与工程技术学院林涛博士团队研究人员探索采用采用无铅的铜(I)卤化物构造新型闪烁体。与纳米晶体相比,单晶铜(I)卤化物单晶在结构缺陷密度低、发光光子散射效应小等方面具有显著优势,这对实现低剂量高分辨率X射线成像至关重要。该工作以“Fast solution-phase growth of centimeter-sized Cs3Cu2X5 (X = Cl, I) single crystals for high-performance scintillators”为题发表在期刊Journal of Materials Chemistry C上。研究团队分别采用了甲酸辅助的改进溶液冷却(STL)法和油酸辅助的逆温度结晶(ITC)法来合成Cs3Cu2Cl5和Cs3Cu2I5单晶。通过精心选择溶剂、添加剂和温度控制策略,成功在24小时内合成出厘米级的高质量单晶。这些单晶在光学和闪烁性能方面表现优异,尤其是在X射线成像测试中展现出高吸收效率和明亮的辐射发光(RL)。图1. (a) Cs3Cu2Cl5单晶和(b) Cs3Cu2I5单晶的合成过程。(c) Cs3Cu2Cl5单晶和(d) Cs3Cu2I5单晶形貌。在302 nm紫外光照射下(e) Cs3Cu2Cl5单晶和 (f) Cs3Cu2I5单晶照片。(g) Cs3Cu2Cl5-PMMA薄膜和(h) Cs3Cu2I5-PMMA薄膜外观。302 nm紫外照射下(i) Cs3Cu2Cl5-PMMA薄膜和 (j) Cs3Cu2I5-PMMA薄膜荧光效果。图2. (a) Cs3Cu2Cl5、Cs3Cu2I5、CsPbBr3、硅(Si)和CsI(Tl)的吸收系数曲线与光子能量的关系。(b) Cs3Cu2Cl5、Cs3Cu2I5、CsPbBr3和CsI(Tl)在50 keV X射线下的衰减效率;(c) Cs3Cu2Cl5和(d) Cs3Cu2I5的光致发光(PL)光谱、放射光致发光(RL)光谱。(e) 连续X射线辐照的稳定性。(f) 暴露于空气后的稳定性。基于这些高性能单晶,研究团队成功制备了均匀的闪烁屏,空间分辨率高达6.5线对/毫米。研究结果显示,Cs3Cu2Cl5和Cs3Cu2I5单晶有望成为新型低成本、高性能的绿色和蓝色闪烁体,适用于实际X射线成像。该研究为快速合成适用于实际应用的Cs3Cu2X5单晶提供了重要指导。图3. (a) X射线成像系统示意图。 (b)、(c) 使用Cs3Cu2Cl5-PMMA薄膜和Cs3Cu2I5-PMMA作为闪烁体拍摄的X射线成像图像。(d) X射线成像的空间分辨率测量结果 。关于此文章的更多细节请查看原文链接:DOI: 10.1039/d3tc03871h配置推荐文中X射线辐射发光(RL)数据采用卓立汉光公司的OmniFluo990稳态瞬态荧光光谱仪上配置X射线辐射发光样品仓测试得到。第二代X射线辐射发光样品仓具有以下特点:• 满足国标《低能射线装置放射防护标准》(GBZ115-2023)的要求的整机设计方案,为实验安全护航。• 提供光管控制,辐射表控制功能,无需实验人员监测,即可完成长时间的,复杂的实验方案。• 反射和透射式光谱测试可选,预留温控台和定制积分球空间,可实现变温测试和辐射发光强度测试。     OmniFluo990 & X 射线辐射发光样品仓免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.08.19

光学设备在半导体制造领域的部分应用

半导体是指具有半导体特性的材料,它们在一定条件下能够传导电流,但在其他条件下却能阻止电流的通过。半导体的导电性能介于导体和绝缘体之间。常见的半导体材料包括硅、锗、砷化镓等。半导体作为当代科技的核心组成部分,半导体目前在电子、通信、计算机、医疗、光伏和汽车领域发挥着举足轻重的作用。通过对半导体材料、工艺和使用技术的不断探索,未来在新材料和新工艺的研究与应用、集成化与智能化、环保和可持续发展、生物电子与神经科技和量子计算与量子通信等领域都极可能是新的趋势。半导体产品的制造需要数百个工艺,通常来讲,整个制造过程分为八个步骤:晶圆加工-氧化-光刻-刻蚀-薄膜沉积-互连-测试-封装。卓立汉光作为国内一家光谱、光机和激光设备制造商,在半导体制造过程中可以提供一些加工或者测试设备。晶圆加工:所有半导体工艺都始于一粒沙子!因为沙子所含的硅是生产晶圆所需要的原材料。晶圆是将硅(Si)或砷化镓(GaAs)制成的单晶柱体切割形成的圆薄片。要提取高纯度的硅材料需要用到硅砂,一种二氧化硅含量高达95%的特殊材料,也是制作晶圆的主要原材料。晶圆加工就是制作获取上述晶圆的过程。在晶圆切割中,卓立汉光提供压电系列产品,比如Carrier系列物镜对焦台和Carrier系列多维运动位移台。亚纳米物镜自动对焦台Carrier.OBHLxx.C.HV系列特点:• 最快稳定时间(90% 位置稳定) 15ms 以内• 闭环分辨率优于 1nm• 最大负载 500 g• 控制器兼容多场科技 Motion Controller - Archimedes Series• 支持无磁 (.NM) 、高真空 (HV) 和超高真空 (.UHV) 选件Carrier.S200.xy/xyz.C系列中空压电扫描台产品特⾊• 两维度XY 扫描运动 200 um × 200 um;• 闭环定位精度优于 1nm;• 最⼤负载 500 g;• 针对光学显微镜-超分辨定制化解决⽅案;• ⽀持⽆磁( .NM)和⾼真空( .UHV)选件升级CarrierHS100.xxx.C/S系列中空压电扫描台• 闭环分辨率优于 1nm• 最大负载 3.5 kg• 针对光学显微镜-超分辨定制化解决方案• 支持无磁 (NM) 和高真空 (UHV) 选件升级光刻光刻是通过光线将电路图案“印刷”到晶圆上,我们可以将其理解为在晶圆表面绘制半导体制造所需的平面图。电路图案的精细度越高,成品芯片的集成度就越高,必须通过先进的光刻技术才能实现。具体来说,光刻可分为涂覆光刻胶、曝光和显影三个步骤。在光刻工艺中,卓立汉光可以提供主动隔振台、气浮直线电机、单维或多维扫描描台和物镜对焦台等压电产品和193nm激光器。主动隔振台主要特征• 无低频共振 - 低频范围内具有优异的隔振特性• 低至0.6Hz开始主动隔振(>200Hz被动隔振)• 只需0.3秒的设置时间• 自动调节负载• 因固有刚度具有高度的位置稳定性• 接电即可,无需压缩空气• 真正的主动隔振:即时产生反作用力来抵消振动气浮直线电机特点:• 最高可实现1um左右的运动直线度与运动平行度。• 最高可实现亚微米级别定位精度• 支持龙门结构定制。• 气浮直线电机是实现长行程、大负载、高速、高精度的需求的*优解。深紫外单纵模固体激光器Ixion193IXION 193为全固化单频激光器,其线宽达到变换极限,可用于光学计量、193nm 步进光学系统校准、高功率准分子激光器种子等。典型应用:• 光谱仪校准;• 光刻;• 干涉仪;• 193nm 计量测量• 准分子激光器种子源薄膜沉积为了创建芯片内部的微型器件,需要不断地沉积一层层的薄膜并通过刻蚀去除掉其中多余的部分,另外还要添加一些材料将不同的器件分离开来。每个晶体管或存储单元就是通过上述过程一步步构建起来的。这里所说的“薄膜”是指厚度小于1微米(μm,百万分之一米)、无法通过普通机械加工方法制造出来的“膜”。将包含所需分子或原子单元的薄膜放到晶圆上的过程就是“沉积”。要形成多层的半导体结构,需要先制造器件叠层,即在晶圆表面交替堆叠多层薄金属(导电)膜和介电(绝缘)膜,之后再通过重复刻蚀工艺去除多余部分并形成三维结构。可用于沉积过程的技术包括化学气相沉积 (CVD)、原子层沉积 (ALD) 和物理气相沉积 (PVD),采用这些技术的方法又可以分为干法和湿法沉积两种。化学气相沉积原子层沉积物理气相沉积在薄膜沉积的过程中,卓立汉光可以提供一系列的压电位移台,比如:LsXX.lab/LsXX.lab.E系列压电纳米线性位移台特点:• 超安静运动,20Hz驱动频率• 闭环控制·位置传感支持电阻型(R和光学型(.0)• 高精度空间传感分辨率(.0)10nm(默认);4.88nm2.44nm,lnm可选• 经济型空间传感分辨率(R)100-200nm• *小步伐约10 nm• 可提供多轴堆叠安装转接件• 控制器兼容旋转台,摇摆台•高真空 (HV) 和超高真空支持无磁 (NM) 、(UHV) 选件晶圆测试半导体晶圆PL光谱测试系统针对第三代半导体,如GaN、InGaN、AlGaN等,进行温度相关光谱和荧光寿命测试。同时可测量外延片的膜厚、反射率及相应的Mapping图。荧光光谱的峰值波长、光谱半宽、积分光强、峰强度、荧光寿命与电子/空穴多种形式的辐射复合相关,杂质或缺陷浓度、组分等密切相关通过白光干涉技术测量外延片的薄膜厚度(Thickness)、反射率(PR)以及晶片翘曲度。半导体晶圆PL光谱测试系统半导体晶圆PL光谱测试系统随着半导体技术的进步和更新,卓立汉光也会及时推出符合科研和工业生产需要的配套加工和检测设备,敬请关注。

应用实例

2024.08.19

第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛召开!

2024年8月14日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛在北京中建雁栖湖景酒店成功开幕。本次盛会汇聚了来自全国各大知名高校、研究院以及“产、学、政、研、用、金”不同领域的近百位专家学者,共同探讨光电技术的最新进展和产业发展趋势。开幕第一天,线上直播观众人数突破3.5万人。▲正式开幕本次研讨会聚焦荧光、拉曼、条纹、分幅、icmos、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向,旨在推动光电技术的创新发展,加强产学研用的深度融合,促进光电产业的转型升级。会议包括主题报告、技术展示等多种形式,为参会者提供了一个交流思想、分享经验、探讨合作的平台。▲北京卓立汉光仪器有限公司总经理张志涛在开幕式上,北京卓立汉光仪器有限公司总经理张志涛发表致辞,对远道而来的嘉宾表示热烈欢迎,并对光电产业的未来发展寄予厚望。随后,15位来自激光诱导击穿光谱、拉曼光谱领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲北京怀柔仪器和传感器有限公司总工程师刘海锋北京怀柔仪器和传感器有限公司总工程师刘海锋做激光技术与光学仪器在大科学装置的应用机遇技术报告,对怀柔科学城做重点介绍,怀柔科学城作为北京“三城一区”国际科技创新中心的关键平台,定位于世界级原始创新承载区,聚焦物质、信息智能、空间、生命、地球系统五大科学领域,部署了众多顶尖科技设施,聚集了国际上首个集极低温、超高压、强磁场和超快光场等综合极端条件实验装置;中国首台第四代高能量同步辐射光源及北京激光加速创新中心等,这些设施将汇聚成全球大科学装置最密集区域,为前沿激光技术、光学仪器研发应用带来前所未有的机遇与挑战。▲多场低温科技(北京)有限公司超精密运动部门负责人刘立民多场低温科技(北京)有限公司超精密运动部门负责人刘立民做基于压电的超精密运动解决方案报告,全面剖析压电技术在超精密运动控制领域的基础原理与最新进展,同时聚焦于多场科技推出的系列压电超精密运动产品,并详细描述这些产品的技术规格、操作原理以及在不同行业中的具体应用案例,展示它们如何在复杂环境中保持卓越的性能以满足用户对高精度和高稳定性的严格要求。并对其在半导体加工、生物医疗、精密光学等领域的应用情况做简单介绍。▲北京卓立汉光分析仪器有限公司应用专家赵牧原北京卓立汉光分析仪器有限公司应用专家赵牧原做太阳能领域产品综合解决方案报告,介绍了太阳能电池领域的前沿情况,并介绍卓立汉光公司面向太阳能电池领域推出的DSR光电检测系统,包括各个系统的测量原理、特点、适用范围和应用案例。▲合肥工业大学副教授杨蕾合肥工业大学杨蕾副教授做激光诱导击穿等离子体光谱报告,深入剖析了激光诱导击穿光谱(LIBS)技术的核心理念、根本机制及其固有的优势与局限性。针对LIBS技术在原位检测应用中的两大核心挑战——固体样本表面形貌的未知变异性与液体样品检测的复杂性,她展开了详尽探讨。研究固体样本表面形貌变化对等离子体、光谱的影响,提出减小其影响的方法;液体样品的Libs原位检测中,直接检测易产生飞溅,且激光脉冲存在一定的吸收损耗,导致光谱信号弱,研究并提出液体样品的检测方案,为提高液体样品在线定量检测精度提供参考。▲西安交通大学副教授袁欢西安交通大学袁欢副教授做激光诱导等离子体技术及其在电力系统中的典型应用报告,分析近些年来电力系统内基于激光诱导等离子体技术的检测方法,主要包括真空灭弧室真空度、绝缘油内金属颗粒、电缆表面绝缘强度、媒质灰飞等方面的研究,从技术原理、产业情况、仪器研制等方面进行论述,希望进一步推进激光诱导等离子体技术在电力系统内的产业化应用。▲北京卓立汉光仪器有限公司光学工程师何运北京卓立汉光仪器有限公司光学工程师何运做从实验室到在线及小型化LIBS系统应用介绍报告,介绍LIBS仪器应用,从实验室到现场及小型化。具体包括:1)激光诱导击穿光谱技术简介;2)实验室、现场和小型化LIBS仪器的应用。▲西安交通大学博士时铭鑫西安交通大学时铭鑫博士做激光诱导击穿光谱在油气资源勘探中的应用研究报告,报告指出,准确获取岩石与岩心样本的矿物元素与有机质组分信息,是理解其矿物学及有机地化特征、评估潜在储层及甜点区域的关键。时博士通过深入研究激光与岩石样本的相互作用及等离子体演化过程,优化了LIBS检测参数,成功构建了针对岩石及岩心样本的矿物元素与有机元素定量分析模型。该模型有效解决了模型过拟合与欠拟合问题,显著提升了元素预测的准确性。此外,研究还进一步探索了多光谱融合技术在页岩岩心总有机碳等有机质热解参数预测中的应用,为实现井场近原位、快速检测矿物元素与有机质特征参数提供了新方法。这一技术突破有望为油气田现场生产开发方案的即时优化提供强有力的数据支撑,推动油气资源勘探与开发效率的提升。▲西安交通大学教授吴坚西安交通大学吴坚教授做激光诱导击穿光谱技术及其在核工业领域应用进展报告,鉴于核工业材料的特殊性,实现其元素组分的原位在线测量一直是技术难题。LIBS技术凭借其独特的优势,如不受辐照环境影响、非接触式测量、远距离操作等,为这一领域带来了革命性的解决方案。报告回顾了LIBS技术在核工业多个关键环节中的国内外研究与应用进展,包括铀资源勘探、核燃料生产、核电站运行监测以及乏燃料处理等方面,展示了LIBS技术在提升核工业材料分析效率与准确性方面的巨大潜力。并着重团队在核电站异物识别、结构材料分类以及安全壳氯离子侵蚀检测等方面的研究成果。团队不仅成功研制了光纤式和望远镜式LIBS检测装置,还成功将这些装置应用于实际现场,实现了对核工业环境中复杂材料元素组分的快速、准确分析。最后,展望了激光诱导击穿光谱技术在核工业领域的应用前景。▲国家农业智能装备技术研究中心助理研究员马世祥国家农业智能装备技术研究中心马世祥助理研究员做激光诱导击穿光谱技术在农业中的应用研究报告,激光诱导击穿光谱技术(LIBS)作为一种新型元素检测技术,被广泛地应用于农业、工业以及矿产勘探等各个领域。针对农业中土壤、水体检测需求,团队基于LIBS技术开展研究,实现了土壤及水体中重金属、营养元素等快速测量,并研制了农田土壤健康管理专家“知土SmartSoil”系列产品,得到了广泛的应用和好评。它不仅帮助农民解决了土壤健康管理中的难题,还促进了农业生产的可持续发展,为实现乡村振兴和农业现代化贡献了重要力量。马世祥助理研究员及其团队的研究成果,为LIBS技术在农业领域的应用开辟了新的道路,也为未来农业环境监测和资源管理提供了更加广阔的前景。▲研究员张开锋张开锋研究员做基于等离激元波导针尖的高分辨率拉曼光谱技术报告,重点介绍了TERS(针尖增强拉曼光谱)技术的优化方案,针尖增强拉曼光谱(TERS)是一种能以纳米级空间分辨率获取化学信息的方法。现有的TERS技术,激发光会直接照射到探针针尖,其光照射的面积(几百 nm)远大于针尖直径(几十 nm),因此针尖以外的样品信号,即背景信号会被叠加检测。提高 TERS 信号的对比度,测量具有荧光活性或强拉曼活性的样品是一项重大挑战。张老师发展了基于等离激元薄膜波导针尖的TERS技术,实现了高稳定性、低背景噪声的TERS测量。该技术可以应对要求高对比度、低热损伤和多环境等TERS测量需求,有望促进TERS技术的推广和发展。▲北京化工大学副教授杨志宇北京化工大学杨志宇副教授做自旋电化学储能的发展前景及挑战报告,储能技术可以将波动电能转化为稳定电力,进而推动能源革命。水系离子电池因安全性高、成本低廉、环境友好,被认为是一种极具发展前景的新型大规模储能技术。然而,常见的过渡金属氧化物阴极材料具有导电性差、容量低、循环稳定性差等问题。基于此,杨老师通过调控过渡金属氧化物活性中心的自旋态来改善电极材料内部电荷的储存和转移机制,以及晶体的结构变形,从而提高电极的能量储存能力和稳定循环能力。发展高效的自旋调控策略以及搭建可视化的自旋检测技术有望推动这一领域的快速发展。▲西安交通大学教授任丹西安交通大学任丹教授做电化学原位拉曼光谱的搭建与应用报告,深入探讨了电化学原位拉曼光谱技术的构建与应用,特别是在清洁电力驱动下的电化学二氧化碳还原(CO2RR)这一绿色碳利用技术中的关键作用。面对当前电催化二氧化碳还原领域催化剂与反应体系尚不成熟、催化机理不明以及界面微环境调控困难的挑战,任老师强调了拉曼光谱技术作为研究电催化界面的关键技术的重要性。报告详细阐述了电化学原位拉曼光谱技术的设计思路、系统搭建过程及其在实际研究中的应用。该技术能够高效捕捉催化反应界面上的微环境信号,为深入理解电催化反应机理、优化催化剂设计提供了有力的分析工具。▲苏州惟光探真科技有限公司总经理刘争晖苏州惟光探真科技有限公司正高级工程师刘争晖做晶圆级半导体光电测试与解决方案报告,团队依托自主知识产权的激光辅助离焦量传感器,小型化科勒照明系统,高稳定性的系统集成设计、数据处理和软件算法等核心技术,针对Si和第三代半导体先进制程,提供显微和荧光成像的核心光学模组,供AOI系统、缺陷检查系统、探针台等集成;针对SiC、GaN等第三代半导体材料和MicroLED新型器件先进制程中面临的发光性质、应力和载流子浓度不均匀的新问题,提供荧光和拉曼光谱相关的系统解决方案,与晶圆厂商合作,开拓良率控制的新途径。供应链国产稳定可控,以更高的性能、更好的应用服务和较低的价格对半导体显微和光谱市场领域进行国产替代。▲北京卓立汉光仪器有限公司应用工程师张丽文北京卓立汉光仪器有限公司应用工程师张丽文做科研与分析型拉曼产品介绍与应用分享报告,介绍卓立汉光科研型与分析型拉曼产品及其应用,包括各个系统的性能、特点、和应用案例,重点介绍了Finder930全自动显微共聚焦拉曼光谱系统,RTS多功能拓展型拉曼光谱系统及联用技术,Finder Insight小型科研级拉曼光谱仪及Finder Edge手持式拉曼光谱仪,并重点分析了其在材料科学、生物医学、考古、食药环侦、管制品、禁毒、违禁塑料等领域的应用情况。▲中国科学院工程热物理研究所金楷茹中国科学院工程热物理研究所田振玉研究员的博士生金楷茹同学做基于原位拉曼光谱的高温结焦积炭动态表征报告,完成了基于原位拉曼光谱的高温结焦积炭动态表征研究,该研究针对航空发动机燃烧室积炭及高超声速飞行器热管理再生冷却管路中的热结焦问题,提出了创新的解决方案。在高温、高压及复杂反应条件下,燃烧积炭和热解结焦是航空及航天领域面临的重大挑战,它们不仅会导致设备堵塞、燃油效率降低、功率输出下降,还可能对飞行安全构成严重威胁。传统方法难以实时、准确地监测这些过程中积炭和结焦结构的动态变化。金楷茹同学的研究利用原位拉曼光谱技术,直接在火焰或高温反应环境中对积炭和结焦进行动态表征,这一技术突破使得研究者能够实时捕捉到积炭和结焦结构在极端条件下的细微变化。通过对乙炔燃烧喷嘴尖端积炭结构以及乙炔热解过程中惰性石英表面焦炭结构的动态监测,该研究不仅揭示了积炭、结焦结构随时间和温度变化的规律,还深化了对积炭、结焦生成机制的理解。除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询!

媒体关注

2024.08.19

圆满落幕 第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛

2024年8月16日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛圆满落幕。从2020年第一届在怀柔举办以来,逐梦光电受到越来越多的关注和支持,今年第五届逐梦光电研讨会线上观众人数突破14.3万人。本次研讨会聚焦荧光、拉曼、条纹、分幅、iCMOS、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向。会议期间,共进行了多场精彩纷呈的学术报告和专题研讨。今日,15位来自光谱仪、探测器、光电设备、光机械与自动化、激光器等领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。华东师范大学副研究员——沈昊华东师范大学精密光谱科学与技术国家重点实验室沈昊副研究员做声子散射对激子极化激元物理特性的影响报告,报告指出,光与物质间的强耦合现象是量子光学的基础,当量子发光体与光腔的耦合强度超过两者的平均损耗时,强耦合发生,形成部分光部分物质的极化激元态,具有广泛的应用潜力,如玻色-爱因斯坦凝聚、极化激元激光及量子信息领域。然而,在强耦合系统中,对于声子散射对强耦合系统中极化激元物理性质的影响未得到充分研究。鉴于其重要性,当前研究聚焦于探讨声子散射如何影响极化激元的物理性质,旨在揭示其深层物理机制,并实现对声子散射的动态调控,最终推动光电子器件在室温下的实际应用。上海交通大学副教授——王波上海交通大学王波副教授做几何阻挫光子晶体二次谐波报告介绍,该研究通过微纳结构设计,探索了新奇光学模式对光与物质相互作用的调制与增强作用,为非线性光源的生成与调控提供了新途径。在光子晶体中引入基于三角孔的成对角度微扰,模拟了磁性结构中的几何阻挫现象,使常规能谷模式转变为简并的伊辛自旋阻挫态。这种设计首次实现了对光学二次谐波效应的显著增强,并发现阻挫效应不仅增强了光子晶体局部模式的反向对称破缺,还提高了二次谐波的偏振容忍度。该研究成果在平面微纳器件的非线性光产生与调制领域具有广泛应用前景。新奥能源研究院——张宇鹏新奥能源研究院张宇鹏老师做光谱诊断在磁约束聚变等离子体中的应用,介绍磁约束聚变等离子体的光谱诊断技术的基本原理,应用情况及最新进展,全面分析了不同光谱诊断系统的设备差别及应用情况,并对新奥聚变能源商业化路线做重点阐述。北京卓立汉光仪器有限公司应用专家——赵怡然北京卓立汉光仪器有限公司应用专家赵怡然做光谱仪、探测器等光电模组产品及应用介绍。卓立汉光仪器有限公司长期以来深耕光谱系统领域,不断推动技术革新与产品升级,从早期的传统CT结构光谱仪起步,逐步发展为能够根据不同实验需求量身定制、优化升级的光谱系统解决方案提供商。报告介绍了在超快探测领域推出的各种皮秒,纳秒时间分辨的超快探测器,为国内科研用户提供更可靠更便捷的服务。西安交通大学教授——闫理贺西安交通大学教授、陕西省信息光子技术重点实验室副主任闫理贺老师做飞秒激光与超快光子技术报告,报告称飞秒时间分辨瞬态吸收和超快荧光光谱技术已被广泛应用于光物理和光化学动力学研究,是光电材料和器件研究中的重要检测手段。为进一步提升研究精度,闫老师课题组开发了超高时空分辨白光泵浦-探测瞬态吸收和超快荧光光谱显微成像系统,可实现对材料微区瞬态吸收与超快荧光的高灵敏度检测;借助这一先进仪器,闫老师课题组开展了荧光量子点、太阳能电池、微纳激光器等光电材料与器件中特定微区内光生载流子超快动力学过程研究,建立了材料与器件微观结构与其性能之间的直接关联,为新型高效光电功能材料与器件的开发提供了重要参考依据。国防科技大学副研究员——杨雄国防科技大学空天科学学院杨雄副研究员做激光诱导荧光技术在电推进等离子体中的精确诊断应用报告,报告指出激光诱导荧光诊断技术能精确分析电推力器离子/原子速度、温度、密度、电场、磁场等丰富信息,是当代空间电推进技术研究发展中不可或缺的重要工具,杨老师对激光诱导荧光等离子体诊断技术的基本原理特征及其在电推进中的典型应用案例进行了介绍,并对技术发展方向进行展望。华东师范大学博士——马腾飞华东师范大学博士,星元极光光学工程师马腾飞做光芯片波导耦合及角分辨传导光谱性能研究报告,报告介绍了铌酸锂是非线性光学及光子集成器件领域的热点研究对象,目前基于铌酸锂微纳结构的器件核心尺寸集中于百纳米量级及以上。为实现器件的进一步小型化与集成化,对于极限尺寸下铌酸锂器件的研究成为新兴方向之一。然而,铌酸锂晶体的加工难度大,现阶段对于100 nm 及以下尺寸的超浅结构加工鲜有报道。马腾飞博士及其团队通过结合以往在铌酸锂微纳加工方面的研究基础,拟利用聚焦离子束(FIB)系统制备铌酸锂光栅耦合器。在保证对铌酸锂器件较小损伤的前提下,开启铌酸锂器件面内光场模式的垂直高效耦合渠道。项目利用铌酸锂材料在非线性光学方面的特长相融合,探索在铌酸锂微纳元器件上集成耦合器结构,为研发铌酸锂微纳光学芯片奠定基础。华中科技大学教授——郭连波华中科技大学教授,武汉光电国家研究中心激光部副主任/副书记郭连波做多模态融合激光探针技术报告,报告指出激光诱导击穿光谱(以下简称为“LIBS”)随“好奇号”和“祝融号”探索火星,与“蛟龙号”揭秘深海,被称为“未来化学分析巨星”。郭教授团队围绕LIBS技术的基础、新方法、仪器研制和应用展开全链条攻关研究。在此基础上,针对目前LIBS单一指标检测的局限,提出基于激光等离子体图像-光谱融合、激光光谱-超声融合等多模态融合探测新方法与新技术、即激光探针技术,该激光探针技术的多模态融合感知是未来LIBS发展的必然趋势,也是激光探针技术向多功能、高稳定和多参数同时检测的最佳解决方案。研究结果表明,LIBS的进阶技术激光探针具有快速、高集成、多功能和高稳定等独特的优点,在现场快速检测领域具有非常广阔的应用前景。中国科学院北京纳米能源与系统研究所青年研究员——朱来攀中国科学院北京纳米能源与系统研究所朱来攀青年研究员做第三代半导体中的界面极化及其调控报告,报告指出当前第三代半导体材料为信息技术的变革提供了重大机遇,第三代半导体的非中心对称结构和宽带隙特性所产生的界面极化(压电/热释电/摩擦电等)效应为高性能电子和光电器件的研究打开了一扇新窗口。朱老师重点介绍以碳化硅和钙钛矿两类前沿第三代半导体材料中的界面极化效应,通过深刻理解这些效应的产生机制,掌握其调控手段,以提升材料在苛刻环境中机械能采集、自驱动传感、光电传感与成像等领域的应用。朱老师强调期望通过此次报告加深人们对第三代半导体中界面极化-电/光耦合行为中的新现象、新机制的理解与认识,所开发的新材料、新工艺和新器件促进了光电器件与界面调控相关领域的发展。北京大学研究员——那帅北京大学那帅研究员做光与声的共鸣:生物医学光声成像报告,光声成像作为一种新兴的混合成像技术,巧妙融合了光学成像的高对比度与超声成像的高分辨率特性,能够提供丰富的功能和结构信息。那老师详细阐述了光声成像系统的核心组件与工作原理,揭示了这一技术如何精准捕捉生物体内光声信号并转化为高质量的图像。同时,他也客观分析了当前光声成像技术面临的技术瓶颈与挑战,包括但不限于信号灵敏度、成像深度与速度的平衡等难题。此外,报告还展望了未来发展方向,提出了通过多模态成像提升成像性能的潜力。中国科学院空间应用工程与技术中心高级工程师——宋伟中科院空间应用工程与技术中心宋伟高级工程师做基于数字全息技术气体密度测量原理与应用报告,针对科学载荷面临的实际问题,宋老师团队基于数字全息技术搭建了一套原理实验装置,对于挥发气体测量精度约为10-4kg/m3,即0.1ppb,测量平均相对误差约为2.0%。并以此装置开展了多项技术验证试验,拓展了未来应用方向。北京卓立汉光仪器有限公司副总经理——陈兴海北京卓立汉光仪器有限公司副总经理陈兴海做光机械产品及应用分享报告,为大家介绍了卓立汉光光机械产品线的未来发展方向。首先,开发16mm笼式系统,以满足市场对高精度和高稳定性光学仪器的需求。其次,补充安装件和转接件,提升现有产品的兼容性和扩展性。同时,丰富高稳定镜架与配套,增强高端市场竞争力。此外,兼顾各种常规镜架的补充,确保产品线的完整性和多样性。通过更丰富的产品、优化研发资源、制定有效的营销策略,在激烈的市场竞争中取得优势,推动公司光机械产品线的持续发展。北京市农林科学院信息技术研究中心副研究员——吴升北京市农林科学院信息技术研究中心吴升副研究员做植物高通量表型技术装备发展及应用报告,报告指出当前作物科学研究和育种模式已经进入到多组学大数据时代,作物表型高通量技术装备被列为重要的科研基础设施,世界顶尖农业科研机构和种业巨头竞相投入巨资研发作物高通量表型技术装备,作物表型高通量技术装备具有广泛的应用范围和市场需求。吴老师从作物表型高通量平台技术发展、应用产品、市场需求及展望等几个方面进行了详细介绍。江南大学副教授——李磊江南大学李磊副教授做新质生产力下的光电检测设备布局报告,为大家详细介绍我国光电产业布局,面临的挑战和机遇,展示车载、显示行业光色测量解决方案,以及非标定制产品案例、半导体、光通讯行业产品案例分享。邢台学院讲师——秦齐邢台学院秦齐讲师做2μm波段窄线宽光纤激光器及其在空间光通信和生物组织切割中的应用报告,深入探讨了2μm波段窄线宽光纤激光器的前沿应用及其技术实现。这一特殊波段的激光器因其独特的激射波长位于人眼安全范围内,并展现出显著的水汽吸收特性,而备受科研与产业界的瞩目,且成熟的货架产品已经开始落地应用。秦老师主要介绍基于子环腔的单频掺铥光纤激光器实现机理,以及基于2μm波段环形腔激光器的线宽压窄技术。此外还将介绍课题组开展的基于2μm波段单频光纤激光器的自由空间光通信和生物组织切割实验研究。北京卓立汉光仪器有限公司分公司总经理——赵瑞琨北京卓立汉光仪器有限公司分公司总经理赵瑞琨做2μm激光器产品及应用介绍报告,首先对无锡中镭光电科技有限公司做全面介绍,无锡中镭光电是光纤激光器到国产激光研发平台,立志于高端激光技术国产化,为国内激光工业领域提供具备良好品质和稳定供应链。产品涵盖2μm掺铥系列光纤激光器,高功率窄线宽系列光纤激光器等,并可满足科研及工业客户的特殊定制化需求。赵经理分享2μm光纤激光器在内科手术、无机非金属加工等领域的优势和应用范围,详细讲解了风冷、水冷散热方式在不同应用场景下的区别,并对无锡中镭光电科技有限公司开发的新型2μm光纤激光器做了重要分享。除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询。至此,为期三天的第五届“逐梦光电”研讨会圆满结束。期待下一届逐梦光电再相聚!

媒体关注

2024.08.19

精彩持续中 | 第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛

2024年8月15日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛的精彩报告继续进行。来自全国各大知名高校及研究院的近百名专家学者出席了本次会议。8月14日至15日,线上直播观众人数突破9.3万人,明日精彩继续,欢迎预约直播。▲昨日精彩回顾(点击查看)本次研讨会聚焦荧光、拉曼、条纹、分幅、iCMOS、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向。会议期间,共进行了多场精彩纷呈的学术报告和专题研讨。今日,17位来自光电探测、磁光、荧光及超快等领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲华中科技大学研究员——韩俊波华中科技大学韩俊波研究员做二维本征铁磁体的磁性调控及应用探索报告,二维磁性材料是基础磁学和新型存储器件研究重要平台,其宏观性质和微观磁畴密切相关。深入研究其微观磁畴的调控方法及其与宏观性质间的内在联系,对提升材料性能、优化器件结构、诱发新奇量子物性至关重要。韩老师课题组以二维Fe3GeTe2(Fe3GaTe2)为载体,采用低温显微磁光克尔技术,系统研究了二维Fe3GeTe2在界面、电流及磁场调控下铁磁增强特性。获得如下有趣实验结果:(1)在二维反铁磁/铁磁异质结中观测到“非局域”铁磁增强效应;(2)在二维Gr/ Fe3GeTe2/Gr中观测到电流诱导的拓扑磁光效应;(3)在二维单个Fe3GeTe2中同时实现了非易失性和易失性磁光存储。这些研究成果不仅增进了对二维磁性材料微观机制的理解,也为未来磁存储技术和自旋电子学的发展开辟了新方向。▲Clemson University Assistant Professor——Lianfeng Zhao 远在美国克莱姆森大学赵连锋助理教授通过国际直播平台,为国内外科研工作者做Metal Halide Perovskite Laser Diodes英文报告,赵老师聚焦于金属卤化物钙钛矿半导体这一多功能的杂化材料,该材料在推动下一代光伏与发光技术革新中展现出巨大潜力。报告重点阐述了团队在电泵浦钙钛矿激光二极管领域的最新突破,包括钙钛矿内光增益机制的深入研究,以及在极端电流条件下器件性能的优化策略。这些成果不仅增进了对该领域关键技术的理解,还为克服技术障碍、推动该技术变革性发展提供了宝贵见解。▲北京交通大学教授——梁春军北京交通大学梁春军教授做一种新型光伏发电技术_钙钛矿太阳能电池报告,介绍钙钛矿太阳能电池的基本器件结构,进展情况和未来趋势。▲北京大学研究员——康佳昊北京大学康佳昊研究员做显示器件的频率色散和集约模型报告,介绍了北京大学碳基电子学研究中心在显示器件建模方面的部分研究。报告核心内容涵盖三大方面:首先,简要介绍了碳基电子学的基本概念及碳基显示在未来显示技术中的潜力;其次,深入剖析了薄膜晶体管(TFT)的关键性能特征,包括界面态现象、偏压稳定性以及电容的频率色散行为,并据此构建了相应的集约模型,为TFT性能预测与优化提供了理论支持;最后,探讨了微型发光二极管(Micro-LED)在微缩化过程中的尺寸效应,详细分析了其电学与光学性能的频散特性,并建立了集约模型以准确描述这些特性,为Micro-LED显示技术的发展奠定了坚实基础。▲湖北众韦光电科技有限公司研发经理——戴宏伟湖北众韦光电科技有限公司戴宏伟博士做低温磁场下的微区磁光克尔及光谱测试报告,报告从磁性二维材料的磁光克尔研究出发,探讨低温磁场下的微区光谱测试面临的问题与解决方案,如设备稳定性、磁场干扰及高精度要求等,并随后提出了针对不同磁体和低温环境的定制化解决方案。这些方案旨在提升测试平台的易用性和稳定性,为磁光学研究提供强有力的技术支持。▲北京交通大学教授——张福俊北京交通大学张福俊教授做倍增型有机光电探测器报告,重点介绍倍增型有机光电探测器的工作。张老师课题组在2013开始探索全新机理的倍增型有机光电探测器,2015年报道了基于单载流子有源层制备出界面附近受陷电荷诱导能带弯曲的倍增型有机光电探测器,并通过器件工程实现响应范围可调、正、反向偏压下都能工作且响应范围可调的器件。并从有源层中载流子传输通道的调控入手,率先报道了一种具有单载流子传输特性的低暗电流、倍增型有机光电探测器。课题组还通过多元化的策略,包括三元材料体系、厚膜策略调控光场分布、精细的界面工程以及电极优化等,成功制备出响应范围更加灵活、支持双向偏压操作、具备双探测窗口及功能集成化特性的倍增型有机光电探测器。这些创新不仅丰富了倍增型有机光电探测器的设计思路,也为未来高性能光电探测技术的发展提供了宝贵的经验和启示。▲中国科学院半导体研究所青年研究员——郝宏玥中国科学院半导体研究所郝宏玥青年研究员做超表面锑化物红外探测器研究报告,锑化物红外探测材料体系晶格失配度低,能带结构灵活可调,是实现高性能红外探测的优选材料。郝老师课题组聚焦于超表面结构在锑化物红外探测器领域的研究进展,并展望相关技术在焦平面成像领域的应用。通过在单波段锑化物红外探测其基础上,通过超表面结构设计及高精度图形转移技术,实现波长调制型可见-红外探测器制备,及片上集成多谱段红外探测芯片制备,为新一代宽光谱、多谱段红外焦平面探测阵列提供技术基础。▲浙江大学教授——何海平浙江大学何海平教授做钙钛矿发光:材料、器件及应用报告,全面概述了卤化物钙钛矿材料因其优异的光电特性,在新型显示、照明等领域具有潜在的广阔应用情况。何教授课题组聚焦于钙钛矿的发光性质,介绍课题组在钙钛矿光致发光、电致发光、激光等三个方面的研究工作,以及近期在钙钛矿量子点显示应用方面的进展。▲中国人民大学教授——龙峰中国人民大学龙峰教授做全光纤倏逝波荧光生物传感仪器及检测新污染物的应用报告,介绍了新污染物治理在美丽中国建设中具有重要的战略定位。新污染物具有“新”“多”“广”“低”等特点,其快速精准识别和监测是构建新污染物治理体系的重点和难点。传统监测技术存在前处理繁琐、成本高、难以满足现场快速检测需求等不足。龙教授团队通过建立全光纤倏逝波荧光生物传感新理论并突破系列关键核心技术,创制了具有完全自主知识产权的全光纤倏逝波荧光生物传感系列仪器,结合多样化生物靶向识别材料和生物传感机制,建立了新污染物多指标现场快速检测新方法,为新污染物监测提供精准化、即时化、智能化、集成化技术支撑。▲华北电力大学讲师——仇恒伟华北电力大学仇恒伟讲师做钙钛矿纳米晶的表界面调控和光电应用报告,全无机CsPbBr3钙钛矿纳米晶(PNCs)稳定性不足等诸多问题,无损晶格外延核壳纳米晶有望彻底攻克该问题并最小化界面电荷积累。仇老师从PNCs单晶面S系半导体外延生长出发,辅以合适的表面配体钝化晶面以降低结合能垒,实现晶格外延CsPbBr3/PbS核壳纳米晶可控合成,这一创新方法不仅增强了纳米晶的稳定性,还优化了其光电性能。进一步地,报告介绍了结合普适性纳米晶图案化和3D打印工艺的最新进展,成功构建了集成式光电探测阵列。这一技术突破不仅提升了光电探测器的性能和分辨率,还为其在更广泛领域的应用开辟了新途径。仇老师所做的一系列工作旨在推动PNCs稳定性和光电性能方面的发展,并极大拓展其应用。▲RMIT University研究员——Xiaoming Wen远在澳大利亚皇家墨尔本理工大学的文小明研究员通过国际直播平台,为国内外科研工作者做Time dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites英文报告,文老师首先介绍了稳态光致发光 (PL) 和时间分辨光致发光 (TRPL) 技术发展现状。然而,当对表现出光照诱导的 PL 光谱、效率和寿命变化的材料(如卤化物钙钛矿)进行测量时,这些技术面临一些问题。在过去十年中,卤化物钙钛矿因其优异的光电特性和出色的器件性能(如高效太阳能电池、光电探测器和 LED)而引起了极大的研究兴趣。使用标准 PL/TRPL 测量时,可能会忽略和遗漏关键信息,并可能导致误解。本次报告文老师重点介绍一些光照诱导 PL 效率和载流子寿命增加的应用案例。使用专门设计的时间相关 PL/TRPL,有/没有光照偏置,进行探索异常的光电特性,并利用其团队最近提出的晶格能量库理论对该现象做了很好地解释。文老师作为卓立汉光产品的使用者,也在演讲中感谢卓立汉光的协助,其团队在RIMT大学定制了多功能PL-TRPL光谱系统,该系统能够完成上述大部分功能,并且功能大大扩展,包括激发、检测范围。可以预期该系统将能为其团队的光物理研究提供重要的技术支持。▲华北电力大学讲师——贾东霖华北电力大学贾东霖讲师做钙钛矿量子点表面特性调控研究及其光伏应用报告,钙钛矿量子点(PQD)凭借出色的光电性能和化学加工性,被视为下一代光伏器件的潜力材料,然而其表面高密度的长链绝缘油酸油胺配体成为电荷传输的障碍。贾去除这些原始配体会引发一系列问题,如表面缺陷增加、载流子捕获、钙钛矿晶格畸变以及水氧渗透通道的形成,从而影响光伏性能。为解决这些问题,研究团队开发了一系列创新策略,包括表面缺陷钝化、表面配体取代和表面晶格锚定等,以优化PQD的表面状态。通过这些策略,贾老师有效改善了太阳能电池的载流子提取效率,使无机CsPbI3-与混合FAxCs1-xPbI3-PQD太阳能电池的光电转换效率分别提升至16.64%与17.29%,为改善量子点光伏性能的表面调控策略提供了全新见解。▲香港城市大学教授——雷党愿香港城市大学雷党愿教授做微纳光腔与低维半导体相互作用及功能器件研究报告,首先分享了微纳光腔这类具有电磁场极端局域化和增强的超构光学体系,是发展多功能、小型化、低功耗、超快响应光学器件的基本模块。雷教授介绍了耦合光学微腔与钙钛矿量子点,构建高稳定性、低量子缺陷和超低阈值的微腔激光器(Nature Communications 2020, 11, 1192; Advanced Functional Materials 2024, 2401247);接着展示集成自组装等离激元纳腔阵列与无铅钙钛矿量子点,实现宽带高探测灵敏度和响应度的柔性光电探测器(Nano Letters 2021, 21, 9195);最后介绍近场耦合等离激元纳腔偶极共振模式与过渡金属硫族化合物自旋禁阻暗激子或其异质结中层间激子,获得室温下暗激子(Nano Letters 2022, 22, 1915)或层间激子的可观测发光(ACS Nano 2024, 18, 13599)。这些研究成果不仅展示了微纳光腔与低维半导体相互作用的独特优势,也为未来高性能光学器件的设计与开发提供了重要的科学依据和技术支撑。▲中国科学院长春应用化学研究所研究员——秦川江中国科学院长春应用化学研究所秦川江研究员做准二维钙钛矿发光机理与高性能器件报告,首先强调了有机/无机杂化钙钛矿半导体材料的显著优势,包括高吸收截面、高载流子迁移率和低成本溶液加工等特性,使其成为新一代半导体发光材料和激光器增益介质的理想选择。然而,这类新型材料的发光和激射原理尚未完全阐明,成为国际研究难题。针对这一挑战,秦老师课题组利用瞬态光谱技术取得了重要突破,不仅证实了Rashba自旋效应和暗态三线态激子的存在,还首次提出了准二维钙钛矿中长寿命暗态三线态激子的概念,并深入探讨了其对光电性能的影响。通过创新的维度和组分工程策略,团队成功调控了钙钛矿中的三线态激子行为和发光特性,进而实现了系列高性能发光器件的制备,和具有低激发阈值的室温连续光泵浦准二维钙钛矿激光。▲北京卓立汉光仪器有限公司应用专家——覃冰北京卓立汉光仪器有限公司应用专家覃冰做超快分子光谱探测技术及解决方案报告,介绍卓立汉光超快光谱探测方案在飞秒及皮秒时空中对超快物理化学及生物过程进行监测的应用,如太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等材料中载流子时空演化,载流子的激发动力学,钙钛矿中的放大自发辐射测试等。▲北京理工大学教授——王卓然北京理工大学王卓然教授做多元硫硒化物半导体光电器件报告,在立足于信息技术领域对新一代光电子器件与集成技术的重大需求基础上,报告聚焦半导体光电材料与器件领域关键问题,重点介绍以Cu2ZnSn(S,Se)4和AgBiS2为代表的环境友好型多元硫硒化物半导体在薄膜光伏与光电探测领域的应用,并就未来面向短波至中波红外应用的多维度硫硒化物材料体系与高维度集成光电传感系统展开讨论。▲北京金竟科技有限责任公司应用经理——李洋北京金竟科技有限责任公司李洋做阴极荧光成像及光谱采集系统及其在半导体领域的应用报告,报告内容涵盖其公司简介、阴极荧光含义及其原理、阴极荧光相关产品介绍及应用案例分享、 电子束曝光简介及产品介绍及应用案例分享、合作用户单位等,整个报告展示了北京金竟科技有限责任公司在阴极荧光成像及光谱采集系统、电子束曝光技术方面的深厚积累和创新能力,以及这些技术在推动半导体行业发展中的重要作用。▲中国人民大学博士——曹丹丹中国人民大学曹丹丹博士做纳米晶半导体高效单光子上转换发光报告,研究发现,钙钛矿具有显著的“声子辅助-单光子上转换”光致发光,浅能级缺陷可作为关键中间态角色。报告分享了基于配体工程调控深缺陷分布,可以有效抑制非辐射复合损失;基于结晶动力学工程调控浅缺陷分布,能够大幅度提升亚带隙电子跃迁的振子强度。在两者协同作用下,钙钛矿纳米晶的单光子上转换强度提高40%以上,有效光学冷却增益窗口超过130 meV。上述结果为深入认识纳米晶光致发光机制、拓宽纳米材料在光学/光电方面的实际应用提供了新的学术见解。▲仪器展示介绍环节除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询:拉曼光谱荧光光谱微纳器件光谱响应度测试系统光栅单色仪/光栅光谱仪超快时间分辨光谱测试系统2μm波段掺铥光纤激光器笼式系统阻尼隔振平台‍

媒体关注

2024.08.16

精彩推送|第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛

2024年8月15日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛的精彩报告继续进行。来自全国各大知名高校及研究院的近百名专家学者出席了本次会议。8月14日至15日,线上直播观众人数突破9.3万人,明日精彩继续,欢迎预约直播。▲昨日精彩回顾(点击查看)本次研讨会聚焦荧光、拉曼、条纹、分幅、iCMOS、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向。会议期间,共进行了多场精彩纷呈的学术报告和专题研讨。今日,17位来自光电探测、磁光、荧光及超快等领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲华中科技大学研究员——韩俊波华中科技大学韩俊波研究员做二维本征铁磁体的磁性调控及应用探索报告,二维磁性材料是基础磁学和新型存储器件研究重要平台,其宏观性质和微观磁畴密切相关。深入研究其微观磁畴的调控方法及其与宏观性质间的内在联系,对提升材料性能、优化器件结构、诱发新奇量子物性至关重要。韩老师课题组以二维Fe3GeTe2(Fe3GaTe2)为载体,采用低温显微磁光克尔技术,系统研究了二维Fe3GeTe2在界面、电流及磁场调控下铁磁增强特性。获得如下有趣实验结果:(1)在二维反铁磁/铁磁异质结中观测到“非局域”铁磁增强效应;(2)在二维Gr/ Fe3GeTe2/Gr中观测到电流诱导的拓扑磁光效应;(3)在二维单个Fe3GeTe2中同时实现了非易失性和易失性磁光存储。这些研究成果不仅增进了对二维磁性材料微观机制的理解,也为未来磁存储技术和自旋电子学的发展开辟了新方向。▲Clemson University Assistant Professor——Lianfeng Zhao 远在美国克莱姆森大学赵连锋助理教授通过国际直播平台,为国内外科研工作者做Metal Halide Perovskite Laser Diodes英文报告,赵老师聚焦于金属卤化物钙钛矿半导体这一多功能的杂化材料,该材料在推动下一代光伏与发光技术革新中展现出巨大潜力。报告重点阐述了团队在电泵浦钙钛矿激光二极管领域的最新突破,包括钙钛矿内光增益机制的深入研究,以及在极端电流条件下器件性能的优化策略。这些成果不仅增进了对该领域关键技术的理解,还为克服技术障碍、推动该技术变革性发展提供了宝贵见解。▲北京交通大学教授——梁春军北京交通大学梁春军教授做一种新型光伏发电技术_钙钛矿太阳能电池报告,介绍钙钛矿太阳能电池的基本器件结构,进展情况和未来趋势。▲北京大学研究员——康佳昊北京大学康佳昊研究员做显示器件的频率色散和集约模型报告,介绍了北京大学碳基电子学研究中心在显示器件建模方面的部分研究。报告核心内容涵盖三大方面:首先,简要介绍了碳基电子学的基本概念及碳基显示在未来显示技术中的潜力;其次,深入剖析了薄膜晶体管(TFT)的关键性能特征,包括界面态现象、偏压稳定性以及电容的频率色散行为,并据此构建了相应的集约模型,为TFT性能预测与优化提供了理论支持;最后,探讨了微型发光二极管(Micro-LED)在微缩化过程中的尺寸效应,详细分析了其电学与光学性能的频散特性,并建立了集约模型以准确描述这些特性,为Micro-LED显示技术的发展奠定了坚实基础。▲湖北众韦光电科技有限公司研发经理——戴宏伟湖北众韦光电科技有限公司戴宏伟博士做低温磁场下的微区磁光克尔及光谱测试报告,报告从磁性二维材料的磁光克尔研究出发,探讨低温磁场下的微区光谱测试面临的问题与解决方案,如设备稳定性、磁场干扰及高精度要求等,并随后提出了针对不同磁体和低温环境的定制化解决方案。这些方案旨在提升测试平台的易用性和稳定性,为磁光学研究提供强有力的技术支持。▲北京交通大学教授——张福俊北京交通大学张福俊教授做倍增型有机光电探测器报告,重点介绍倍增型有机光电探测器的工作。张老师课题组在2013开始探索全新机理的倍增型有机光电探测器,2015年报道了基于单载流子有源层制备出界面附近受陷电荷诱导能带弯曲的倍增型有机光电探测器,并通过器件工程实现响应范围可调、正、反向偏压下都能工作且响应范围可调的器件。并从有源层中载流子传输通道的调控入手,率先报道了一种具有单载流子传输特性的低暗电流、倍增型有机光电探测器。课题组还通过多元化的策略,包括三元材料体系、厚膜策略调控光场分布、精细的界面工程以及电极优化等,成功制备出响应范围更加灵活、支持双向偏压操作、具备双探测窗口及功能集成化特性的倍增型有机光电探测器。这些创新不仅丰富了倍增型有机光电探测器的设计思路,也为未来高性能光电探测技术的发展提供了宝贵的经验和启示。▲中国科学院半导体研究所青年研究员——郝宏玥中国科学院半导体研究所郝宏玥青年研究员做超表面锑化物红外探测器研究报告,锑化物红外探测材料体系晶格失配度低,能带结构灵活可调,是实现高性能红外探测的优选材料。郝老师课题组聚焦于超表面结构在锑化物红外探测器领域的研究进展,并展望相关技术在焦平面成像领域的应用。通过在单波段锑化物红外探测其基础上,通过超表面结构设计及高精度图形转移技术,实现波长调制型可见-红外探测器制备,及片上集成多谱段红外探测芯片制备,为新一代宽光谱、多谱段红外焦平面探测阵列提供技术基础。▲浙江大学教授——何海平浙江大学何海平教授做钙钛矿发光:材料、器件及应用报告,全面概述了卤化物钙钛矿材料因其优异的光电特性,在新型显示、照明等领域具有潜在的广阔应用情况。何教授课题组聚焦于钙钛矿的发光性质,介绍课题组在钙钛矿光致发光、电致发光、激光等三个方面的研究工作,以及近期在钙钛矿量子点显示应用方面的进展。▲中国人民大学教授——龙峰中国人民大学龙峰教授做全光纤倏逝波荧光生物传感仪器及检测新污染物的应用报告,介绍了新污染物治理在美丽中国建设中具有重要的战略定位。新污染物具有“新”“多”“广”“低”等特点,其快速精准识别和监测是构建新污染物治理体系的重点和难点。传统监测技术存在前处理繁琐、成本高、难以满足现场快速检测需求等不足。龙教授团队通过建立全光纤倏逝波荧光生物传感新理论并突破系列关键核心技术,创制了具有完全自主知识产权的全光纤倏逝波荧光生物传感系列仪器,结合多样化生物靶向识别材料和生物传感机制,建立了新污染物多指标现场快速检测新方法,为新污染物监测提供精准化、即时化、智能化、集成化技术支撑。▲华北电力大学讲师——仇恒伟华北电力大学仇恒伟讲师做钙钛矿纳米晶的表界面调控和光电应用报告,全无机CsPbBr3钙钛矿纳米晶(PNCs)稳定性不足等诸多问题,无损晶格外延核壳纳米晶有望彻底攻克该问题并最小化界面电荷积累。仇老师从PNCs单晶面S系半导体外延生长出发,辅以合适的表面配体钝化晶面以降低结合能垒,实现晶格外延CsPbBr3/PbS核壳纳米晶可控合成,这一创新方法不仅增强了纳米晶的稳定性,还优化了其光电性能。进一步地,报告介绍了结合普适性纳米晶图案化和3D打印工艺的最新进展,成功构建了集成式光电探测阵列。这一技术突破不仅提升了光电探测器的性能和分辨率,还为其在更广泛领域的应用开辟了新途径。仇老师所做的一系列工作旨在推动PNCs稳定性和光电性能方面的发展,并极大拓展其应用。▲RMIT University研究员——Xiaoming Wen远在澳大利亚皇家墨尔本理工大学的文小明研究员通过国际直播平台,为国内外科研工作者做Time dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites英文报告,文老师首先介绍了稳态光致发光 (PL) 和时间分辨光致发光 (TRPL) 技术发展现状。然而,当对表现出光照诱导的 PL 光谱、效率和寿命变化的材料(如卤化物钙钛矿)进行测量时,这些技术面临一些问题。在过去十年中,卤化物钙钛矿因其优异的光电特性和出色的器件性能(如高效太阳能电池、光电探测器和 LED)而引起了极大的研究兴趣。使用标准 PL/TRPL 测量时,可能会忽略和遗漏关键信息,并可能导致误解。本次报告文老师重点介绍一些光照诱导 PL 效率和载流子寿命增加的应用案例。使用专门设计的时间相关 PL/TRPL,有/没有光照偏置,进行探索异常的光电特性,并利用其团队最近提出的晶格能量库理论对该现象做了很好地解释。文老师作为卓立汉光产品的使用者,也在演讲中感谢卓立汉光的协助,其团队在RIMT大学定制了多功能PL-TRPL光谱系统,该系统能够完成上述大部分功能,并且功能大大扩展,包括激发、检测范围。可以预期该系统将能为其团队的光物理研究提供重要的技术支持。▲华北电力大学讲师——贾东霖华北电力大学贾东霖讲师做钙钛矿量子点表面特性调控研究及其光伏应用报告,钙钛矿量子点(PQD)凭借出色的光电性能和化学加工性,被视为下一代光伏器件的潜力材料,然而其表面高密度的长链绝缘油酸油胺配体成为电荷传输的障碍。贾去除这些原始配体会引发一系列问题,如表面缺陷增加、载流子捕获、钙钛矿晶格畸变以及水氧渗透通道的形成,从而影响光伏性能。为解决这些问题,研究团队开发了一系列创新策略,包括表面缺陷钝化、表面配体取代和表面晶格锚定等,以优化PQD的表面状态。通过这些策略,贾老师有效改善了太阳能电池的载流子提取效率,使无机CsPbI3-与混合FAxCs1-xPbI3-PQD太阳能电池的光电转换效率分别提升至16.64%与17.29%,为改善量子点光伏性能的表面调控策略提供了全新见解。▲香港城市大学教授——雷党愿香港城市大学雷党愿教授做微纳光腔与低维半导体相互作用及功能器件研究报告,首先分享了微纳光腔这类具有电磁场极端局域化和增强的超构光学体系,是发展多功能、小型化、低功耗、超快响应光学器件的基本模块。雷教授介绍了耦合光学微腔与钙钛矿量子点,构建高稳定性、低量子缺陷和超低阈值的微腔激光器(Nature Communications 2020, 11, 1192; Advanced Functional Materials 2024, 2401247);接着展示集成自组装等离激元纳腔阵列与无铅钙钛矿量子点,实现宽带高探测灵敏度和响应度的柔性光电探测器(Nano Letters 2021, 21, 9195);最后介绍近场耦合等离激元纳腔偶极共振模式与过渡金属硫族化合物自旋禁阻暗激子或其异质结中层间激子,获得室温下暗激子(Nano Letters 2022, 22, 1915)或层间激子的可观测发光(ACS Nano 2024, 18, 13599)。这些研究成果不仅展示了微纳光腔与低维半导体相互作用的独特优势,也为未来高性能光学器件的设计与开发提供了重要的科学依据和技术支撑。▲中国科学院长春应用化学研究所研究员——秦川江中国科学院长春应用化学研究所秦川江研究员做准二维钙钛矿发光机理与高性能器件报告,首先强调了有机/无机杂化钙钛矿半导体材料的显著优势,包括高吸收截面、高载流子迁移率和低成本溶液加工等特性,使其成为新一代半导体发光材料和激光器增益介质的理想选择。然而,这类新型材料的发光和激射原理尚未完全阐明,成为国际研究难题。针对这一挑战,秦老师课题组利用瞬态光谱技术取得了重要突破,不仅证实了Rashba自旋效应和暗态三线态激子的存在,还首次提出了准二维钙钛矿中长寿命暗态三线态激子的概念,并深入探讨了其对光电性能的影响。通过创新的维度和组分工程策略,团队成功调控了钙钛矿中的三线态激子行为和发光特性,进而实现了系列高性能发光器件的制备,和具有低激发阈值的室温连续光泵浦准二维钙钛矿激光。▲北京卓立汉光仪器有限公司应用专家——覃冰北京卓立汉光仪器有限公司应用专家覃冰做超快分子光谱探测技术及解决方案报告,介绍卓立汉光超快光谱探测方案在飞秒及皮秒时空中对超快物理化学及生物过程进行监测的应用,如太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等材料中载流子时空演化,载流子的激发动力学,钙钛矿中的放大自发辐射测试等。▲北京理工大学教授——王卓然北京理工大学王卓然教授做多元硫硒化物半导体光电器件报告,在立足于信息技术领域对新一代光电子器件与集成技术的重大需求基础上,报告聚焦半导体光电材料与器件领域关键问题,重点介绍以Cu2ZnSn(S,Se)4和AgBiS2为代表的环境友好型多元硫硒化物半导体在薄膜光伏与光电探测领域的应用,并就未来面向短波至中波红外应用的多维度硫硒化物材料体系与高维度集成光电传感系统展开讨论。▲北京金竟科技有限责任公司应用经理——李洋北京金竟科技有限责任公司李洋做阴极荧光成像及光谱采集系统及其在半导体领域的应用报告,报告内容涵盖其公司简介、阴极荧光含义及其原理、阴极荧光相关产品介绍及应用案例分享、 电子束曝光简介及产品介绍及应用案例分享、合作用户单位等,整个报告展示了北京金竟科技有限责任公司在阴极荧光成像及光谱采集系统、电子束曝光技术方面的深厚积累和创新能力,以及这些技术在推动半导体行业发展中的重要作用。▲中国人民大学博士——曹丹丹中国人民大学曹丹丹博士做纳米晶半导体高效单光子上转换发光报告,研究发现,钙钛矿具有显著的“声子辅助-单光子上转换”光致发光,浅能级缺陷可作为关键中间态角色。报告分享了基于配体工程调控深缺陷分布,可以有效抑制非辐射复合损失;基于结晶动力学工程调控浅缺陷分布,能够大幅度提升亚带隙电子跃迁的振子强度。在两者协同作用下,钙钛矿纳米晶的单光子上转换强度提高40%以上,有效光学冷却增益窗口超过130 meV。上述结果为深入认识纳米晶光致发光机制、拓宽纳米材料在光学/光电方面的实际应用提供了新的学术见解。▲仪器展示介绍环节除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询:拉曼光谱荧光光谱微纳器件光谱响应度测试系统光栅单色仪/光栅光谱仪超快时间分辨光谱测试系统2μm波段掺铥光纤激光器笼式系统阻尼隔振平台更多精彩内容敬请期待8月16日的会议报告!8月16日/9:00-11:45 光谱仪&探测器&设备专场报告人单位报告题目沈昊华东师范大学声子散射对激子极化激元物理特性的影响王波上海交通大学几何阻挫光子晶体二次谐波赵怡然北京卓立汉光仪器有限公司光谱仪、探测器等光电模组产品及应用介绍闫理贺西安交通大学飞秒时间分辨瞬态吸收光谱显微测量系统及其应用杨雄国防科技大学激光诱导荧光技术在电推进等离子体中的精确诊断应用马腾飞华东师范大学光芯片波导耦合及角分辨传导光谱性能研究8月16日/13:30-16:50 光机械与自动化&激光器专场报告人单位报告题目郭连波华中科技大学多模态融合激光探针技术朱来攀中国科学院北京纳米能源与系统研究所第三代半导体中的界面极化及其调控那帅北京大学光与声的共鸣:生物医学光声成像宋伟中国科学院空间应用工程与技术中心基于数字全息技术气体密度测量原理与应用陈兴海北京卓立汉光仪器有限公司光机械产品及应用分享吴升北京市农林科学院信息技术研究中心植物高通量表型技术装备发展及应用李磊江南大学新质生产力下的光电检测设备布局秦齐邢台学院2μm波段窄线宽光纤激光器及其在空间光通信和生物组织切割中的应用赵瑞琨北京卓立汉光仪器有限公司2μm激光器产品及应用介绍*日程具体以现场为准

企业动态

2024.08.16

正式开幕|第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛!

2024年8月14日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛在北京中建雁栖湖景酒店成功开幕。本次盛会汇聚了来自全国各大知名高校、研究院以及“产、学、政、研、用、金”不同领域的近百位专家学者,共同探讨光电技术的最新进展和产业发展趋势。开幕第一天,线上直播观众人数突破3.5万人。▲正式开幕本次研讨会聚焦荧光、拉曼、条纹、分幅、icmos、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向,旨在推动光电技术的创新发展,加强产学研用的深度融合,促进光电产业的转型升级。会议包括主题报告、技术展示等多种形式,为参会者提供了一个交流思想、分享经验、探讨合作的平台。▲北京卓立汉光仪器有限公司总经理张志涛在开幕式上,北京卓立汉光仪器有限公司总经理张志涛发表致辞,对远道而来的嘉宾表示热烈欢迎,并对光电产业的未来发展寄予厚望。随后,15位来自激光诱导击穿光谱、拉曼光谱领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲北京怀柔仪器和传感器有限公司总工程师刘海锋北京怀柔仪器和传感器有限公司总工程师刘海锋做激光技术与光学仪器在大科学装置的应用机遇技术报告,对怀柔科学城做重点介绍,怀柔科学城作为北京“三城一区”国际科技创新中心的关键平台,定位于世界级原始创新承载区,聚焦物质、信息智能、空间、生命、地球系统五大科学领域,部署了众多顶尖科技设施,聚集了国际上首个集极低温、超高压、强磁场和超快光场等综合极端条件实验装置;中国首台第四代高能量同步辐射光源及北京激光加速创新中心等,这些设施将汇聚成全球大科学装置最密集区域,为前沿激光技术、光学仪器研发应用带来前所未有的机遇与挑战。▲多场低温科技(北京)有限公司超精密运动部门负责人刘立民多场低温科技(北京)有限公司超精密运动部门负责人刘立民做基于压电的超精密运动解决方案报告,全面剖析压电技术在超精密运动控制领域的基础原理与最新进展,同时聚焦于多场科技推出的系列压电超精密运动产品,并详细描述这些产品的技术规格、操作原理以及在不同行业中的具体应用案例,展示它们如何在复杂环境中保持卓越的性能以满足用户对高精度和高稳定性的严格要求。并对其在半导体加工、生物医疗、精密光学等领域的应用情况做简单介绍。▲北京卓立汉光分析仪器有限公司应用专家赵牧原北京卓立汉光分析仪器有限公司应用专家赵牧原做太阳能领域产品综合解决方案报告,介绍了太阳能电池领域的前沿情况,并介绍卓立汉光公司面向太阳能电池领域推出的DSR光电检测系统,包括各个系统的测量原理、特点、适用范围和应用案例。▲合肥工业大学副教授杨蕾合肥工业大学杨蕾副教授做激光诱导击穿等离子体光谱报告,深入剖析了激光诱导击穿光谱(LIBS)技术的核心理念、根本机制及其固有的优势与局限性。针对LIBS技术在原位检测应用中的两大核心挑战——固体样本表面形貌的未知变异性与液体样品检测的复杂性,她展开了详尽探讨。研究固体样本表面形貌变化对等离子体、光谱的影响,提出减小其影响的方法;液体样品的Libs原位检测中,直接检测易产生飞溅,且激光脉冲存在一定的吸收损耗,导致光谱信号弱,研究并提出液体样品的检测方案,为提高液体样品在线定量检测精度提供参考。▲西安交通大学副教授袁欢西安交通大学袁欢副教授做激光诱导等离子体技术及其在电力系统中的典型应用报告,分析近些年来电力系统内基于激光诱导等离子体技术的检测方法,主要包括真空灭弧室真空度、绝缘油内金属颗粒、电缆表面绝缘强度、媒质灰飞等方面的研究,从技术原理、产业情况、仪器研制等方面进行论述,希望进一步推进激光诱导等离子体技术在电力系统内的产业化应用。▲北京卓立汉光仪器有限公司光学工程师何运北京卓立汉光仪器有限公司光学工程师何运做从实验室到在线及小型化LIBS系统应用介绍报告,介绍LIBS仪器应用,从实验室到现场及小型化。具体包括:1)激光诱导击穿光谱技术简介;2)实验室、现场和小型化LIBS仪器的应用。▲西安交通大学博士时铭鑫西安交通大学时铭鑫博士做激光诱导击穿光谱在油气资源勘探中的应用研究报告,报告指出,准确获取岩石与岩心样本的矿物元素与有机质组分信息,是理解其矿物学及有机地化特征、评估潜在储层及甜点区域的关键。时博士通过深入研究激光与岩石样本的相互作用及等离子体演化过程,优化了LIBS检测参数,成功构建了针对岩石及岩心样本的矿物元素与有机元素定量分析模型。该模型有效解决了模型过拟合与欠拟合问题,显著提升了元素预测的准确性。此外,研究还进一步探索了多光谱融合技术在页岩岩心总有机碳等有机质热解参数预测中的应用,为实现井场近原位、快速检测矿物元素与有机质特征参数提供了新方法。这一技术突破有望为油气田现场生产开发方案的即时优化提供强有力的数据支撑,推动油气资源勘探与开发效率的提升。▲西安交通大学教授吴坚西安交通大学吴坚教授做激光诱导击穿光谱技术及其在核工业领域应用进展报告,鉴于核工业材料的特殊性,实现其元素组分的原位在线测量一直是技术难题。LIBS技术凭借其独特的优势,如不受辐照环境影响、非接触式测量、远距离操作等,为这一领域带来了革*性的解决方案。报告回顾了LIBS技术在核工业多个关键环节中的国内外研究与应用进展,包括铀资源勘探、核燃料生产、核电站运行监测以及乏燃料处理等方面,展示了LIBS技术在提升核工业材料分析效率与准确性方面的巨大潜力。并着重团队在核电站异物识别、结构材料分类以及安全壳氯离子侵蚀检测等方面的研究成果。团队不仅成功研制了光纤式和望远镜式LIBS检测装置,还成功将这些装置应用于实际现场,实现了对核工业环境中复杂材料元素组分的快速、准确分析。最后,展望了激光诱导击穿光谱技术在核工业领域的应用前景。▲国家农业智能装备技术研究中心助理研究员马世祥国家农业智能装备技术研究中心马世祥助理研究员做激光诱导击穿光谱技术在农业中的应用研究报告,激光诱导击穿光谱技术(LIBS)作为一种新型元素检测技术,被广泛地应用于农业、工业以及矿产勘探等各个领域。针对农业中土壤、水体检测需求,团队基于LIBS技术开展研究,实现了土壤及水体中重金属、营养元素等快速测量,并研制了农田土壤健康管理专家“知土SmartSoil”系列产品,得到了广泛的应用和好评。它不仅帮助农民解决了土壤健康管理中的难题,还促进了农业生产的可持续发展,为实现乡村振兴和农业现代化贡献了重要力量。马世祥助理研究员及其团队的研究成果,为LIBS技术在农业领域的应用开辟了新的道路,也为未来农业环境监测和资源管理提供了更加广阔的前景。▲研究员张开锋张开锋研究员做基于等离激元波导针尖的高分辨率拉曼光谱技术报告,重点介绍了TERS(针尖增强拉曼光谱)技术的优化方案,针尖增强拉曼光谱(TERS)是一种能以纳米级空间分辨率获取化学信息的方法。现有的TERS技术,激发光会直接照射到探针针尖,其光照射的面积(几百 nm)远大于针尖直径(几十 nm),因此针尖以外的样品信号,即背景信号会被叠加检测。提高 TERS 信号的对比度,测量具有荧光活性或强拉曼活性的样品是一项重大挑战。张老师发展了基于等离激元薄膜波导针尖的TERS技术,实现了高稳定性、低背景噪声的TERS测量。该技术可以应对要求高对比度、低热损伤和多环境等TERS测量需求,有望促进TERS技术的推广和发展。▲北京化工大学副教授杨志宇北京化工大学杨志宇副教授做自旋电化学储能的发展前景及挑战报告,储能技术可以将波动电能转化为稳定电力,进而推动能源革*。水系离子电池因安全性高、成本低廉、环境友好,被认为是一种极具发展前景的新型大规模储能技术。然而,常见的过渡金属氧化物阴极材料具有导电性差、容量低、循环稳定性差等问题。基于此,杨老师通过调控过渡金属氧化物活性中心的自旋态来改善电极材料内部电荷的储存和转移机制,以及晶体的结构变形,从而提高电极的能量储存能力和稳定循环能力。发展高效的自旋调控策略以及搭建可视化的自旋检测技术有望推动这一领域的快速发展。▲西安交通大学教授任丹西安交通大学任丹教授做电化学原位拉曼光谱的搭建与应用报告,深入探讨了电化学原位拉曼光谱技术的构建与应用,特别是在清洁电力驱动下的电化学二氧化碳还原(CO2RR)这一绿色碳利用技术中的关键作用。面对当前电催化二氧化碳还原领域催化剂与反应体系尚不成熟、催化机理不明以及界面微环境调控困难的挑战,任老师强调了拉曼光谱技术作为研究电催化界面的关键技术的重要性。报告详细阐述了电化学原位拉曼光谱技术的设计思路、系统搭建过程及其在实际研究中的应用。该技术能够高效捕捉催化反应界面上的微环境信号,为深入理解电催化反应机理、优化催化剂设计提供了有力的分析工具。▲苏州惟光探真科技有限公司总经理刘争晖苏州惟光探真科技有限公司正高级工程师刘争晖做晶圆级半导体光电测试与解决方案报告,团队依托自主知识产权的激光辅助离焦量传感器,小型化科勒照明系统,高稳定性的系统集成设计、数据处理和软件算法等核心技术,针对Si和第三代半导体先进制程,提供显微和荧光成像的核心光学模组,供AOI系统、缺陷检查系统、探针台等集成;针对SiC、GaN等第三代半导体材料和MicroLED新型器件先进制程中面临的发光性质、应力和载流子浓度不均匀的新问题,提供荧光和拉曼光谱相关的系统解决方案,与晶圆厂商合作,开拓良率控制的新途径。供应链国产稳定可控,以更高的性能、更好的应用服务和较低的价格对半导体显微和光谱市场领域进行国产替代。▲北京卓立汉光仪器有限公司应用工程师张丽文北京卓立汉光仪器有限公司应用工程师张丽文做科研与分析型拉曼产品介绍与应用分享报告,介绍卓立汉光科研型与分析型拉曼产品及其应用,包括各个系统的性能、特点、和应用案例,重点介绍了Finder930全自动显微共聚焦拉曼光谱系统,RTS多功能拓展型拉曼光谱系统及联用技术,Finder Insight小型科研级拉曼光谱仪及Finder Edge手持式拉曼光谱仪,并重点分析了其在材料科学、生物医学、考古、食药环侦、管制品、禁毒、违禁塑料等领域的应用情况。▲中国科学院工程热物理研究所金楷茹中国科学院工程热物理研究所田振玉研究员的博士生金楷茹同学做基于原位拉曼光谱的高温结焦积炭动态表征报告,完成了基于原位拉曼光谱的高温结焦积炭动态表征研究,该研究针对航空发动机燃烧室积炭及高超声速飞行器热管理再生冷却管路中的热结焦问题,提出了创新的解决方案。在高温、高压及复杂反应条件下,燃烧积炭和热解结焦是航空及航天领域面临的重大挑战,它们不仅会导致设备堵塞、燃油效率降低、功率输出下降,还可能对飞行安全构成严重威胁。传统方法难以实时、准确地监测这些过程中积炭和结焦结构的动态变化。金楷茹同学的研究利用原位拉曼光谱技术,直接在火焰或高温反应环境中对积炭和结焦进行动态表征,这一技术突破使得研究者能够实时捕捉到积炭和结焦结构在极端条件下的细微变化。通过对乙炔燃烧喷嘴尖端积炭结构以及乙炔热解过程中惰性石英表面焦炭结构的动态监测,该研究不仅揭示了积炭、结焦结构随时间和温度变化的规律,还深化了对积炭、结焦生成机制的理解。除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询!更多精彩内容敬请期待8月15日的会议报告!8月15日/9:00-12:10 光电探测&磁光专场报告人单位报告题目韩俊波华中科技大学二维本征铁磁体的磁性调控及应用探索Lianfeng ZhaoClemson UniversityToward Metal Halide Perovskite Laser Diodes康佳昊北京大学显示器件的频率色散和集约模型梁春军北京交通大学一种新型光伏发电技术_钙钛矿太阳能电池戴宏伟湖北众韦光电科技有限公司低温磁场下的微区磁光克尔及光谱测试张福俊北京交通大学倍增型有机光电探测器郝宏玥中国科学院半导体研究所超表面锑化物红外探测器研究8月15日/13:30-17:00 荧光&超快专场报告人单位报告题目何海平浙江大学钙钛矿发光:材料、器件及应用秦川江中国科学院长春应用化学研究所准二维钙钛矿发光机理与高性能器件仇恒伟华北电力大学钙钛矿纳米晶的表界面调控和光电应用Xiaoming WenRMIT UniversityTime dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites贾东霖华北电力大学钙钛矿量子点表面特性调控研究及其光伏应用雷党愿香港城市大学微纳光腔与低维半导体相互作用及功能器件研究龙峰中国人民大学全光纤倏逝波荧光生物传感仪器及检测新污染物的应用覃冰北京卓立汉光仪器有限公司超快分子光谱探测技术及解决方案王卓然北京理工大学多元硫硒化物半导体光电器件李洋北京金竟科技有限责任公司阴极荧光成像及光谱采集系统及其在半导体领域的应用王弋中国人民大学纳米晶半导体高效单光子上转换发光*日程具体以现场为准

企业动态

2024.08.15

会议日程 | 第五届“逐梦光电”研讨会即将开幕!

会议时间:2024年8月14日-8月16日会议地点:北京中建雁栖湖景酒店会议专场:聚焦10+产品方向荧光、拉曼、条纹、分幅、icmos、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等八大应用方向钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理•光电分析仪器技术与应用•荧光&超快•拉曼&LIBS联用•光谱仪&探测器&设备•光电探测&磁光•光机械与自动化&激光器参会报名:欢迎线下参会报名~扫码报名会议咨询/商务合作:王经理:13520222630会议日程:8月14日/9:15-11:50 光电分析仪器技术与应用报告人单位报告题目刘立民多场低温科技(北京)有限公司基于压电的超精密运动解决方案赵牧原北京卓立汉光分析仪器有限公司太阳能领域产品综合解决方案李颖颖新奥能源研究院磁约束聚变等离子体光谱诊断袁欢西安交通大学激光诱导等离子体技术及其在电力系统中的典型应用何运北京卓立汉光仪器有限公司从实验室到在线及小型化LIBS系统应用介绍时铭鑫西安交通大学激光诱导击穿光谱在油气资源勘探中的应用研究8月14日/13:30-17:20 拉曼&LIBS联用专场报告人单位报告题目吴坚西安交通大学激光诱导击穿光谱技术及其在核工业领域应用进展杨蕾合肥工业大学固体与液体样本的libs原位分析技术研究马世祥国家农业智能装备技术研究中心激光诱导击穿光谱技术在农业中的应用研究张开锋基于等离激元波导针尖的高分辨率拉曼光谱技术杨志宇北京化工大学自旋电化学储能的发展前景及挑战张丽文北京卓立汉光仪器有限公司科研与分析型拉曼产品介绍与应用分享周敏中国科学院长春应用化学研究所超分辨电化学:从基础到应用刘争晖苏州惟光探真科技有限公司晶圆级半导体光电测试与解决方案任丹西安交通大学电化学原位拉曼光谱的搭建与应用田振玉中国科学院工程热物理研究所基于原位拉曼光谱的高温结焦积炭动态表征信文平惠然科技有限公司扫描电镜与拉曼联用技术应用研究8月15日/9:00-12:10 光电探测&磁光专场报告人单位报告题目韩俊波华中科技大学二维本征铁磁体的磁性调控及应用探索Lianfeng ZhaoClemson UniversityToward Metal Halide Perovskite Laser Diodes康佳昊北京大学显示器件的频率色散和集约模型梁春军北京交通大学一种新型光伏发电技术_钙钛矿太阳能电池戴宏伟湖北众韦光电科技有限公司低温磁场下的微区磁光克尔及光谱测试张福俊北京交通大学倍增型有机光电探测器郝宏玥中国科学院半导体研究所超表面锑化物红外探测器研究8月15日/13:30-17:00 荧光&超快专场报告人单位报告题目何海平浙江大学钙钛矿发光:材料、器件及应用秦川江中国科学院长春应用化学研究所准二维钙钛矿发光机理与高性能器件仇恒伟华北电力大学钙钛矿纳米晶的表界面调控和光电应用Xiaoming WenRMIT UniversityTime dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites覃冰北京卓立汉光仪器有限公司超快分子光谱探测技术及解决方案雷党愿香港城市大学微纳光腔与低维半导体相互作用及功能器件研究龙峰中国人民大学全光纤倏逝波荧光生物传感仪器及检测新污染物的应用贾东霖华北电力大学钙钛矿量子点表面特性调控研究及其光伏应用王卓然北京理工大学多元硫硒化物半导体光电器件李洋北京金竟科技有限责任公司阴极荧光成像及光谱采集系统及其在半导体领域的应用8月16日/9:00-11:45 光谱仪&探测器&设备专场报告人单位报告题目沈昊华东师范大学声子散射对激子极化激元物理特性的影响王波上海交通大学几何阻挫光子晶体二次谐波赵怡然北京卓立汉光仪器有限公司光谱定制系统产品及应用介绍闫理贺西安交通大学飞秒时间分辨瞬态吸收光谱显微测量系统及其应用杨雄国防科技大学激光诱导荧光技术在电推进等离子体中的精确诊断应用马腾飞华东师范大学光芯片波导耦合及角分辨传导光谱性能研究8月16日/13:30-16:50 光机械与自动化&激光器专场报告人单位报告题目郭连波华中科技大学多模态融合激光探针技术朱来攀中国科学院北京纳米能源与系统研究所第三代半导体中的界面极化及其调控那帅北京大学光与声的共鸣:生物医学光声成像宋伟中国科学院空间应用工程与技术中心基于数字全息技术气体密度测量原理与应用陈兴海北京卓立汉光仪器有限公司光机械产品及应用分享吴升北京市农林科学院信息技术研究中心植物高通量表型技术装备发展及应用李磊江南大学新质生产力下的光电检测设备布局秦齐邢台学院2μm波段窄线宽光纤激光器及其在空间光通信和生物组织切割中的应用赵瑞琨北京卓立汉光仪器有限公司2μm激光器产品及应用介绍*日程持续更新中,具体以现场为准产品推荐:拉曼光谱荧光光谱微纳器件光谱响应度测试系统光栅单色仪/光栅光谱仪超快时间分辨光谱测试系统2μm波段掺铥光纤激光器笼式系统阻尼隔振平台关于会议:本会议邀请来自“产、学、政、研、用、金”不同领域的全国各地的专家学者,与会者将围绕光电行业的未来发展趋势、区域特色产业的优势与机遇进行深入探讨,分享光电分析仪器的最新应用案例、操作技巧及科研成果,促进跨领域交流与合作,共同推动光电技术行业的繁荣发展。

企业动态

2024.08.09

四极杆气体分析仪的选型方法?

现代气相工艺的污染控制要求不断推动四极气体分析仪的性能极限。四极子技术正在迅速发展,并适应较低污染水平的规格。在选择特定应用的传感器时,充分了解影响目前不同气体分析系统的检测能力的各种因素是一个必要的工具。与通常的情况一样,大多数选择都涉及到妥协,而充分了解与不同检测器配置相关的基本权衡将使错误最小化并最大化生产力。所有的气相处理装置都可以受益于添加一个四极气体分析仪。由匹配良好的探测器提供的信息迅速成为该过程中不可分割的组成部分,大大减少了传统上属于大多数真空故障排除程序的估算测量。随着四极杆气体分析仪变得越来越便宜,它们正迅速在所有需要严格控制工艺气体污染水平的行业中变得普遍。智能软件界面、较低的检测限制和较低的拥有成本是现代仪器中需要寻找的一些功能。本文的以下部分描述了开放和封闭离子源四极杆质谱仪的性能规范。这些信息的主要目的是介绍为任何气相应用选择正确的分析仪所需的基本概念,并提出一些必须牢记的基本工作原理,以确保所选仪器的最佳性能。残余气体分析仪析典型的残余气体分析仪(RGA)有一个开放的离子源(OIS),并直接安装在一个真空室上,使整个传感器与真空系统的其余部分处于相同的压力下。较小的物理尺寸使得将 RGA 连接到几乎任何真空系统都成为可能,包括研究和工艺设置。最大工作压力为 10 -4 Torr。对于配备电子倍增器的装置,最小可检测分压(通常为 N 2 在 28amu 处测量)低至 10 -14 Torr。在高真空应用中,如研究室、表面科学装置、加速器、航空航天室、扫描显微镜、放气室等,RGAs 被有效地用于监测真空质量,它们甚至可以很容易地检测到低压气体环境中最微小的杂质。痕量杂质可以测量到 10 -14 Torr 水平,在没有背景干扰的情况下,可以进行亚 ppm 的检测。在系统故障排除过程中,RGAs 也被用作非常灵敏的原位氦泄漏探测器。在半导体行业中,RGA 最好用于蒸发器、溅射器、蚀刻器或任何其他高真空系统,这些系统通常被泵送到低于 10 -5 Torr。他们的主要应用是在任何晶圆投入生产之前检查真空密封的完整性和真空的质量。空气泄漏、虚拟泄漏和许多其他污染物在非常低的水平上很容易破坏晶圆,并且必须在工艺启动之前被检测到。随着半导体工艺变得更加复杂,它们对污染物的容忍度也变得越低。工艺室中的残余气体分析增加了正常运行时间和生产产量,并降低了拥有成本。图 1:OIS 示意图开放的离子源(OIS)在大多数商用 RGAs 中使用的标准离子源是开放离子源(OIS)。这种电离器被认为是 RGA 的“全做”源。自 20 世纪 50 年代初以来,它就一直呈圆柱形,轴向对称的形式存在。通用的 OIS 设计原理图如图 1 所示。OIS 渗透到工艺腔室中。灯丝和阳极电离网对周围的真空室“开放”。真空室中存在的所有分子都可以很容易地穿过离子源。电离器中的压力与周围真空的压力相同,也与四极杆质谱分析仪和离子探测器中的压力相同。OIS 对真空室中的所有气体分子都是“开放的”。只要总压力保持在 10 −4 Torr以下,它就可以用来监测和检测气体水平的变化。由于离子之间的空间电荷排斥力,较高的压力会导致灵敏度的降低。OIS 的性能限制OIS RGAs 在不影响真空环境气体成分的情况下测量残留气体水平。然而,必须记住一些潜在的问题,特别是当传感器被常规用于监测微量杂质(ppm 和亚 ppm 水平)或超高真空(UHV,9 Torr)环境时。下面列出了 OIS RGA 对其背景信号的不同贡献方式,从而影响了传感器的检测能力。在适用的情况下描述最小化这些问题的方法。除气OIS 是一种热阴极离子源。灯丝(阴极)必须加热到高温(>1300°C),以建立电子发射电流。在高真空中,加热灯丝所需的大部分能量通过辐射过程耗散到周围环境中。因此,整个电离器和相邻的真空壁面“发热”。升高的温度导致 OIS 本身和来自相邻的腔壁的排气增加。排气释放的气体可以降低许多重要物种的 OIS RGA 的最小可检测分压(MDPP),包括 H 2 、H2 O、N 2 、CO 和二氧化碳。从热阴极计上排气对高真空用户来说并不是一个新问题。它也存在于贝亚德-阿尔伯特电离仪中,这种电离计在过去 50 年里真空室中一直很常见。在大多数情况下,排气只会影响被测量的气体混合物的组成。然而,在某些情况下,放气可能是一个严重的问题,甚至会影响实验或过程的结果。排气电离器可以帮助最小化一些背景信号;然而,这通常只是一个临时的解决方案。一些 RGA 供应商提供其 OIS 的 UHV 版本,其阳极(有时是整个电离器组件)由铂包层钼线制成。这种高度惰性的材料对许多气体的吸附量降低,并减少了出气和 ESD。水气是一种常见的干扰,尤其重要,因为它是许多高真空工艺的严重污染源。在超过 200°C 的长期烘烤是减少 OIS RGA 中水气的最佳选择。在 OIS 电极排出的 H 2 气体可能会让 UHV 状态下的用户担心,在 UHV 状态下,残留的氢通常占总气体混合物成分的 95 %。H 2 溶解在大多数 300 系列不锈钢中,很容易从热 OIS 电极排出。OIS 对 H 2 背景的贡献取决于其组成,使用铂包覆盖件可以显著减少。在所有情况下,随着气体从电极中耗尽,影响会随着时间的推移而减弱。电子激发解吸(ESD)即使在 RGA 被彻底烘烤后,也经常在 12、16、19 和 35 amu 处观察到峰,这是由 OIS 内部表面的 ESD 形成的,而不是由气体物质的电子冲击电离形成的。ESD 对 RGA 性能的影响类似于排气。我们可以采取以下几个步骤来最小化其影响:*高电子能量脱气——通常是商业仪器的一种选择*镀金离子器——可以减少许多气体的吸附,从而降低了 ESD 效应。使用铂包层覆盖的钼离子器也是一种替代选择。*减少了电子束的范围。*减少 OIS 的表面积——使用金属丝网代替固体穿孔金属*避免将离子发生器暴露在氯和氟化合物中。背景干扰与电离器相比,四极质量过滤器组件具有较大的表面积,即使在运行过程中不像电离器那么热,它仍然可以排气。OIS 和传感器都暴露在相同的真空环境中,这使得电离器对四极杆组件的其余部分排出的杂质非常敏感。对于许多 RGA 用户(特别是在 UHV 范围内)来说,一个严重的问题是水从未烘焙的 RGA 中排气。然而,许多其他物质也会影响背景读数。例如,如果传感器最近暴露在大量的气体中(因为它往往被吸附在 SS 表面和解吸只是非常缓慢),可以预期高 Ar 背景。电离发生器对在热灯丝中产生的杂质也很敏感。气体分子在灯丝表面会发生热裂解和化学反应,反应的产物很容易进入电离区。以这种方式产生的杂质通常是离子发生器表面污染的一个重要来源,并对 RGA 的长期稳定性有严重影响。例如,CO 和 CO 2 是由大多数热灯丝发出的,很容易进入电离器和真空系统。定期烘烤是尽量减少这个问题的最有效的方法。在 200°C 烘烤通常可以解决大多数污染问题。如果问题仍然存在,则可能需要清洁和/或翻新四极杆传感器。分压系统(PPR)RGAs 并不局限于对压力低于 10 -4 Torr 时的气体的分析。借助分压泵、减压气体进口系统(PPR)可以对更高的气体压力进行采样,该系统包括分压泵和真空泵。常规的分压是针孔和毛细管,它们可以提供超过 6 个数量级的压力降低。真空泵通常由一个前级泵和涡轮分子泵组成。RGA、进气系统和泵站构成了通常称为分压系统(PPR)。这些气体取样系统在气相过程中很常见,可以从几个 RGA供应商那里获得。如果设计得当,PPRs 可以从头到尾监控流程,为每一步都提供必要的信息。图 2 中描述的 PPR 系统是一个典型的减压装置的示例,用于将过程压力降低到 OIS RGA 可接受的水平。PPR 包含到 RGA 的两个入口路径:用于监测基础真空的高电导率路径(Hi-C),以及用于监测工作压力下的气体的低电导率路径(Lo-C)。当真空系统的压力低于 10 −4 Torr 时,使用高电导率路径。在高真空条件下,典型的应用是进行泄漏测试和监测腔室的极限真空。例如,在溅射室中,该过程的第一阶段是泵至小于 10 −6 Torr。此时,RGA 可用于检查背景质量的泄漏和污染物。一旦真空质量令人满意,溅射腔室以几毫托回填氩气,并开始溅射。当工艺室的压力超过 10 −4 Torr 时,使用低电导率路径。该路径包含一个微孔节流孔,可将压力降低数个量级到适合 RGA 的水平(通常在 10 −5 Torr 左右)。孔径可用于高达 10Torr 的工作压力。有时会使用一组节流孔(或一个可调节的计量阀)来调节减压系数,以适应整个过程中的不同压力。例如,在溅射过程中,Lo-C 路径可用于监测水蒸气和碳氢化合物的水平,以确保它们不会超过降低溅射膜质量的某些临界水平。分子泵将气体通过节流孔输送到 RGA,形成压降。在这些系统中使用的泵通常是非常紧凑,无油和低维护。对于高于 10 Torr 的压力,进入单级 PPR(如图 2 样品样侧所示)的气体流速变得非常小,响应时间变慢,无法做出任何实际的测量。在这种情况下,双级旁通抽气取样采样系统,具有更大的气体流速和更快的响应速度,是比单级 PPR 更好的选择。旁通抽气取样采样系统,具有取中压分析的方式,能够分析几个大气压的气体混合物,可从几个 RGA 供应商获得该系统。图 2:PPR 进口系统PPR 系统的性能限制PPR 在低于 10 Torr 压力下的可以很好的进行气体取样,它们提供的信息通常用于诊断和控制各种行业中的气相过程。随着价格的下跌和技术的发展,这些仪器正在不断地寻找新的应用领域。大量的 PPR 系统专门用于检测气体混合物中的微量杂质。OIS RGAs 有足够的灵敏度和动态范围来检测百万分之一(ppm)级别的污染物。然而,来自过程气体的干扰和来自传感器本身的背景干扰使 PPR 在实践中很难检测到 ppm 级别的杂质。背景干扰分析仪腔室中存在的背景气体可以掩盖一些重要气体(H 2 、H 2 O、N 2 、CO 和 CO 2 )的 MDPPs。背景气体是由于排气、电子激发解吸和泵浦系统的有限压缩比。为了最好地说明这一点,以 10 −2 TorrAr 溅射过程中的水的分析为例。在过程监测期间,质谱仪通常运行在约 10 −5 Torr 下,对应于 PPR 的 Lo-C 路径的降低了 3 个数量级。压降使工艺室中 1 ppm 的水达到质谱仪中的分压约 10 −11 Torr(完全在典型 RGA 的检测限范围内)。然而,由于质谱仪与工艺气体分离,PPR 室中的残余压力最多为 10 −9 Torr(其中大部分是水)。该水位比工艺室中 1 ppm 的水对应的 10 −11 Torr 大 100 倍,这意味着在这些“常见”的操作条件下,水蒸气浓度不能被可靠地检测或测量到 100 ppm 以上。在分析过程中,将 RGA 室的工作压力提高到 5×10 −5 Torr ,MDPP 极限可以提高到 20 ppm。然而,在某些情况下,即使是 20 ppm 的 MDPP 限制也可能不够低。添加一个具有大泵送速度的低温泵,已被证明可以极大地减少 PPR 的四极室的水背景。然而,由于泵的高成本,这在实践中很少这样做。对于其他潜在的干扰气体,也必须记住同样的限制。为了在 ppm 水平检测到任何物种(10mTorr过程中 10 −8 Torr),PPR 的残余质谱必须在该物种的峰对应的质量值处显示小于 10 −11 Torr 的压力读数。在大多数真空系统中,除非采取必要的预防措施以尽量减少所有污染源,否则不容易达到这种水平。对于 50 amu 以下的质量,这个问题通常更为严重,因为在残余质谱中总是有背景峰。尽管 RGA 本质上能够执行亚 ppm 的测量,但在 RGA 的残余质谱中找到背景处于 ppm 水平的位置并不总是容易。PPR 中背景干扰的一个常见来源是传统油泵回流到 PPR 室的污染。切换到一个完全无油的泵站,就消除了这个问题。空气的 MDPP 限值通常受到泵站的压缩比的限制。在大多数 PPR 系统中,N2 水平通常低于10 −9 Torr,氧水平大约低5倍。这相当于在10 mTorr过程中,N 2 @28amm的MDPP水平高于20ppm,O 2 @32amu 的 MDPP 水平高于 4 ppm。氢气通常不可能在 ppm 的水平上检测到,因为它很容易从分析仪上排出,而且它不能被大多数涡轮泵有效地泵送。一些用于最小化 H 2 背景信号的技巧包括:使用 Pt 覆盖钼 OIS,以及增加一个特殊的泵站,增加氢的泵送速度。工艺气体干扰在一个典型的基于 OIS RGA 的 PPR 系统中,ppm 检测水平的另一个限制是由来自被分析的相同工艺气体的干扰造成的。说明这一点的最好方法是回到 10 mTorr Ar 溅射过程中的水分析的例子。我们发现,检测超过20 ppm 水平的水是非常困难的,除非 PPR 室被非常小心地烘烤并免受水污染。然而,正如我们将看到的,这只是问题的一部分:在溅射系统中使用的 m/e 18 也有严重的干扰。同位素 36 Ar 的含量为 0.34 %。在电子电离过程中,形成双电荷氩,在 m/e 20( 40 Ar++)和 m/e 18( 36 Ar++)处产生峰。对于 70 eV 的电子冲击能量, 36 Ar ++ 的典型水平为 350 ppm。因此,如果你想在基于 Ar 的溅射系统中检测 ppm 的水,你必须解决两个问题:传感器排气的背景干扰和 36 Ar ++ 在 m/e 18 的干扰。一个彻底的烘烤可以减少背景水对低几十 ppm 水平的贡献,但消除 36 Ar ++ 干扰需要使用几种技巧。一些制造商只是选择监测 m/e 17 峰值。对于 70 eV 的电离电子,这个峰在 18 amu 时比主峰小4 倍。这导致了对水的检测的灵敏度的显著降低。它还增加了丰度灵敏度的问题,同时试图测量质量 17 的强度旁边的一个大的 36 Ar ++ 峰在 18 amu。一个更好的选择(也是推荐给具有可编程电离发生器电压的 RGAs 的选择)是在电子冲击能量降低到小于 40 eV 时操作电离发生器。这个电离能低于 Ar ++ 的外观势(43.5 eV)。例如,在操作35 eV 电子的 RGA 时,由于 Ar ++ ,质量为 18、19 和 20 的峰值消失,这是在 36、38 和 40 amu 的Ar + 检测灵敏度降低最小的情况下实现的。不同的电子电离能通常用于选择性地电离气体混合物中的物质。从一般的质谱文献中可以很容易地得到许多不同气体的电离势表。电子能量的减少通常会给灯丝带来额外的工作负荷,并可能减少其寿命。然而,减少的干扰效应抵消了灯丝更换的额外成本。封闭离子源(CIS)在需要测量 10 −4 和 10 −2 Torr 之间的压力的应用中,通过用封闭离子源(CIS)采样系统取代传统的 OIS PPR 配置,可以显著减少背景和工艺气体干扰的问题。一个通用的 CIS 设置的横截面如图 3 所示。CIS 电离器位于四极质量滤波器的顶部,取代了传统 RGA 中更传统的 OIS。它由一个短的气密管组成,两个非常小的电子和离子的出口。电子通过一个小尺寸的入口狭缝进入电离区。离子在靠近一个提取板处形成并被吸引,并通过一个小直径的圆孔离开电离器。氧化铝环密封管从四极质量组件的其余部分,并为偏置电极提供电绝缘。离子是由电子在过程压力下的直接撞击产生的。与 PPR 系统中使用的泵送系统类似,使灯丝和四极组件的其余部分保持在压力在 10 −5 Torr 以下(20 个数量级的减压)。该设计非常简单,在被四极杆气相分析仪采用之前,已成功地应用于气相色谱质谱仪器多年。大多数商业上可用的 CIS 系统被设计为在 10 −2 和 10 −11 Torr 之间运行,并在10 −4 和 10 −2 Torr 之间的工艺压力的整个质量范围内提供 ppm 级的可检测性。图 3:CIS 的原理图PPR 和 CIS 系统之间的差异在选择最适合特定工艺应用程序的传感器设置时,了解 CIS 设置和更传统的基于 OIS RGA 的PPR 之间的性能差异是必不可少的。工艺工程师在为其应用程序选择分析仪配置之前,应仔细权衡所有差异。直接抽样CIS 阳极可以看作是一个直接连接到工艺室的高电导管。电离区中的压力与工艺室中的压力基本相同。CIS 电离器在过程压力下直接通过电子冲击产生离子,而质谱分析仪的其余部分和灯丝保持在高真空条件下。直接采样提供了良好的灵敏度(由于可用的大离子密度)和快速的响应时间。“记忆效应”,通常与压力降低和电导孔有关,是显著减少的。此外,由于不同气体分子通过 PPR 孔径的分子量依赖性扩散系数而引起的分馏效应也不存在。信号与背景比由于 CIS 中的采样压力通常比传感器真空系统的其他部分高 20 倍,因此相对于 OIS PPR 系统,信号-背景比显著增加。在测量诸如水等常见的残留气体时,这一点尤为重要。为了说明这一点,我们回到 10 −2 TorrAr 溅射过程中的水测量例子。Ar 气体在 10 −2 Torr 处直接电离(比 OIS PPR 高出三个数量级!)但在相同的背景下(10 −9 Torr)的剩余水。这个剩余的水信号现在对应于 CIS 系统中水的100 ppb MDPP 水平。这是一个相当改进的 OIS PPR 性能!直接取样和差分泵送的结合为即使是最普遍的残留气体提供了 ppm 和亚 ppm 检测极限的潜力。对于其他常见的干扰,如有机污染物或灯丝的反应副产品,源的气密设计降低了电离区域的可见性,这些气体提供一个非常干净的残留气体质谱,避免了 OIS PPR 设置中许多质谱重叠。由 ESD 产生的污染物的干扰在 CIS 中也减少了,因为一个要小得多的电子束穿透电离网。此外,大多数市售的 CIS 的内壁都涂有高度惰性的材料,如金、铂包层和纯钼,它们比不锈钢吸附更少的杂质。CIS 能够直接在 mTorr 范围内取样气体,并在其整个质量范围内提供 ppm 级检测,这使得 CIS系统成为半导体处理应用的首选仪器,如 PVD、CVD 和蚀刻。离子发生器污染在 OIS PPR 体系中,在灯丝上发生热裂化或化学反应的样品分子可以自由地漂移到电离区。这是电子冲击电离器的表面污染物的一个非常重要的来源。相比之下,CIS 的气密性设计降低了气体源对这些污染物气体的可见性,减少了污染和更好的长期稳定性。大多数 CIS 制造商在他们的系统中专门使用钨丝。W 可以抵抗许多腐蚀性气体(如 WF 6 )和活性气体(如硅烷),最大限度地减少在灯丝上的反应,也可以延长灯丝的寿命。多用途当与一个工艺适当匹配时,OIS PPR 和 CIS 系统都是非常通用的仪器,在整个气相过程中提供关键的信息。装有双路径气体入口的 PPR 系统,可以毫不费力地切换高\低电导率,从高灵敏度的RGA 操作模式切换到过程监测模式。通过简单地改变一些传感器的电离参数。CIS 气体分析仪,即使不像 RGA 那样敏感,也可以处理工艺室中需要的大多数残余气体分析和泄漏检查测试。由于电子入口和离子出口的空穴非常小,CIS 的灵敏度降低。然而,在大多数情况下,在比 RGA 更高的增益水平上运行电子倍增器弥补了灵敏度的降低。典型 MDPP 值的 CIS 系统,配备了一个可选的电子倍增器,并在 RGA 模式下运行,是在 10 −11 Torr 左右。这比在 RGA 模式下打开 Hi-C 采样路径下操作的 PPRs 可以实现的 MDPP 值高出大约 20 倍。CIS 电离器也可以重新配置,用于在线工艺监测和控制,并在使用点验证工艺气体的纯度。在残余气体分析过程中提高电子发射电流以提高灵敏度,在过程监测过程中降低电子发射电流,以避免在较高压力下电离体积中的空间电荷饱和效应。CIS 的紧密设计使得在较低的电子电离能下操作电离器成为可能。大多数商用的 CIS 系统提供至少两个 70 和 35 eV 的电子能量设置。70 eV 设置主要用于泄漏测试和常规气体分析。收集到的质谱与用标准 RGA 获得的质谱几乎相同。在过程监测中使用 35 eV 设置,以消除过程气体干扰峰值。低能量模式的一个常见应用是消除双电离的 36 Ar ++ 峰,该峰干扰了溅射过程中 18 amu 处的水检测。具有用户可编程电离器电压的 CIS 系统提供了最高的通用性,因为它们可以被配置为通过仔细调整电子冲击能量来选择性地在气体混合物中的电离物质。使用 CIS 气体分析仪进行高压采样CIS 分析仪可以直接取样气体高达约 10 −2 Torr 压力水平。压力上限是由离子中性碰撞的平均自由程的减少来设定的,这种碰撞发生在较高的压力下,并导致离子的显著散射和灵敏度的降低。然而,操作并不局限于对压力低于 10 −2 Torr 时的气体进行分析。更高的气体压力可以通过分压进气系统(PPR)来取样,就像它用传统的 RGAs 所做的一样。一个与 CIS 分析仪的电导率相匹配的减压气体入口系统,将允许传感器采样高达 10 Torr 的气体压力。在 PPR 系统的情况下,所付出的代价是降低采样速度,在样品入口的气体混合物的分流,以及在电离器上可能产生的记忆效应。对于压力大于 10 Torr 的情况,进入封闭电离器的气体流量变得非常小,而且时间响应对于任何实际测量来说都太慢。在这些情况下,一个旁路泵浦气体采样系统,具有更大的毛细管流速和更快的响应,是一个比单一的限制进入 CIS 电离器更好的选择。结论任何真空处理装置都可以受益于一个四极杆气体分析仪。要很好地了解影响目前不同的四极气体分析系统性能的不同因素,是为任何应用选择最佳传感器配置的重要工具。四极杆气体取样系统可以从几个不同的制造商获得,通常很难决定哪一个构成了一个工艺的最佳匹配。在大多数情况下,有不止一种方法来设置测量,而且每个选择都涉及到妥协。更好地理解可用选项之间的基本差异,可以使问题最小化,并使生产力最大化。随着四极杆气体分析仪变得越来越便宜,它们将在所有需要严格控制过程气体污染水平的行业中成为普遍现象。

应用实例

2024.08.06

用户速递 | 浙大叶志镇院士团队: 减少钙钛矿中的氯缺陷实现高效蓝光LED

近日,浙江大学材料学院叶志镇院士团队在蓝光发光二极管效率提升方面取得重要进展,研究成果以“Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects”为题发表在国际著名期刊Science Advances (doi:10.1126/sciadv.ado5645)上。浙江大学为该论文第一单位,高贇博士与蔡秋婷博士为共同第一作者,叶志镇院士、戴兴良研究员、狄大卫教授为共同通讯作者。钙钛矿混合卤素蓝光器件效率的发展情况可概括为“波长越蓝,提升越难”,尤其是对于深蓝和纯蓝波段的LED器件,仅采用常用的钝化手段对效率提升并不显著。器件性能不佳的主要原因有以下两点:其一,卤素原子最外层p轨道参与构成钙钛矿能带结构,氯的引入加深了价带顶,增加了空穴注入的势垒;其二,氯引入带来氯空位,形成深能级缺陷,增加了非辐射复合通道,降低了光学性能。因此在上述对钙钛矿中引入氯的两点认识基础之上,有必要进一步探究制约蓝光器件效率的关键因素,以期突破效率瓶颈。实现钙钛矿更短波长的蓝光发射需要引入更多的氯原子,氯溴比不断增加。例如,发光波长在470 nm的钙钛矿中氯溴比已经达到约0.5,当波长继续蓝移至460 nm时氯溴比更是达到了约0.8。这一变化趋势与蓝光钙钛矿(PeLED)器件性能随波长的变化趋势有一定的相似性。也有文献指出,即使是少量的氯引入也会对器件的稳定性造成很大影响。因此,氯含量对钙钛矿蓝光器件性能的影响值得系统研究。定性阐述氯含量与深能级缺陷及能带结构改变的关系、明晰这两者对器件性能的影响将推动对钙钛矿蓝光器件工作机制的进一步理解。团队以不同时间尺度下的光谱观察了氯含量与氯缺陷及材料光学性能之间的变化与联系,得出氯含量与纳米晶薄膜中缺陷及荧光量子产率呈负相关的定性关系,并提出一条提升蓝光LED器件性能的关键思路,即降低氯含量来抑制氯缺陷。通过A位铷补偿策略,在保证CsPb(BrxCl1-x )3纳米晶发光波长没有偏移的情况下有效降低了氯含量,明显抑制了缺陷,提升纳米晶光学性能。铷补偿降低CsPb(BrxCl1-x )3纳米晶中氯含量并提升光学性能团队基于含铷纳米晶制备的钙钛矿蓝光LED器件在显示需要的波段下均实现了更高的器件效率,特别是480 nm的器件效率达到了26.4%,是截止目前钙钛矿蓝光LED器件中的最高效率。高效蓝光LED器件关于此文章的更多细节请点击以下原文链接:https://www.science.org/doi/10.1126/sciadv.ado5645配置推荐本文蓝光PeLED的皮秒时间分辨光谱测试采用使用卓立汉光公司的ST-10条纹相机搭配飞秒激光器测试得到。温度相关荧光光谱测试使用卓立汉光公司的OmniFluo900系列稳态瞬态荧光光谱仪完成。ST-10条纹相机时间分辨率可达到5ps,可匹配多种焦长光谱仪,快速追踪超快发光的动力学过程。OmniFluo900为模块化搭建结构,通过搭配不同的光源、检测器和各类附件,为紫外/可见/近红外发光测试提供综合解决方案,也为钙钛矿发光器件、钙钛矿光伏器件及钙钛矿量子点的研发提供有利工具。  条纹相机超快时间分辨系统                                            OmniFluo900系列稳态瞬态荧光光谱仪    免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发。

应用实例

2024.08.05

拉曼光谱:精准量化微晶硅薄膜晶化率

引言微晶硅薄膜是纳米晶硅、晶粒间界、空洞和非晶硅共存的混合相无序材料,具有稳定性好、掺杂效率高、长波敏感性较强、可低温大面积沉积、原材料消耗少以及能在各种廉价衬底材料上制备的优点,为了使太阳能电池能够大规模连续化生产并且具有更高的效率,硅异质结太阳能电池开始使用微晶硅薄膜替代非晶硅层。升级后的硅异质结太阳能电池的光电转换效率与微晶硅薄膜的结晶度密切相关。其中,结晶率指晶态硅与晶界占非晶态、晶态、晶界总和的质量百分比或体积百分比,是评价结晶硅薄膜晶化效果的一项重要指标。在行业内通常使用拉曼光谱分析法评估微晶硅薄膜的晶化率[1,2]。实验与结果分析晶体硅排列有序,键角和键长高度一致,拉曼峰形尖锐位于520cm-1附近,无定形硅结构相对无序,拉曼峰形展宽位于480cm-1附近。采用两种结构的拉曼特征峰值(峰强或峰面积)可以实现硅晶化率的分析,晶化率计算公式如下:其中和表示在520cm-1 和480cm-1附近的拉曼峰的面积,中心为520 cm-1附近的拉曼峰是晶体硅的特征峰,位于480 cm-1附近的拉曼峰是非晶硅的约化声子谱密度。本文采用卓立汉光自主研制的Finder 930全自动共聚焦显微拉曼光谱仪分析了硅基底上微晶硅薄膜晶化率,拉曼光谱实测数据及多峰拟合结果如图1所示。可以观测到拉曼峰位在310cm-1附近的类纵声学模(类TA 模)特征峰,在480 cm-1附近的类横光学模(类TO模)分解为峰位在470 cm-1附近(Prim TO)和在490 cm-1处(Seco TO)两个特征峰。对于出现晶态硅特征峰的样品对应于峰位在510cm-1附近的晶粒间界拉曼散射成分(GB)特征峰[3]。 卓立汉光自主开发了晶化率自动计算软件,可以实现自动分峰拟合和晶化率计算,软件操作简单,易于使用,晶化率拟合结果如图2所示,自动计算结果可知晶化率为33.52%. 图2 采用自主研制软件拟合结果拉曼光谱技术可以无损分析微晶硅薄膜晶化率,在晶硅(晶体硅)与无定型硅(非晶硅)的定量鉴别及晶化率评估中展现出优异性能,通过解析特征峰的强度或面积,直接计算得出材料的晶化率,为材料性能评估提供了实验依据。参考文献[1]赵之雯,刘玉岭.微晶硅薄膜稳定性的研究[J].河北工业大学学报,2011,40(02):13-15[2] 高磊等. 微晶硅薄膜沉积工艺的研究方法及其应用[P].2023.06.23.[3] 范闪闪,郭强,杨彦彬,等.相变区硅薄膜拉曼和红外光谱分析[J].光谱学与光谱分析,2018,38(01):82-86.

应用实例

2024.08.05

逐梦光电 | 来自北大、北化工、北交大、华科大、港理工、西交大、中科大、半导体所、纳米能源所、长春应

北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛,将于2024年8月14-16日在北京怀柔举行,邀请来自“产、学、政、研、用、金”不同领域的全国各地的专家学者,与会者将围绕光电行业的未来发展趋势、区域特色产业的优势与机遇进行深入探讨,分享光电分析仪器的最新应用案例、操作技巧及科研成果,促进跨领域交流与合作,共同推动光电技术行业的繁荣发展。会议日程8月14日/9:15-11:50光电分析仪器技术与应用(压电、荧光、拉曼、等离子体、LIBS)部分拟出席嘉宾:刘立民 多场低温科技(北京)有限公司赵牧原 北京卓立汉光仪器有限公司李颖颖 新奥能源研究院袁欢 西安交通大学何运 北京卓立汉光仪器有限公司王威 西安交通大学 8月14日/13:30-17:40拉曼&LIBS联用专场 (LIBS、激光诱导击穿光谱、电化学拉曼、光镊、半导体、原位拉曼光谱、RTS 联用系统)部分拟出席嘉宾:吴坚 西安交通大学杨蕾 合肥工业大学马世祥 北京市农林科学院张开锋杨志宇 北京化工大学张丽文 北京卓立汉光仪器有限公司周敏 中国科学院长春应用化学研究所郭连波 华中科技大学刘争晖 苏州惟光探真科技有限公司任丹 西安交通大学田振玉 中国科学院工程热物理研究所信文平 惠然科技有限公司 8月15日/9:00-12:00 光电探测&磁光专场(磁光、光电探测、钙钛矿太阳能电池、微区磁光克尔及光谱、红外探测器)部分拟出席嘉宾:韩俊波 华中科技大学Lianfeng Zhao   Clemson University赵谡玲 北京交通大学梁春军 北京交通大学戴宏伟 湖北众韦光电科技有限公司周玉荣 中国科学院大学张福俊 北京交通大学郝宏玥 中国科学院半导体研究所 8月15日/13:30-17:25 荧光&超快专场(钙钛矿发光、荧光光谱)部分拟出席嘉宾:何海平 浙江大学秦川江 中国科学院长春应用化学研究所覃冰 北京卓立汉光仪器有限公司仇恒伟 华北电力大学Xiaoming Wen RMIT University雷党愿 香港城市大学贾东霖 华北电力大学龙峰 中国人民大学李洋 北京金竟科技有限责任公司 8月16日/9:00-12:10 光谱仪&探测器&设备专场(光子晶体二次谐波、光电模组、激光3D打印、激光诱导荧光技术、飞秒时间分辨瞬态吸收光谱显微测量系统、角分辨传导光谱)部分拟出席嘉宾:沈昊 华东师范大学王波 上海交通大学温燮文 香港理工大学张亮 北京卓立汉光仪器有限公司杨雄 国防科技大学闫理贺 西安交通大学马腾飞 华东师范大学8月16日/13:30-17:25 光机械与自动化&激光器专场(第三代半导体、光声成像、光学平台、显示器件、高通量表型技术、光机电一体化、2μm光纤激光器)部分拟出席嘉宾:朱来攀 中国科学院北京纳米能源与系统研究所那帅 北京大学宋伟 中国科学院空间应用工程与技术中心薛中曦 北京卓立汉光仪器有限公司康佳昊 北京大学吴升 北京市农林科学院信息技术研究中心夏涛 北京卓立汉光仪器有限公司秦齐 邢台学院王旭 北京卓立汉光仪器有限公司*以上为初步日程安排(具体日程内容请见下一轮通知)会议报名时间:2024年8月14日-8月16日地点:北京中建雁栖湖景酒店  欢迎线下参会报名~其他相关【会议咨询/商务合作】王经理:13520222630

企业动态

2024.07.31

飞秒时间分辨瞬态吸收光谱的突破性进展:西交大自研样机测试服务震撼来袭

在科研探索的征途中,北京卓立汉光仪器有限公司深感荣幸能与西安交通大学电子科学与工程学院司金海教授及闫理贺教授团队并肩前行。经过他们多年的潜心钻研,团队在稳定超连续白光探测光产生、啁啾脉冲压缩以及微区弱信号高灵敏度检测等关键领域取得了令人瞩目的突破,并成功研发出飞秒时间分辨瞬态吸收光谱显微测量系统,这一成就不仅标志着我国在该领域的技术领先,更为科研界注入了新的活力。为了回馈科研界的支持与厚爱,并助力更多科研工作者深入了解与高效利用这一先进设备,司金海教授与闫理贺教授团队决定在特定时段内,为校内外用户提供免费的测样服务。作为长期以来的友好合作伙伴,卓立汉光深感自豪并全力支持这一举措。我们诚邀广大科研工作者把握此次难得的机会,通过西安交通大学大型仪器设备物联共享系统平台轻松预约测试,亲身体验这一尖端技术的魅力。我们相信,此次免费测样服务不仅将为广大科研者带来前所未有的研究体验,更将激发新的科研灵感,助力科研成果的突破与转化。飞秒时间分辨瞬态吸收光谱显微测量与成像系统瞬态吸收和超快荧光光谱技术已被广泛应用于光物理和光化学动力学研究,为新材料及其器件设计提供了参考依据。目前瞬态吸收光谱技术时空分辨率一般在百余飞秒和数微米量级,无法用于观测特定微区内或光激发百飞秒内发生的载流子动力学过程。为此,课题组提出研制的超高时空分辨白光泵浦-探测瞬态吸收和超快荧光光谱显微成像系统,可用于光电功能材料与器件中异质结界面等特定微区带隙重整等超快动力学过程研究,具有重要科学意义和应用价值。该研究获2021年国家自然科学基金重大科研仪器研制项目立项资助。课题组经过多年潜心研究,在稳定超连续白光探测光的产生、啁啾超连续白光脉冲压缩、泵浦光与探测光的极限聚焦匹配的关键科学与技术问题研究方面取得突破进展,为仪器的时间-空间分辨率和灵敏度等性能指标的提升提供了保障。目前,瞬态吸收光谱测量的时间和空间分辨率分别优于为30fs和300nm、灵敏度优于0.1mOD,各项核心技术指标处于国内外同类仪器的领先水平。图1 飞秒时间分辨瞬态吸收光谱显微测量系统硬件与测试软件 高时-空分辨瞬态吸收光谱测量系统的应用案例课题组利用高时-空分辨微区瞬态吸收光谱测试系统研究了钙钛矿单晶薄膜中的光生载流子动力学。将飞秒时间分辨瞬态吸收与显微成像技术相结合,成功探测到钙钛矿单晶薄膜不同微区的瞬态吸收信号。通过对瞬态吸收光谱进行全局拟合分析,探明了包括热载流子冷却、缺陷态捕获和载流子复合等超快动力学过程,并揭示了边界处由浓度较高的缺陷态引起的激发态吸收现象。(Journal of Materials Chemistry C, 11, 3736-3742 (2023). [封面论文])图2 单晶钙钛矿薄膜内部区域的瞬态吸收光谱利用高时-空分辨微区瞬态吸收光谱测试系统,研究了聚合物太阳能电池(Polymer Solar Cells, PSCs)中引入强偶极矩添加剂(OFIB)对其活性层(PM6:L8BO)的形貌调控、分子堆积以及光电转换效率的影响及其光物理机制。通过飞秒瞬态吸收光谱测量探明了OFIB添加剂对活性层中光生激子的扩散及复合行为的超快动力学过程的影响,通过奇异值分解和全局拟合得到体系中主要存在的三个光物理过程:激子产生(EX),电荷转移态(CTS)以及电荷分离态(CS)。与未使用添加剂调控的活性层相比,OFIB调控的聚合物活性层中的光生激子具有更长的电荷转移态寿命,复合几率减小,有利于激子在给受体界面分离,因此器件光电响应过程中可产生更高的电荷分离态产率和光电转换效率。优化后的器件表征结果证明,使用OFIB添加剂处理的PSCs实现了18.38%的光电转换效率,相较于未使用添加剂处理的器件性能显著提升了17%。(ACS Applied Materials & Interfaces, 14(5), 6945-6957 (2022);Advanced Functional Materials, 34, 2310312 (2023).)图3. 聚合物太阳电池材料PM6:L8BO和PM6:L8BO+OFIB薄膜的超快动力学表征。结合飞秒时间门选通荧光显微成像系统,课题组首次观测了微盘激光的时空演化过程,揭示了器件受激发射过程中光生载流子对其增益光谱、谐振模式等特性的影响机制,探明了激射超快过程的空间分布规律,发现了由于微腔侧壁结构缺陷导致的不同位置处激射动力学的差异,进一步提出通过构建2D/3D复合材料体系调控热载流子弛豫过程压缩激光线宽的策略。(Laser & Photonics Reviews, 2300533 (2023);Advanced Optical Materials,12, 2400189 (2024).)图4. 钙钛矿单晶微腔激射动力学研究仪器推广与合作目前该仪器样机已在纳入西安交通大学大型仪器设备物联共享系统,校内外用户可通过平台预约测试,目前已为校内和十余家校外单位提供测试服务,合作研究成果相继在Advanced Materials、Angewandte Chemie等顶级期刊发表高水平学术论文。图5 西安交通大学大型仪器设备物联共享系统西安交通大学飞秒激光与超快光子技术科研团队闫理贺教授来自西安交通大学电子科学与工程学院司金海教授团队,课题组多年来致力于超快非线性光学与超快光子技术、飞秒激光微纳加工技术等方面研究。闫理贺教授主要从事超高时-空分辨瞬态光谱技术、光电功能材料超快光物理响应机制研究等工作,致力于开发兼具有高时-空分辨率和高灵敏度的瞬态吸收光谱测量系统,并探索相关科研仪器在光电功能材料与器件研究中推广和应用,以第一/通讯作者身份先后在Advanced Functional Materials、Laser & Photonics Reviews、Applied Physics Letters、Optics Letters、Optics Express 等学术期刊发表SCI论文60余篇。图 西安交通大学司金海教授团队实验室平台建设

应用实例

2024.07.29

守护油品安全:卓立拉曼光谱为您护航

近期,两起关于食用油安全的严重事件,涉两家国内知名企业在未经清洗的情况下,直接由装载煤制油转为装载食用大豆油。这一乱象迅速引发了社会各界的广泛关注和强烈反响,食品安全问题再次被推到了风口浪尖。在此背景下,拉曼光谱检测技术作为食品安全检测的新兴检测手段,其重要性和应用价值得到了进一步的凸显。面对食用油安全乱象,拉曼光谱通过激发光和物质化学键的相互作用,形成具有独特性的光谱指纹,能够精确区分不同物质及其混合物的成分,拉曼光谱作为分子指纹光谱以其独特优势,成为了保障食用油安全的重要工具。Finder 930全自动化拉曼光谱分析系统拉曼光谱技术:精准识别不同油品采用我司Finder 930全自动显微共焦拉曼系统对食用油、煤油、液体石蜡和白油等纯品油进行拉曼检测。Finder 930为针孔共聚焦全自动操作拉曼光谱仪,操作简单便捷,其空间分辨率在XY方向本次实验激发波长采用可见光波段532nm激光器进行激发,拉曼光谱图如图1所示。从图中可以发现四个物质在拉曼光谱在800-1200cm-1有明显的区分,其中食用油在1655m-1和1745cm-1处的拉曼峰,可以用于定性识别检测依据。图1 食用油、煤油、液体石蜡和白油的拉曼光谱图检测不同工业油与食用油混合物的拉曼光谱图如图2所示。在三种混合物中均发现了1655cm-1和1745cm-1峰位处的食用油拉曼特征峰,表明三种混合物中均有食用油掺杂。此外,1146 cm-1峰位的白油拉曼峰、1360 cm-1峰位的石蜡拉曼峰、1437cm-1峰位可与图1中的纯品油拉曼峰相指认,作为油混合物的识别依据。图2  不同油混合物的拉曼光谱图拉曼光谱无需繁琐前处理,能够在短时间内获得大量的光谱数据,提高检测效率,结果稳定可靠,重现性极佳。它不仅能够轻松识别不同品种的食用油,还能深入剖析混合油品体系,实现精准鉴定及半定量分析,为食用油安全检测提供全面、科学的解决方案。守护食品安全,科技在行动食用油安全关系到千家万户的健康和福祉。面对食用油安全乱象,借助科技的力量来加强监管和检测是。拉曼光谱为食品安全检测提供了快速有效的解决工具,构建安全、健康的食品消费环境。

应用实例

2024.07.26

SmartFluo-Pro三维荧光光谱仪的应用案例

谈“油”无需色变,三维荧光指纹追踪鉴别近日,罐车化工油食用油混装现象被报道,一些油罐车既承接糖浆、大豆油等可食用液体,也运送煤制油等矿物油,两家涉事企业均为国内知名企业。此次曝光再次将食品安全这一重大民生问题推向了公众视野的前沿。世界卫生组织将矿物油定义为“未处理或低级处理的工业品形态”,作为1号致癌物的一类,其可能有潜在致癌危险。基于安全性和工艺必要性的最新评估结果,并结合行业实际使用情况,2024年3月份发布的GB 2760-2024《食品安全国家标准 食品添加剂使用标准》,对部分食品工业用加工助剂(下称“加工助剂”)品种和/或使用规定进行了修订,其中删除了矿物油、1,2-二氯乙烷、磷酸铵、抗坏血酸、抗坏血酸钠5个加工助剂品种。矿物油中包含很多荧光物质,如占主导地位的芳香族化合物和含共轭双键化合物,这些物质具有π电子的不饱和结构,离域π电子通过吸收光能跃迁到激发态,重新返回基态时释放出荧光。常见的矿物油有白油、煤油、液体石蜡等。不同矿物油含有的荧光组分不同,因而在荧光光谱上表现出不同的发射峰。激发-发射三维荧光光谱(EEMs)包含激发波长、发射波长以及发光强度三个维度的信息,犹如指纹一样可以对矿物油成分进行鉴别。                SmartFluo-Pro三维荧光光谱仪本文采用卓立汉光的SmartFluo-Pro三维荧光光谱仪对掺杂矿物油的食用油样品进行检测。SmartFluo-Pro为高灵敏度荧光光谱仪,其硫酸奎宁的检测限可达实验中采用的食用油为葵花籽油,矿物油分别为白油、煤油和液体石蜡。下图为纯的油品和混合油品的激发发射三维荧光光谱测试结果。各类油品的荧光峰的最大激发波长和峰位分别标注在图中括号内。从三维荧光指纹图可以很直观地看到,葵花油的典型发光峰分别(360,407)和(380,470)。当在其中掺杂了不同种类的矿物油时,三维荧光光谱会发生较大变化,荧光峰位和最大激发波长会发生不同程度的蓝移,甚至出现新的荧光峰(见白油掺杂)。在以上测试中,每张三维光谱采集时间仅在1-3分钟之间。快速获取测试图谱后,通过与标准样品对比,可以定性分析食用油的纯度以及掺杂的矿物油种类。三维荧光鉴别油品的方法无需对样品进行复杂且耗时的前处理,即可得到准确且直观的检测结果,对食用油中矿物油掺杂成分进行快速鉴别,为我们的食品安全保驾护航。

应用实例

2024.07.26

AFM : 应用中的主被动隔振方案

主被动隔振方案针对Park AFM的应用简述背景随着国内外仪器发展对于精密化要求越来越高,特别是光学行业的蓬勃发展,无论是工业生产还是科学实验对于隔振的要求越来越高,基于此我们卓立特别联合韩国Park公司向大家重点推出主动隔振平台系列,对于Park大家应该比较熟悉,在AFM领域中属于领头羊的存在,那么关于Park的AFM的隔振方案中到底是如何实现的呢?接下来将为大家一一解密和剖析。简单介绍一下AFM的应用:原子力显微镜(Atomic Force Microscope,AFM)以下用AFM代替,是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。因为,并且自从1986美国斯坦福大学的GerdBinnig博士发明第一台AFM开始,经过25年的科技发展及商业推广,AFM逐渐成为了纳米级领域对材料和细胞进行成像和测量的重要工具之一。AFM的实际的样本呈现是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性,所以对于实验环境和测试环境的隔振要求很高,往往需要达到vc-f级别。基于上述AFM对于实验环境越来越高的要求,并且经过市场端多年对于隔振水平的测试和试验,从被动式的隔振方案到负刚度的隔振器,最后到主动的隔振方案各种尝试,最后发现在绝大数环境下,使用被动+主动的方案是对于AFM的实验效果最好的解决方案,那么在这一块Park公司采用了被动式气浮平台(TPR)+桌面式主动隔振平台(I4)的方案进行优化和整合,具体展示如下图1:图1其中被动式气浮隔振平台TPR系列是卓立汉光独立自主研发的三线摆气浮平台,其被动的固有频率以及隔振效率如下:固有频率垂直方向水平方向隔振效率:垂直方向:5Hz时:75~92%;10Hz时:90%~95%水平方向:5Hz时:88~94%;10Hz时:92%~98%水平及垂直的传递效率曲线如下图2图2主动隔振方案是采用I4,下图3图3I4的主要隔振带宽在0.6-200hz,I4是最先进的主动台式隔振系统,同时I4还扩展了应用能力。主要特点是自动运输锁定模式和全自动负荷调节,使操作极为简单。仅需几秒钟即可启动Accurioni4不需要调整或调谐。控制面板是不言自明的,整个系统仅由三个按钮控制。这使用户能够完全专注于应用程序。除了AFM相关领域的应用,同时I4也对以下应用有很好的隔振效果(见图4)图4同时针对我们不同的应用及精密仪器负载,I4具有3款系列可供大家选择,详细参数可参考下图5图5相信大家经过上述的方案对于AFM应用的隔振方案有了大概了解,通过使用zolix的被动式三线摆气浮平台TPR系列来隔绝环境大部分的高频振动和Park的桌面式主动隔振台I4系列来隔绝环境中微小低频振动,经过TPR+I4的主被动隔振方案极大的提高了AFM等相关超高精度仪器的隔振环境,为实验或生产带来非常好的观测结果。最后,欢迎大家随时来询相关方案,我们近期将会就隔振方案特别是主动隔振为大家提供更多的隔振方案,提升我们精密仪器仪表的蓬勃发展提供绵柔之力!

应用实例

2024.07.26

光学斩波器相位抖动特性分析

光学斩波器相位抖动特性分析摘要:光学斩波器用于向光源引入稳定的调制。该调制的稳定性可以通过抖动来表征,既斩波波形的边沿时序相对于理想时钟的变化。抖动可以以时间(秒)或相位(度)为单位表示,因此有时称为“周期抖动”或“相位抖动”。在本技术说明中,我们定义了光学斩波实验背景下的抖动,并提供了使用该定义的测量协议和结果。引言:顾名思义,光学斩波器用于将连续波光源转换为用户定义频率的斩波波形。斩波周期的变化称为抖动。通常,斩波周期的高度可重复性至关重要,因此抖动是光学斩波器的关键品质因数。因此,了解如何测量抖动对于比较光斩波器产品至关重要。  通过直观的例子来理解抖动是最容易的。考虑将光学斩波器锁定到稳定的外部参考频率[1],并将外部参考和斩波的光学信号馈送到示波器。将示波器配置为在稳定参考的边沿触发,通过显示具有持久性的波形,可以很容易地看到抖动如何影响斩波信号:光信号的抖动将导致其边沿模糊,如图1所示。图 1:使用示波器可看到抖动。斩波信号边沿将“抹掉”以周期抖动 σT 为特征的时序分布。通过理想或平均周期 ⟨T ⟩ 标准化,可以将其转换为相位(单位:°)。如果测量 N 个周期,抖动表示各个测量值 Ti 相对于其平均值 ⟨T ⟩的分布,以峰峰值或 RMS(均方根)表示:平均抖动可以用秒或度来表示:抖动特征的时间尺度是多少;即应该收集多少个周期?一般来说,我们选择的时间尺度足够长,以便达到抖动的稳定值,但又不能太长,以免斩波器内部计时的长期频率漂移变得明显。在实践中,这通常相当于几十秒到几分钟的数据收集时间尺度,这取决于斩波频率(N在几百到几万的量级上)。机械相位还是光学相位?由于光学斩波器依赖于机械旋转叶片,每次机械旋转都会产生多个光学周期,因此已发布的斩波器规范中关于抖动单位的规定存在一些含糊之处:我们是在讨论机械相位还是光学相位?  具有 n 个槽的光学斩波轮每机械旋转 360°,将前进 n×360°opt(光学角度)。我们将这些单位指定为光学度数 (°opt) 和机械度数 (°mech)。图 2 显示了 6 槽叶片的区别。图2:6槽斩波器叶片的光学相位和机械相位之间的关系。  以机械角度表示抖动可以使测量结果看起来更有利 n 倍。例如,1°mech 的抖动对于 6 槽叶片来说是 6°opt,对于 100 槽叶片来说是 100°opt。然而,光学斩波器用户对叶片的机械方向不太感兴趣,因为理想情况下,所有 n 个槽都是相同的。换句话说,旋转机械斩波器只是用于调制光源的许多方法中的一种,并且抖动规格及其单位应该与该方法无关。抖动的来源:机械斩波器的光学抖动有多种因素,定义和讨论如下。1. 电机速度稳定性:当转子上施加非零扭矩时,斩波电机的速度会发生变化。这些扭矩本质上是随机的或者说是确定性的,并且随着每一次机械旋转而重复。电机的闭环控制,如SR542所实现的,调整电机驱动以保持固定速度,从而补偿这些扭矩。然而,控制回路的增益和带宽是有限的,所以总是有一些残留和时变误差。随机扭矩产生相位误差,可以合理地描述为正态分布的噪声,而确定性误差在   Φshaft 轴上出现重复。电动机中确定性扭矩的一个特别明显的来源被称为齿槽扭矩,该术语旨在唤起诸如滴答作响的时钟之类的有齿装置的离散旋转步骤。齿槽转矩取决于转子的角取向,即转子轴,并且将以随着每次机械旋转而重复的模式来调节轴速度。对于直流电动机,齿槽效应是由于转子和定子之间的磁力变化而产生的。齿槽效应在直流步进电机中非常明显,在典型的开槽无刷直流电机中也存在。相比之下,SR542 中使用的无槽无刷直流电机旨在最大限度地减少转子-定子相互作用力的变化,从而提供均匀的旋转扭矩。然而,完全消除齿槽效应具有挑战性,特别是在低速情况下。在较高速度下,转子的惯性往往会平滑由任何齿槽扭矩引起的加速度。2. 叶片缺陷:由于任何真实世界的制造过程,斩波器叶片的孔径位置和宽度都会与理想值存在微小偏差(其中理想值由完美对称给出:相似边缘之间的角间距应为360°机械/n)。如果孔径之间的偏差不同,则会导致光学抖动。然而,这种抖动是确定性的,每次机械旋转都会重复。同时,均匀影响所有孔径的系统偏差(例如光蚀刻叶片的蚀刻过度或蚀刻不足)将显示为占空比中的误差。这些缺陷可以被认为是叶片的指纹,每个叶片都是独一无二的。3. 叶片同心度:如果叶片未与电机轴(旋转轴)同心安装,则当其移动时经过用户光束点时,线性槽速度将随平均值呈正弦变化,从而调制 f 轴处的光周期。叶片同心度可以通过轴、轮毂和斩波叶片之间严格的机械公差来优化。叶片翘曲和平面外倾也会导致  Φ 轴产生确定性周期误差,因此小心处理斩波器叶片以使其保持平整非常重要。测量和结果:为了评估上述每种效应对斩波器抖动的影响,我们收集了 N 个周期的光信号,并将测量的周期绘制为时间的函数,以及所有测量值的直方图。 我们不是以周期为单位绘制(秒),我们是以光学相位(°opt)为单位进行绘制。每个测量周期 Ti 均转换为相位误差 δψi,如下所示其中,T是所有N次测量的平均周期。相位抖动只是 N 个相位误差测量的 RMS 值,并可视化为相位误差直方图的宽度。图 3 为设定点斩波频率为 1 Hz 的 5 槽叶片的周期误差与时间的关系示例。原始周期测量与时间的关系如图 3a 所示。在图 3b 中,所有测量的周期误差都被收集到直方图中。所有周期测量值的直方图分布宽度(蓝色轮廓),以平均值的标准差 (σ) 为特征,为 0.359°opt。该分布包括上面讨论的所有抖动源,并代表以 1 Hz 运行的典型斩波实验会经历的抖动。(图3a左侧)周期误差与时间。数据点根据其槽号进行颜色编码(即每5个数据点为相同颜色)。对数据进行正弦拟合,频率等于轴频率(fchop/5),作为眼睛的引导,以突出对相位误差的确定性贡献。仅显示采集数据的前10次机械旋转。(图3b右侧)来自图3a的直方图数据。颜色编码与来自图3a的颜色编码匹配。计算“所有槽”和单个槽的σ值,并将其报告为与平均相位误差的RMS偏差。对于 n 槽叶片,每第 n 个周期测量都是对同一槽的重复测量。因此,我们为与该叶片的 5 个槽相对应的周期测量值分配不同的颜色。以槽 1 为例(绿色)。它的平均周期误差约为−0.65°opt。这意味着标记槽位 1 周期结束的边缘比预期早 0.65°opt。非确定性抖动将绿色分布的宽度设置为仅为 0.070°opt,因此相位误差从一转到另一转的再现性非常好,并且由确定性误差主导。简单地说,对于单个槽位,相位误差的确定性源确定平均值,而非确定性源确定抖动(标准偏差)。  在图 3a 中,提供了 f轴 处的正弦曲线拟合,以突出 5 槽叶片在这种低斩波频率下的大部分“全槽” 光学抖动可归因于相位误差的确定性来源。从数量上看,“全槽”抖动比“单槽位”平均值大近六倍。然而,归根结底,典型的斩波器实验对所有抖动贡献的总和很敏感,重要的指标是“全槽”抖动。只有当用户可以将光学快门布置成每第n个光学周期通过一次时,他们才能利用由“单槽位”相位误差分布 所示的优异可重复性。  请注意,确定性并不一定意味着正弦曲线。虽然安装同心度会带来与 Φ 轴呈正弦曲线的周期误差,但叶片缺陷会引入槽与槽之间的随机周期误差(每次机械旋转都会重复,但不一定是正弦曲线)。根据经验,我们发现齿槽误差通常以 ∼sin( Φ轴) 或 ∼sin(2 Φ轴) 形式出现,但这取决于斩波电机的结构。接下来让我们看看相位误差测量值随斩波频率的变化。同心度和叶片缺陷将导致与频率无关的相位误差,因为它们只取决于几何形状。然而,齿槽误差将在更高的速度下减小,因为位置相关的齿槽加速度将具有更少的时间来改变旋转轴的速度。因此,通过考虑周期误差测量的频率依赖性,可以对确定性贡献进行一些分离。(图4a) 相位误差与时间的关系。          (图4b) 相位误差直方图。图 4:fchop = 100 Hz 时 SR542 5 槽叶片的相位误差测量。图 4 显示了相同的 5 槽斩波叶片,其运行速度提高了 100 倍,其中 fchop = 100 Hz。与图 3 相比(为了便于比较,保留了 y 轴比例),很容易看出在较高轴速度下增加角动量的有益效果:f轴 处正弦调制的总体幅度减小,并且每个槽的“单槽”变化大大减少。在此速度下,转子的惯性“平滑”了齿槽扭矩,剩余的正弦相位误差可能是由于叶片安装位置的较小同心度误差造成的。 同时,在直方图(图 4b)中看到窄峰表明出色的电机速度控制。请注意,槽 1 和 2(绿色和红色)彼此重叠,因此仅分辨了4个峰。此外,没有方法可以保证每次试验中的槽位都是相同的,因此图 4 中的槽位 0 不一定与图 3 中的槽位相同。(图5a) 相位误差与时间的关系。    (图5a) 相位误差与时间的关系。图 5:fchop = 600 Hz 时 SR542 30 槽叶片的相位误差测量。图 5 显示了30槽频率为600Hz的相位误差和抖动,在与图 4 相同的轴速度 f轴=20 Hz 下获得,齿槽效应被很大程度上抑制,并且周期的正弦变化可能是由于同心度误差造成的(注意与图4类似的正弦幅度)。然而,相位误差模式不再主要是正弦曲线。我们继续提供正弦拟合,因为(1)它有助于识别同心度误差,(2)它可以作为 Φshaft 的参考,强调相位误差相对于轴方向的重复性。正弦残差(减去正弦拟合后剩余的相位误差)包含来自叶片缺陷(在某种程度上,这些缺陷是随机的而不是正弦本身)和将高斯噪声与该指纹卷积的随机误差的确定性贡献。颜色编码使得很容易看到相位误差图案(“指纹”),其随着每次机械旋转而高度重复。抖动与频率:5 槽、10 槽、30 槽和 100 槽斩波叶片的抖动数据与斩波频率的函数关系如图 6 所示。圆圈表示“所有槽”RMS 抖动,而三角形表示平均值。每个斩波频率处的 n 个“单槽”抖动值。这些图中还显示了每个斩波器叶片的已发布抖动规格(虚线)。图6:RMS相位误差与频率的关系。抖动与叶片和频率相关,但这些图中确实出现了一些总体趋势。在低速下,小力(随机的和确定性的,即齿槽效应)会对相位误差产生很大的影响,这一点在最低斩波速率下“所有槽”和“单槽”指标观察到的抖动增加中显而易见。 SR542 斩波器头的工厂校准包括齿槽加速度的测量。这些测量结果用于计算 SR542 控制器用于消除齿槽转矩的补偿电流。因此,我们能够将斩波器的工作范围扩展到比上一代斩波器慢一个数量级的轴速度。除了最低的轴速度之外,“全槽”抖动通常会接近某个渐近值,即由叶片缺陷和同心度误差的频率无关贡献设定的本底噪声,而“单槽”抖动继续由于惯性平滑而改善。    表1中列出了实测性能和已发布规格的表格比较。为简单起见,为每个叶片选择单个斩波频率。显示了“所有槽”和“单槽”抖动值,但由于“所有槽”测量与大多数斩波实验相关,因此应将该值与已发布的规格进行比较。表1:各种斩波器叶片在选定斩波频率下的相位抖动。结论:最后,在比较不同光斩波器的抖动规格时,请注意单位。光学度数的使用是最相关和透明的。此外,应该使用所考虑的叶片的所有槽来计算抖动统计数据。这里提出的分析使用相位误差测量与时间的关系以及相应的直方图,对于隔离各种抖动源具有指导意义,特别是在多个频率设定点重复时。这种分析有助于了解机械斩波器的优点和局限性,为实验操作参数的选择提供信息,或诊断大于预期的相位噪声。有几个来源会影响斩波光束上的整体抖动。可以是随机的或确定性的,并且随着机械旋转而重复,如齿槽扭矩、叶片缺陷和叶片的非同心安装等情况。一些确定性来源(齿槽效应和同心度)将与 Φ轴(或其谐波)大致呈正弦关系,而其他来源(叶片缺陷)可以作为轴方向的函数随机分散。通常,以可用的最高轴速度进行斩波有利于消除齿槽扭矩引起的误差。同时,叶片缺陷和同心度会产生与频率无关的误差。为了最大限度地减少同心度误差,在将叶片安装到轮毂上时应注意不要引入径向偏移。最后,由于叶片制造误差通常具有固定的横向尺寸,因此这些误差将对较高槽数的叶片产生更显着的影响,因此使用尽可能少的槽数也是有利的。参考文献[1] Dana F. Geiger. Phaselock Loops for DC Motor Speed Control. John Wiley & Sons, 1981.

应用实例

2024.07.23

超宽带极紫外相干光源--高次谐波

超宽带极紫外相干光源--高次谐波在首篇《名家专栏》中,我们深入探讨了阿秒超快光学的奇妙世界,揭示了其在追踪电子动态、探索凝聚态物质深层物理以及电子信号处理等领域的无限潜力。而今,我们踏入第二期,将焦点对准超宽带极紫外相干光源的核心技术——高次谐波(High-Order Harmonic Generation, HHG)现象,这一技术不仅极大地丰富了超快光学的工具箱,更为科学研究开辟了新的视野。自1987年*次发现高次谐波(HHG)以来,极紫外高次谐波由于其高相干性、短脉冲及光子能量高等优点,在物理、化学、生物以及各类谱学和成像研究中得到广泛应用。高次谐波产生是一种高阶非线性光学过程,具有从真空紫外到X射线的宽带频谱。图1所示是一张典型的气体高次谐波谱图。图1、气体高次谐波谱的简单示意图,包含了气体高次谐波谱的光谱形状基本特征。在低级次处高次谐波强度快速下降,对应于传统的微扰非线性光学区域;随后是一个强度变化相对比较平缓的平台区,在Ip+3.17Up附近高次谐波强度再次急剧下降,对应于高次谐波截止区。几乎所有的气体高次谐波实验所得到的谐波谱都表现出同一个特征:随着谐波级次的增加,开始一些低次谐波效率单调下降,紧接着出现一个所谓的“平台”;在平台区内,谐波的强度随谐波级次的增加下降得非常缓慢;在平台区末端的某一级次谐波附近,谐波强度迅速下降,出现截止。这意味着一个非常重要的优势,即它产生了从真空紫外到X射线的宽带频谱。目前,实验上获得的最短高次谐波辐射波长已经达到<1 nm [Science, 2012, 336: 1287.]。通过中红外激光脉冲与多价态离子相互作用甚至可以产生光子能量达到~5.2 keV的高光子能量的谐波辐射[Optica Vol. 9, No. 9,1003,September2022]。而且,气体高次谐波有很多*特的性质,比如具有很好的方向性,*好的时间和空间相干性,使得人们*全有可能利用T3(Table-Top-Terawatt)激光产生的气体高次谐波来获得可调谐的相干XUV和软X射线源,具有广泛的用途,比如在水窗波段,氧原子的吸收要比碳原子的小得多,可用于对活体生物的研究。图2、基于XUV的时间分辨ARPES装置。插图(右上)显示了近红外(NIR)光通过氪气产生高次谐波(HHG)以产生极紫外(XUV)光的实验布局[Nature Communications, 06 Aug 2019, 10(1):3535]极紫外波段的波长范围大致在10 - 120 nm,该波段恰好是高次谐波可以有效产生的波段,因此高次谐波的另一个重要用途即产生高功率的极紫外光源。大部分物理和化学过程在本质上都是原子和分子反应过程,比如臭氧层空洞的形成、雾霾的形成、燃烧过程等等。在凝聚态物理方面,以ARPES能谱测量为例,一束极紫外光照射到样品上,样品表面的电子被极紫外光激发至连续态,光电子动能和发射角度则包含样品的能带结构信息。带有角度分辨功能的电子分析器接收到辐射出的这些光电子,从而得到样品价带附近的能带结构。高次谐波是一种非常适合用于表面电子结构动力学研究的光源,它可以在可以忍受的电子能谱分辨率的条件下,同时获得一定的时间分辨率信息[Nature, 2011, 471: 490–493.]。在表面光化学方面,Bauer等人[Phys. Rev. Lett., 2001, 87(2): 025501.]还用气体高次谐波研究了吸附在Pt(111)表面的氧分子在光激发后的超快(瞬态)变化过程,这对于表面催化过程的研究非常重要。飞秒气体高次谐波还可用于研究固体内壳层电子动力学[Phys. Rev. Lett., 2003, 91(1): 017401.]、稠密激光等离子体产生与演化过程测量[Phys. Rev. Lett., 2005, 95(02): 025001.]等。近些年,随着高重频高平均功率飞秒激光系统的发展,激光系统的平均功率可达到千瓦水平,产生的极紫外高次谐波光源可达到近毫瓦水平(图3),进一步拓展宽带极紫外光源的应用,使得高次谐波光源成为一种非常有应用潜力的光源,不仅在原子分子和凝聚态物理等基础科学领域,目前更是在往半导体检测等应用领域拓展。图3、高重频高平均功率极紫外光源[ Vol. 3, No. 11 / November 2016 / Optica1167;Ultrafast Science  Volume 2022, Article ID 9823783]

应用实例

2024.07.23

直播预约 | 中国测试技术研究院—陈潇潇《激光辐射的计量技术规范解读》

“名师讲堂”系列专题会聚焦分子光谱、光电探测、高光谱与影像、超快光谱等前沿技术在材料、生医、能源科学等热门领域的前沿发展与应用,卓立汉光邀请行业内专家学者以网络在线形式进行学术探讨与交流,为光电技术科研工作者建立全新、高效、开放的学习与交流平台。53期名师讲堂马上就要开讲啦!直播预约7月23日上午10:00—11:00,中国测试技术研究院光学研究所副所长—陈潇潇为大家带来讲座《激光辐射的计量技术规范解读》。直播期间更有丰富好礼相送,欢迎届时参加!主要内容介绍激光辐射计量的需求以及发展现状,结合《JJG 249-2023 0.1 mW~200 W激光功率计》检定规程解读激光功率计量器具的溯源体系以及激光功率的计量测试方法和判定依据。讲师介绍陈潇潇,中国测试技术研究院光学研究所副所长,高级工程师。全国光学计量技术委员会副秘书长。中国计量测试学会光辐射计量专业委员会委员,全国光辐射安全和激光设备标准化技术委员会第四届激光材料加工和激光设备分技术委员会委员.长期从事光学计量方面工作,主要负责激光辐射、光纤激光、光电探测器、紫外辐射以及眼科医学的计量工作。完成科技部支撑计划、四川省科技支撑项目、四川省标准研究项目等各类项目课题7项。发表科技论文十余篇,获授权发明专利4项。制修订国家计量技术规范5 项。负责建立国家计量标准装置4项,获四川省科技进步奖二等奖 1 项。参与方式1.通过扫描下方二维码或点击【阅读原文】,预约本场直播。https://vkpym.xetlk.com/sl/42mDRi2.关注“卓立汉光”、“TEO先锋科技”视频号,预约本次直播。直播福利1.凡在线观看直播的观众,均可以参加“直播互动”活动!名额多多,奖励丰厚,欢迎大家踊跃报名。2.免费入群交流,获取行业新动态。温馨提醒:请备注“姓名+单位+名师讲堂“添加客服。希望通过名师讲堂,我们可以共同探讨光电知识,7月23日,我们不见不散!

企业动态

2024.07.22

原理分享 | 关于光色测量的基础知识

光色测量原理在讨论这个问题之前,我们需要弄明白几个问题:1、什么是光色?2、为什么要测量光色?3、如何测量光色?1.什么是光色?什么是光?人们想尽各种办法去解释这个问题。早期有各种淳朴的解释,有人解释为“神的眼睛”,有人解释为“人类眼睛里的火焰与太阳的火焰交织的产物”,更有人解释为“眼睛发出视觉光线,就像触角一样,接触到物体,从而在大脑中产生视觉感觉”。总之,这种奇奇怪怪的解释都是古人对光的本质的探索。近现代,科学家曾经提出过关于光的性质的不同理论,最具影响力的有:牛顿的微粒理论、惠更斯波动理论、麦克斯韦电磁理论和爱因斯坦的光量子理论。在我们日常生活或者文学中,光还意味着光明,也就是说,光是可以看见的,是明亮的,即在日常生活中我们认为的光就是可见光。光既一种电磁波已经被人们普遍接受,而频率或波长是描述电磁波的重要参数。我们能够看见的光即可见光的波长范围在400nm-700nm之间。可见光的颜色被我们划分为红橙黄绿青蓝紫七种颜色,从红到紫光的波长逐渐减小。图1 可见光的范围及其颜色人眼能够对可见光范围内不同频率的光波有不同的颜色感受,这与人眼的构造以及大脑的结构相关。当光线到达眼睛的视网膜时,视锥细胞和视杆细胞对于理解视觉和光线至关重要。一旦光线照射到眼睛,眼睛的晶状体就会把光线聚焦到那些对光敏感的细胞、视杆细胞和视锥细胞上,每个细胞都会接收不同波长的能量。视杆细胞在昏暗的光线下工作得最好,而视锥细胞则专门用于特定的颜色范围。L-视锥细胞占我们视锥细胞的64%,也被称为红色视锥细胞,它们对红色光(波长较长)敏感。M-视锥细胞构成眼睛视锥细胞的32%,也被称为绿色视锥细胞,它们对绿色光敏感。S-视锥细胞占整个视锥细胞的2-7%,也被称为蓝色视锥细胞,它们对蓝色光(波长较短)敏感。视杆细胞在弱光下工作,帮助我们在夜间观察光线,这种光线所成的像没有颜色,它们是外围视觉。图2 眼睛的构造及视网膜的细胞结构2. 为什么要测量光色眼睛是我们感知周围世界的重要器官,而光色是“周围世界”信息的重要载体。随着现代科技的发展,人们掌握了信息再现的方法,也发明了各种各样的信息再现技术和相应的器件,例如:CRT、等离子体显示屏、LCD、OLED、Mini-LED显示屏、Micro-LED显示屏、3D显示屏、AR、VR…… 图3 各种显示器既然是重现信息,那么就要考虑所显示的信息如何与人眼观察现实世界所感受得信息一致。这就现需要科学家通过大量的试验,确定出影响人眼感受信息的指标。在这些众多的指标中,关键的指标是亮度、色度。3. 光色测量光色测量原理涉及使用光谱仪或色彩测量仪器来分析光的波长和强度分布,测量原理涉及辐射度学、光度学和色度学三部分内容。3.1. 辐射度学辐射测量是测量全光谱电磁辐射的一门科学。它的定义编入国际制(SI)单位。在SI单位中,总的电磁功率定义的单位为瓦特(W),辐射照度(通量密度)定义为从一个半球的各方向入射到包围该半球的平面上单位面积的功率(W/m2)。辐射强度定义为单位立体角内的功率(W/sr)。这里,立体角以辐射源或探测器上的一个点为参考,单位立体角定义为半径为1的球体所对的单位面积。辐射亮度是单位立体角内、单位投影面积上的功率[W/(sr﹒m2)]。频谱变量作为密度意味着如果要实现从波长到频率 的变换,相应的密度要乘以|d/d|,以便保留完整的积分。光与视觉的研究依赖上述辐射的定义(注意,在UV和IR范围内用“辐射”一词而非“光照”。光是可见的,但UV和IR辐射多数情况下是不可见的)。光度测量是基于平均人眼观察响应的、测量可见光的科学。在光度测量中,使用的可见光功率(光通量)的主要单位是流明(lm)。1W 555 nm的辐射通量相当于683 lm的光通量。光通量(流明)定义为由CIE 1931标准观察者函数加权的辐射通量,且可以由式(B-1)计算。                        式中,(λ)为绝对光谱辐射通量(W/nm);V(λ)为明视觉光谱光视效率函数,它基于CIE 1931标准观察者人眼视觉模型,该模型具有测量视场角为2°的光谱响应V(λ);k= 683 lm/W,为在V(λ)峰值位置从光功率到光通量的转换系数;dλ为波长增量(nm)。如式所示,可以用匹配明视觉光谱光视效率函数V(λ)的滤光器/探测器组合在可见光范围内进行光测量并得到光测量值。这是亮度计和照度计的基本原理。也可以使用分光辐射亮度计测量光谱辐射通量,并对光谱辐射通量和V(λ)进行积分,得到光测量值。根据类似公式,可从所给的辐照度E(λ)(W·m-2·nm-1)及相应的绝对光谱辐射通量S(λ)得到照度E(lx),也可从所给的光谱辐射亮度L(λ)(W·sr-1·m-2·nm-1)及相应的绝对光谱辐射通量S(λ)得到亮度L(cd/m2)。3.2. 光度学光度学中使用的最重要的3个术语分别为亮度、照度和发光强度。虽然选择流明作为光度学测量的基本单位合乎逻辑,但由于传统原因,仍选用坎德拉(cd)作为发光强度的单位。坎德拉定义为处于铂凝固温度(2045K)的黑体的1/60cm2表面在垂直方向上的发光强度,这个定义现在不再采用。从1979年起,坎德拉定义为频率为540×1012Hz的单色辐射光源在给定方向上的发光强度,该方向上的辐射强度为(1/683)W/sr。根据流明定义的坎德拉为1cd=1lm/sr1lm是发光强度为1cd的各向同性光源在单位立体角内发射的光通量。大多数制造的光源都是以输出总流明数规定的。立体角的单位是球面度(sr),1sr等于半径为r的球的球心对应球面上r2的面积所张开的立体角。因为球的表面积为4r2,所以,球的立体角是4sr。亮度是最常测量的光学量,当人们需要定量地表征人眼观察的一个物体有多么明亮时,就需要测量物体的发光强度。亮度定义为光源表面在给定方向上、单位立体角内、单位有效面积内发射的光通量,也就是单位有效面积的发光强度。在SI单位制中,亮度的单位是坎/平方米(cd/m2)(该单位曾经被称为“nit”,但现在它被认为不合适,nit是一个弃用的单位)。在英制单位中,亮度单位是英尺朗伯(footLambert,fL)。1cd/m2= 1lm/(sr·m2)1 fL = (1/lm/(sr·ft2)转换系数:1cd/m2=0.2919 fL (0.2918635ft2/m2)1fL=3.4263 cd/m2(3.426259 m2/ft2)照度是测量物体表面单位面积所入射的光通量的术语,单位是lm/m2。当有必要知道有多少光入射到一个表面时,如照亮投影屏幕时,就需要测量照度。照度的SI单位是勒克斯(lux, lx),英制单位是英尺烛光(footcandle, fc)。1lux 1 lx1lm/ m21footcandle1 fc1lm/ ft2转换系数:1lx = 0.0929 fc (0.09290304 ft2/m2)1 fc = 10.76 lx (10.76391 m2/ft2)发光强度(或“烛光量”,这是已废弃术语)是点光源在单位立体角内发射(或反射)的光通量,它是描述光源在特定方向的强度的量。由于运用了点光源假设,因此,只有当光源尺寸相对于测量距离可忽略时,该发光强度才可被测量与使用。LED通常被假设为点光源,且可以使用发光强度描述。发光强度的单位是lm/sr,即cd。表1列出了重要的辐射度学的物理量和单位,以及光度学中对应的物理量。表1 光度学与辐射度学中的术语和单位辐射度学术语辐射度学单位光度学术语SI单位英制单位辐射通量W光通量lmlm辐射强度W/sr发光强度cd=lm/srcd=lm/sr辐射亮度W/(sr﹒m2)亮度cd/m2fL辐射照度W/m2照度lx=lm/m2fc3.3. 色度学图4 颜色匹配函数三刺激值中的Y是唯一可以与光度量相关联的值,见表2。,式中,k=683lm/W;S()是光谱功率分布。表2 光度值Y(只有Y是光度值)S()单位Y单位辐射通量/(W/nm)光通量/lm辐射强度/[W/(nm·sr)]发光强度/cd辐射亮度/(W·nm-1·sr -1·m-2)亮度/[lm/(sr·m2)= cd/m2]辐射照度/[W/(nm·m2)]照度/ (lm/m2=lx)在没有归一化的一般情况下,三刺激值定义如下:式中,S()是光谱功率分布,单位为nm-1;k是任意常数,如k=1。对于基于白色点的归一化三刺激值(归一化到100,也能使用任何其他的归一化常数),在反射和透射情况下,其定义如下:‍‍‍‍式中,()是相对反射或透射的光谱功率分布;S()是光谱功率分布,可以是任意单位;X、Y、Z是没有单位的,Y的最大值是100;。对于发射型显示屏:式中,S()是显示屏的白色光谱功率分布,C()是显示的其他颜色的光谱功率分布,S()和C()可以是任意相同的单位;X、Y、Z是没有单位的,Y的最大值是100;。根据CIE 1931,任何两个有相同X、Y、Z值的光定义为匹配(是相同的颜色)。另外,函数等于1924年为光度测量定义的函数V()。多年来,CIE标准化了一些源于CIE 1931的色彩空间,但在色彩空间中的不同位置,距离相同的两个点所表达的知觉差异近似相同。这些色彩空间被称为均匀色彩空间,对评估色域和色度误差的大小特别有用。下面是用于评价显示屏的各种CIE色彩空间的总结。CIE 1931(x,y)色坐标值。这些值是从X、Y、Z三刺激值推导出的二维笛卡儿坐标系的值,按照这样计算,相对光谱相同而强度不同的光具有相同的(x, y)坐标值。因此,色度值表示光的色度特性,与强度无关。色坐标值被指定为x、y、z,它们是三刺激值X、Y和Z相对于三者总和的比例。()相反地,这里,Y可以是任何光度学量,如光通量、发光强度、亮度等。因为在色度描述中,z是多余的,为了更好地绘制二维(x, y)坐标,通常取消z。在CIE1931标准色度系统(见图5)中,在光谱轨迹内绘制的曲线为普朗克轨迹,曲线上的点达数千开。光谱轨迹以50nm的波长增量进行标记。这是当一个(理想的)发射器的温度升高到一个无限的温度时的白色的颜色。这个观察产生了色温的概念,其是表示白色“等级”的一种方法。CIE1960——均匀色彩空间。一个几乎均匀的色彩空间,它的缺点是只有两个维度。这个空间由X、Y、Z的线性组合得出正确的色彩空间,现在仅用于计算相关色温(CCT)。u=u',v=2v'/3(u', v'是1976 UCS值)CIE1976——均匀色彩空间。它是从X、Y、Z的线性组合得出的特有的色彩空间。u'v'有时被用作想要忽略强度变化时的颜色漂移量。在图6中,光谱轨迹内的弯曲线表示温度为几千开的普朗克轨迹。光谱轨迹以50nm的波长增量进行标记。 图5 CIE1931标准色度系统                        图6 CIE1976标准色度系统CIE 1976 LUV——目前标准化的三维均匀色彩空间。该空间中隐含了一个人眼的非线性模型,并且是对光(特别是D65或显示白点)的色度适应模型,如图7所示。由如下所示的下标为“n”的值表征,亮度定义为‍式中,,色坐标和色差为图7 CIE1976标准色度系统中的线性区域和非线性区域CIE 1976 LAB——目前标准化的三维均匀色彩空间。该空间中隐含了一个人眼的非线性模型,并且也是对光(特别是D65或显示白点)的色度适应模型,由如下所示的下标为“n”的值表征,亮度定义为色坐标为其中,函数f()作用于任何变量q,定义为色差定义为CIE LAB和CIE LUV色彩空间同时被采用,而后被CIE保留为同等的推荐标准。然而,显示技术人员优选CIE LUV。这种偏好是基于以下事实:CIE LUV有一个特有的色度空间(坐标为u*/L*、v*/L*),其中两束光的任意混合都会显示在空间中这两束光之间的线段上。这使得对诸如自发光类显示屏中的色彩组成的描绘更加便捷,而CIE LAB并不具有这个特点。诚然,CIE LAB空间最近已经被一些显示技术专家选择,因为相比于较小的颜色差异,其更接近均匀。然而,CIE LUV仍然是一个被证明过的CIE空间,且因为它的便利性和历史先例而具有吸引力。本书并不认为CIE LUV比CIE LAB或其他色差公式更好,但在示例计算中使用CIE LUV作为足够的色彩空间来测量。在CIE 1960均匀色彩空间中,人们一致认为色温的概念在偏离普朗克轨迹的距离超过0.01就没有意义了,其中距离为。然而,工业应用将CCT定义为从普朗克轨迹0.0175(u, v)单位以上到该轨迹0.014 (u,v)单位以下。除了用CIE 1960均匀色彩空间中的色坐标(u, v)偏离普朗克轨迹曲线上的点表示这个距离,也经常用另一个单位量化从给定光线的色坐标到普朗克轨迹的距离,这就是最小可察觉的色差(MPCD),它定义为0.004(u,v) 距离单位。数值0.004是在彩色电视的初期引入的,为条件不太严格的情况下(u, v)中的最小可察觉的差异。这个数字经常在照明行业被引述,现在也用于CIE 1976均匀色彩空间中色坐标(u',v')与普朗克轨迹曲线上点的距离。如果颜色有差异,如在一个房间内的不同位置、不同屏幕上显示颜色,那么两个点之间的色坐标(u', v')差异不小于0.04,这个差异能够被察觉,而0.04是阈值距离,指同一屏幕上、相邻的两个颜色区域的色坐标在CIE 1976均匀色彩空间中的距离。详细内容请参阅《信息显示测量标准》一书。参考文献[1] 科学网—什么是光 - 王宏琳的博文 (sciencenet.cn)[2] 国际显示计量委员会著,李伟、李子君、高彬等译,信息显示测量标准[M],附录B,北京:电子工业出版社,2024人物介绍高彬 ,在某军工企业工作了8年,长期从事加固显示方面的研究,参与了十多个型号的加固显示屏的研发。同时,在机载加固显示的光电测量方面也有着丰富的经验。翻译并出版了《OLED显示概论》和《信息显示测量》两本书籍。

应用实例

2024.07.19

【邀请函 | 第五届逐梦光电国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛】

北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司联合举办的第五届“逐梦光电”光电技术与应用研讨会,将于2024年8月14-16日在北京怀柔举行,邀请来自“产、学、政、研、用、金”不同领域的全国各地的专家学者,与会者将围绕光电行业的未来发展趋势、区域特色产业的优势与机遇进行深入探讨,分享光电分析仪器的最新应用案例、操作技巧及科研成果,促进跨领域交流与合作,共同推动光电技术行业的繁荣发展。会议主题■主题1:光电分析仪器技术与应用拉曼光谱及联用技术、荧光光谱与寿命成像系统、光电测试系统、微区磁光及角分辨系统、激光等离子体诱导。■主题2:国产光电模组及器件条纹相机、分幅相机、ICCD/IsCMOS门控相机、光谱仪/单色仪、微弱信号处理器、激光器与激光直写。■主题3:光机电一体化光机械及元件、光学平台、运动控制、光机电非标自动化、低温压电滑台。■主题4:国产高端分析仪器与传感器在半导体材料、二维材料等材料科学,物医学和食药环侦等领域的研究现状与前景分享。■主题5:光电仪器及相关应用领域研究成果分享:基础理论、新方法与新技术、仪器研发与设计等。■主题6:卓立汉光老客户以及潜在客户的采访:科研成果与难点、国产仪器展望与使用感受等。注:以上为初步安排(具体日程内容和嘉宾信息,请见下一轮通知)会议报名我们在北京,期待您的参与!时间:2024年8月14日-8月16日地点:北京中建雁栖湖景酒店欢迎线下参会报名~▎关于卓立汉光卓立汉光自1999年成立,自主研发生产:荧光/拉曼光谱系统、光谱仪、太阳能电池检测仪器、光源及探测器、电控/手动精密位移台、调整架、光学平台、光学元件等系列产品。▎关于先锋科技先锋科技是国内知名的光电产品系统集成商之一,在光电领域前沿不断探索,不仅为用户提供国外原厂生产的各类标准产品,并且可以根据用户的具体要求,提供完整的系统解决方案,包括集成、设计等。▎关于怀柔仪器北京怀柔仪器和传感器有限公司自成立以来,深耕科技服务、科创平台、基金投资三大核心业务积极培育品牌运营、科技咨询两大拓展业务,着力构建”3+2”五大业务体系,为科技项目、科技企业提供从空间投资到专业服务的一站式解决方案。

企业动态

2024.07.18

北化工严乙铭&杨志宇Angew.:WS2-WO3电催化氮还原合成绿色氨

电催化氮还原反应(ENRR)作为一种在环境条件下合成绿色氨(NH3)的前途方法,近年来受到了广泛关注。特别地,钨(W)基材料已被证实为中最有效的催化剂之一。在ENRR过程中,中间体的质子化决定了整个反应的速率(RDS,Rate-Determining Step)。因此,如何增强中间体的吸附从而促进其质子化,成为提升催化剂整体性能的关键。北京化工大学严乙铭教授、杨志宇副教授成功地在WS2-WO3异质结构中构建了一个强界面电场,通过提高W的d带中心来增强中间体的吸附,从而加速了ENRR动力学。结果显示,WS2-WO3表现出62.38 μg h-1 mgcat-1的高NH3产率和24.24%的法拉第效率(FE)。原位表征和理论计算表明,WS2-WO3中的强界面电场使W的d带中心向费米能级上移,导致-NH2和-NH中间体在催化剂表面的吸附增强。该研究为界面电场和d带中心之间的关系提供了新的见解,并为增强ENRR过程中中间体的吸附提供了一种前途策略。结果分析本文分析了WS2-WO3界面与d带中心的电场强度等关系,结果表明(图1),在WS2-WO3异质结构中可以构建一个强大的界面电场来提升W的d带中心,从能加强中间产物吸附,促进ENRR动力学过程。图2表征了WS2-WO3合成过程及结构。图3. 表征了WS2和WO3的电子能带结构、表面界面电场强度分布等信息。这些结果充分证实了WS2-WO3异质结构在WS2和WO3相间形成了强大的界面电场,这将有利于提高WS2-WO3的ENRR性能。图1.(a)具有不同的界面电场强度和活性W位点的d带中心(εd)的WS2-WO3的PDOS。(b)WS2-WO3中εd值与界面电场强度的关系。(c)WS2-WO3中ICOHP值与界面电场强度的关系。(d)WS2、WO3和WS2-WO3的WF。(e)WS2-WO3的静电电位剖面。(f)WS2-WO3的DCD。(g)WS2-WO3沿z方向的平面平均电荷密度差。(h)WS2-WO3的ELF。(i)WS2-WO3异质结构中界面电荷转移过程的示意图。图2.(a)WS2-WO3合成示意图。(b)WS2-WO3的TEM。(c)b中所选区域的HRTEM。(d)c中白色矩形所示区域的放大图。(e)WS2-WO3的HAADFSTM。(f)由e中的白色矩形指示的区域f的FFT。(g)由e中的白色矩形指示的区域g的FFT。(h)WS2-WO3的HAADF。图3. WS2和WO3的(a)Mott-Schottky图和(b)Kubelka-Munk图。(c)WS2和WO3的电子能带结构。(d)UPS获得的WS2、WO3和WS2-WO3的二次电子截止边缘。(e)WS2、WO3和WS2-WO3的ζ电位。(f)WS2、WO3和WS2-WO3的表面界面电场强度分布。(g-i)WS2、WO3和WS2-WO3的3D表面电势分布和对应的线。图4.(a)WS2-WO3在0.1 M Ar饱和和N2饱和的Li2SO4中的LSV。(b)WS2-WO3在-0.4 V vs RHE和开路电位下的电压计时电流曲线。(c)用瓦特法和克里斯普法研究了电解质的紫外-可见吸收光谱。(d)WS2、WO3、WS2和WO3以及WS2-WO3的NH3产量。(e)WS2、WO3、WS2和WO3以及WS2-WO3的法拉第效率。(f)14N2和15N2气体供给的WS2-WO3的1H NMR光谱。(g)WS2、WO3和WS2-WO3在0.1 M Li2SO4电解质中的Cdl测量。(h)WS2、WO3和WS2-WO3在0.1 M Li2SO4电解质中的奈奎斯特图。为了了解WS2-WO3增强ENRR性能的潜在机制,本文测量了PDOS、原位拉曼光谱和原位FTIR光谱,表征催化剂和中间体之间的结合强度。催化剂的d波段中心位置决定中间体吸附能,由于d带中心较高能级允许催化剂和中间体强相互作用,d带中心费米能级向上移表明中间体的吸附增强,加快催化反应进程。图5a说明WS2-WO3对ENRR中间体的结合强度应该更强。利用原位拉曼光谱(图5b和S20)监测表征实验1小时内反应中间体。检测到归属于NH2和NH的位于 1328cm-1和1574 cm-1两个峰,WS2和WO3表面相比WS2-WO3表面对NH2和NH吸附强度更高,说明WS2和WO3对ENRR中间体具有更强的结合强度。原位FTIR观测到更多的峰,5个正峰分别位于1148、1209、1504、1536和3452 cm-1,归属于归因于N-N伸缩振动、-NH2摆动振动、-H-N-H弯曲振动,-NH4+摆动振动,和-N-H弯曲振动 (图5c和S21)。上述结果表明,WS2-WO3的d波段中心上移可以有效增强对中间产物NH2和NH的吸附,这是WS2-WO3对ENRR具有优异电催化活性的原因。图5.(a)WS2、WO3和WS2-WO3分别用于活性W位点的PDOS。(b)WS2-WO3在0.1 M Li2SO4中,-0.4 V下的原位拉曼光谱。(c)WS2-WO3的原位FTIR。(d-f)WS2、WO3和WS2-WO3的pCOHP。(g)活性中间体的计算吸附能。(h)*NH和(i)*NH2中间体在WS2、WO3和WS2-WO3上的DOS。S20 原位拉曼光谱(a) WS2 and (b) WO3 at -0.4 V in 0.1 M Li2SO4.作者简介严乙铭,教授北京化工大学教授、博导,2008年-2010年,德国弗莱堡大学洪堡学者;期间,2009年瑞典隆德大学洪堡访问学者;2010年-2017年,北京理工大学引进人才、教授、博导,教育部新世纪优秀人才,任北京理工大学能源化工研究所所长、北京理工大学能源化工系主任;2015年入选国家高层次人才。主要从事电化学催化、电化学水处理以及新能源材料与技术的应用研究。已发表SCI论文100余篇,申请专利14项,授权6项。获得中国分析测试协会二等奖, 2012年度北京市科学技术一等奖,2015年国家自然科学二等奖。杨志宇,北京化工大学副教授。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为 930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.07.17

AEM:消除Mn 3d轨道简并,抑制J-T畸变制备稳定MnO2阴极

超级电容器(SCs)作为一种具有高功率密度和长循环寿命的储能器件,越来越受到研究人员的关注。阴极材料包括过渡金属基化合物、聚阴离子和普鲁士蓝类似物,是SCs能量输出的关键决定因素之一。其中,锰基氧化物因其高天然丰度、高理论容量与环境相容性而备受关注。然而,由于在连续循环过程中Mn4+的还原,[MnO6]八面体发生Jahn-Teller (J-T)畸变导致容量衰减,限制了它们在SCs中的应用。北京化工大学严乙铭教授,杨志宇副教授通过Mg2+离子在过渡金属(TM)层之间的限域来压缩[MnO6]八面体,以提高电化学稳定性。MnO2中压缩的[MnO6]构型避免了电化学过程中简并电子基态的形成,从而抑制了J-T畸变,有效提高了电化学可逆性。实验和理论结果都证实了简并基态的避免是由于Mn4+轨道简并性的消除。这种电子结构可以减轻J-T畸变,并进一步提高Na+存储过程中的循环稳定性。结果与讨论[Mn4+O6]八面体的特征是六个对称排列的氧化物配体的聚集。在Mn4+还原过程中,当双简并eg轨道单占据时,电子密度将遵循非立方分布,导致两个轴向Mn─O键的伸长和四个赤道向Mn─O键的收缩。如此结构变形会导致不良的晶内裂纹,并伴随着结构稳定性差和容量快速衰退。科研人员为了解决J-T畸变这个问题,常采用低价阳离子(如Li+、Ni2+、Al3+)取代锰基氧化物中的Mn原子,以增加Mn4+含量,从而减轻局部J-T畸变。此外,尖晶石相和异晶石相的阳离子无序构建也可用于减轻协同J - T畸变(CJTD)。然而,这些方法在可扩展性方面存在缺点。为了研究Mg2+限域对com-MnO2微观结构的影响,本文采用几何相分析(GPA)研究图1a、b中cub- MnO2和com-MnO2的应变分布。cub - MnO2具有大量的应变聚集区域并伴随可以忽略的应变强度。com-MnO2的应变强度远高于cub - MnO2,表明Mg2+限域导致com-MnO2晶格畸变严重。此外,Mg2+限域后,cub - MnO2中的规则晶格条纹(图1c)在com-MnO2中扭曲(图1d),进一步验证了com-MnO2的扭曲晶体结构。图1. GPA图a) cub-MnO2;b) com-MnO2;   HRTEM图c) cub-MnO2;d) com-MnO2拉曼光谱(图2e)阐明了[MnO6]八面体的具体变化。两个样品都有三个以481.1、573.6和624.5 cm−1为中心的峰。624.5 cm−1处的峰表现出明显的红移,而570.8 cm−1处的峰表现出较小的波数波动。这两个峰的变化表明在[MnO6]八面体中Mn─O键沿轴向收缩,这证实了在com-MnO2中压缩[MnO6]八面体的特征。此外,还使用DFT计算模拟了晶体结构,如图2f所示。结果表明,cub-MnO2在不同方向上的Mn─O键长相同,均为1.916 Å。而com-MnO2的平均Mn─O键长在轴向为1.829 Å,在其他赤道面为1.941 Å,与拉曼结果吻合较好。图2. XSP图(a,b);迁移能(c); cub-MnO2he com-MnO2拉曼光谱图(e)层结构com-MnO2具有提升的循环稳定性,其99.1%的容量保留率(图3f),优于cub-MnO2的64.1%,表明com-MnO2伴随压缩的[MnO6]增强了可逆Na+存储性能。图3. 电化学性能原位XRD和原位Raman证实了com-MnO2具有良好的循环可逆性和结构稳定性。图4. 原位测试XRD谱和拉曼光谱图DFT计算证实了能级分裂,Mn 3d轨道简并的消除。对于com-MnO2,由于Mn 3d轨道非简并,Mn4+还原过程中新接受的电子更倾向于占据能级相对较低的dx2-y2轨道,简并基态的消除避免了J-T畸变的发生(图5i),有助于提高钠的插入/提取的可逆性。图5. 能级分裂的计算与机理说明    本文设计并制造了一种具有压缩MnO6八面体构型的新型层状阴极com-MnO2。这种具有Mn3d轨道简并破碎特征的压缩晶体单元可以避免在循环过程中形成简并电子基态,从而减轻J-T畸变,提高电化学Na+存储的可逆性。com-MnO2阴极提供了434 F g−1的高电容和循环稳定性,在20,000次循环后容量保持率大大提高了99.1%。原位XRD和Raman均表明,在充放电过程中没有发生相变,保持良好的可逆性。原文链接: https://doi.org/10.1002/aenm.202302477 作者简介严乙铭,教授北京化工大学教授、博导,2008年-2010年,德国弗莱堡大学洪堡学者;期间,2009年瑞典隆德大学洪堡访问学者;2010年-2017年,北京理工大学引进人才、教授、博导,教育部新世纪优秀人才,任北京理工大学能源化工研究所所长、北京理工大学能源化工系主任;2015年入选国家高层次人才。主要从事电化学催化、电化学水处理以及新能源材料与技术的应用研究。已发表SCI论文100余篇,申请专利14项,授权6项。获得中国分析测试协会二等奖, 2012年度北京市科学技术一等奖,2015年国家自然科学二等奖。杨志宇,北京化工大学副教授。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为 930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.07.16

用户速递|华南理工周博教授团队:界面能量传递时空调控上转换发光

光子上转换动态调控为稀土掺杂上转换发光材料的光色输出提供了一种新的解决方案,在稀土发光材料应用基础研究方面具有重要意义。然而,目前具备动态调控上转换发光颜色的材料体系通常通过交叉弛豫等过程实现,由于上述光色转变过程中伴随着稀土离子的发光猝灭过程,会无可避免地抑制发光强度及量子效率。另一方面,虽然多层核壳结构纳米粒子也能实现光色动态调节,但是其复杂的结构设计、激发模式设计以及不同发光中心之间复杂的能量过程等问题增加了材料制备以及实际应用的难度。因此,如何实现单发光中心的高效上转换发光颜色动态调控是本领域面临的一项挑战。针对上述科学问题,华南理工大学发光材料与器件国家重点实验室周博教授团队提出了一种基于界面能量传递(IET)的概念模型,在时间和空间维度上实现了上转换发光动力学过程调控与光色动态调节。该工作以“Spatiotemporal control of photochromic upconversion through interfacial energy transfer”为题发表在著名期刊Nature Communications上。周博教授团队通过在NaErF4:Ho(0.5 mol%)@NaYbF4@NaYF4纳米结构中设计Yb亚晶格敏化层,可有效提高对激发能量的吸收和利用,进而增强上转换发光。进一步研究表明,在纳米尺度上精确调节Er和Yb亚晶格界面处的相互作用,可精确调节Er3+→Yb3+反向能量传递,进一步提升发光强度和量子效率。与NaErF4@NaYF4纳米粒子对照样相比,调控后的样品发光强度、量子效率均大幅提升。此外,研究也发现微量掺杂Ho3+对调节Er3+红光动力学过程具有促进作用,Er和Yb亚晶格的界面能量传递可改变Er3+发光能级布居速率。因此通过提高激发功率密度或减小激发脉宽,实现了发光颜色的动态转变(红→绿);而且,由于Er3+红光能级寿命较长,短脉宽激发下样品发光颜色也随时间发生变化(绿→红)。上述多模式响应的发光性质在光学信息防伪识别、速度探测等方面展现了重大应用潜力。本项研究为稀土上转换发光材料的多功能设计和光色动态调控提供了新的思路。图1. 基于界面能量传递的发光模型设计。a,b)常规低浓度掺杂与发光基质;c)基于界面能量传递(IET)的核壳结构设计;d)NaErF4:Ho(0.5 mol%)@NaYbF4@NaYF4核-壳-壳纳米粒子及能量过程示意图。图2. 样品形貌及光谱表征。a,b)样品的TEM图及元素分布;c,d)变Yb浓度样品的上转换光谱及不同波长激发的发射强度变化;e)功率-强度双对数曲线斜率;f)不同敏化层厚度样品的上转换光谱。图3. 纳米空间调控上转换发光。a)不同Yb3+掺杂浓度样品的上转换发光及吸收变化;b)吸收光谱;c,d)不同NaYF4夹层厚度样品的上转换光谱及强度比较;e)与常规纳米粒子的对比;f)能量传递速率与离子距离的关系。图4. 时域调控上转换发光:a,b)不同脉宽激发下的绿-红比变化关系与色度坐标(插图为样品的发光照片);c)不同脉宽激发下的归一化光谱;d)Er3+发光强度随激发时间的变化:e)非稳态激发上转换发光颜色变化的机理示意图;f)时间分辨光谱及红绿比变化趋势。图5. 前沿应用。a)发光颜色多模调制;b)高泵浦功率或短脉冲激发解码图案信息;c)多维光信号的快速识别。d,e)速度监测示意图及结果;f-h)光谱结果分析及灵敏度变化。文章链接:https://doi.org/10.1038/s41467-024-46228-5配置推荐本文中上转换发射光谱测试使用卓立汉光公司的OmniFluo990稳态瞬态荧光光谱仪完成。OmniFluo990为模块化搭建结构,通过搭配不同的光源、检测器和各类附件,为紫外/可见/近红外发光测试提供综合解决方案,也为稀土上转换材料的光色调控研究提供有利工具。免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.07.10

精彩推送|关于光学平台小课堂,7月11日邀您相见直播间!

随着科研需求的发展,光电分析仪器相关的新技术和新应用也在不断地深入拓展中,尤其是在仪器功能多样化、全自动化、数据处理以及其他功能性拓展方面表现得越来越明显,光电分析仪器在材料科学、生物医学、食药环侦等热门领域的应用越为广阔。直播预约7月11日下午14:00—15:00,北京卓立汉光仪器有限公司科研光机事业部负责人——李程浩为大家介绍光学平台。直播期间更有丰富好礼相送,欢迎届时参加!主要内容简述振动的来源、隔振的必要性、振动传递效率及隔振主要性能指标产品推荐讲师介绍李程浩[ 卓立汉光科研光机事业部负责人]毕业于黄山学院光电信息科学与工程,目前任职于北京卓立汉光仪器有限公司科研光机事业部负责人。主要负责方向:光学平台产品线。有5年从业经历,推动了多款产品的优化升级,同研发部门一起优化改进了三线摆气浮隔振平台、单双频阻尼隔振平台、实验室用仪器支架等光学平台产线。直播福利1.凡在线观看直播的观众,均可以参加“直播互动抽奖”活动!名额多多,奖励丰厚,欢迎大家踊跃报名。2.免费入群交流,获取行业新动态。温馨提醒:请备注“姓名+单位+光电课堂“添加客服希望通过光电课堂,我们可以共同探讨光电知识,7月11日下午14:00,我们不见不散!产品推荐//光学精密机械光学元件&调整架光学平台电动滑台手动滑台纳米压电位移台*卓立汉光已开通线上卓立商城,运动控制、光机械件、光学平台和光学元件等产品可以在线选购、一键下单。

企业动态

2024.07.10

AEM:高储钠性能超级电容器研究分享

北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s−1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag−1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线; h)电流贡献值; i)三次充放电过程中原位拉曼光谱图图3  a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s−1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc 在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。

应用实例

2024.07.08

< 1 2 3 ••• 11 > 前往 GO

北京卓立汉光仪器有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京卓立汉光仪器有限公司

公司地址: 北京市中关村科技园区通州园金桥产业基地环科中路16号,联东U谷中试区68号B座 联系人: 市场部 邮编: 101102 联系电话: 400-628-5299

仪器信息网APP

展位手机站