贾伟 沃特世科技(上海)有限公司实验中心 液质数据中,不但含有蛋白药序列表达是否正确的肽图信息,其它杂质蛋白同样可以被挖掘出来。然而,单纯的杂质蛋白鉴定却又是不够远远的,其确切的含量信息同样至关重要。沃特世PLGS软件可以在肽图液质数据中,进一步鉴定其中的杂质蛋白,并其相对含量信息进行分析。 一、“顺便”完成的杂质蛋白鉴定与相对定量 使用相应的开放数据库,PLGS软件首先根据液质数据中的离子碎片信息对多肽进行鉴定,进而组装出样品中的所有蛋白,完成蛋白鉴定步骤。在蛋白相对含量测定中,PLGS软件充分利用了MSE全信息串联质谱方法的数据优点。较DDA方法,MSE数据的离子色谱峰近乎“完美”,更加符合实际多肽色谱峰型。通过全面研究发现,MSE数据中的多肽色谱峰强度信息,与蛋白浓度相关性非常好。使用每个蛋白鉴定多肽中,强度前三的多肽峰强度加和值,即表征其蛋白浓度。因此,使用PLGS分析同一个肽图液质数据,便可“顺便”完成杂质蛋白的鉴定与相对定量工作。 二、蛋白绝对含量测定 如果想得到样品中准确的蛋白绝对浓度信息,也非常简单。只需在样品中加入一个已知的蛋白内标便可。这时Hi3分析方法会根据内标蛋白的浓度,按照以下公式,对样品中的绝对浓度进行定量[1,2]。 三、使用Hi3方法分析残留宿主细胞蛋白(HCP) 融合抗体anti-phosphotyrosine IgG 1 (PTG1 mAb)使用中国仓鼠卵巢细胞系DG-44 CHO在两种培养条件下表达,表达后的PTG1 mAb再分别使用A、B两种方法纯化。经过2D-UPLC MSE方法采集液质数据后,使用PLGS软件分析[3]。在分析结果中,可以明确地给出鉴定到样品中含有的杂质蛋白,以及给出这些杂质蛋白的相对含量结果(图1)。为了验证Hi3定量方法的可靠性,使用MRM方法对以上实验结果中Clusterin、Elongation factor 1-alpha、Glyceraldehyde 3-phosphate dehydrogenase三个蛋白进行了定量验证。通过Hi3与MRM两种定量方法结果对比,可以发现两者定量浓度非常接近(图2)。在使用PLGS进行样品中的杂质蛋白鉴定与定量分析中,检索方法设置与肽图分析几乎一致,只增加将参考蛋白的名称与浓度列入分析参数一步。之后,所有的分析过程都将由PLGS自行完成,并直接给出蛋白鉴定身份与浓度的结果列表。实际上PLGS不仅使用在生物药杂质蛋白分析中,在样品极为复杂的蛋白质组学研究中,Hi3方法已经被长期使用,并有众多高水平论文发表[4,5,6]。 图1. 杂质蛋白鉴定结果及其含量。 参考文献 (1) Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ.Absolute Quantification of Proteins by LCMS. Mol Cell Proteomics.2006, 5, 144-156 (2) Silva JC, Denny R, Dorsc hel C, Gorenstein MV, Li GZ,Richardson K, Wall D, Geromanos SJ. Simultaneous Qualitative and Quantitative Analysis of the Esc heric hia coli Proteome. Mol Cell Proteomics. 2006, 5, 589-607. (3) Catalin Doneanu, Keit h Fadgen, St Jo hn Skilton, Mart ha Sta pel s, Weibin C hen. A generic 2D-UP LC/MS assay for the identification and quantification of host cell proteins in biopharmaceuticals. Waters application note 2011, 720004043en (4) Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AK. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol. 2009, 10, 636-646 (5) Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong ZG, Saugstad J, Simon RP, Geromanos S, Langridge J, Lan JQ, Zhou A. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal. 2010, 3, 111, ra15 (6) Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell. 2008, 15, 220-35.
标准
2012.04.23
贾伟 沃特世科技(上海)有限公司实验中心 糖基化蛋白质参与了几乎所有重要的生命过程,糖链的组成和结构对糖基化蛋白质的构象、功能以及与其它分子的相互作用都具有巨大的影响。许多蛋白类药物都是糖基化蛋白质,如免疫球蛋白IgG等。蛋白糖基化一级结构的研究内容包括:糖链的糖型结构、糖基化修饰的氨基酸位点、以及两者间的对应关系。这些信息都集中于糖肽结构中。沃特世的PLGS与BiopharmaLynxTM软件具有独特的糖肽鉴定功能,其主要分析流程如下。 1、建立Y1离子理论数据库:蛋白糖基化主要有N-与O-糖基化。N-糖基化是糖链与天冬氨酸(N)连接,O-糖基化是糖链与丝氨酸(S)或苏氨酸(T) 连接。在质谱的CID碎裂中,糖苷键较肽键更容易断裂。而在N-、O-糖基化中,第一个与氨基酸连接的都是N-乙酰氨基葡萄糖(GlcNAc)。因此在糖肽的碎片中,peptide-GlcNAc的离子信号稳定存在(及Y1离子)。PLGS与BiopharmaLynx进行糖肽搜索的第一步就是建立理论Y1离子数据库。 2、发现候选Y1离子信号:在数据库建立之后,根据质量准确度,对Y1离子质谱数据库进行搜索,从而发现候选Y1离子信号。 3、在候选Y1离子的相关碎片信息中,查找糖诊断离子。如果找到至少2个糖诊断离子,则确定其为糖肽,进而进行下一步处理。糖诊断离子来源于糖链中最常见的糖残基型的碎片,这里主要考虑7种糖诊断离子:204.0817、186.0817、168.0817、274.0187、292.0817、366.1012、657.1111。 4、搜索其它候选糖型信息及多肽序列鉴定。在Y1离子的质量检索匹配的基础上,搜索可能的糖单位差值数据,以发现Y1离子的各种糖型结构。之后再根据肽段的b、y离子碎片等信息进行肽段序列鉴定,以及糖基化位点确定。PLGS、BiopharmaLynx对糖肽的鉴定功能,为分析蛋白类药物复杂的糖型结构提供了非常简便的方式,已经成为糖蛋白药物分析中不可或缺的有力工具。 图1. 糖肽鉴定流程图。 图2. IgG糖肽EEQYNSTYR碎片分析图。 PLGS、BiopharmaLynx对糖肽的鉴定功能,为分析蛋白类药物复杂的糖型结构提供了非常简便的方式,已经成为糖蛋白药物分析中不可或缺的有力工具。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
标准
2012.04.17
独立来源的随时可用的标准品与试剂可以提高实验室的产能,降低浪费,增加分析结果的可信度 奥兰多,福罗里达州-2012年3月12日 - 沃特世公司(WAT:NYSE)今天启用了一条分析标准品和试剂的新生产线,目前它可以向科研实验室提供200多种预包装的标准品和试剂。沃特世分析标准品和试剂满足了实验室对提高工作量、支持全球化、刺激业务增长和加强合规性的需要。 沃特世公司将在美国科罗拉多州Golden新建成的工厂生产标准品和试剂。全球客户现在可以立即订购沃特世公司的分析标准品和试剂,从小分子、单一化合物标准品、到蛋白酶切和多糖标品,品种繁多。为满足客户需求,沃特世今后还将推出更多新品。 “对于认证的LC和LC/MS分析而言,标准品和试剂对获得理想的性能,以及符合法规十分重要。配置过程从纯净的起始材料开始,经过适当的混合,到稳定性分析和准确记录,”化学商业运营部高级总监Mike Yelle说。“我们调查了上百名科研人员并且发现,目前即使不是绝大多数,也有很多实验室从外部供应商购进化学原料,然后自己亲手配制标准品。说实话,实验室不想再干这些事情了。因为他们的工作不是配制标准品;而是进行化验,发现新成果。因此,我们将配制分析标准品和试剂作为我们的业务。” 分析标准品和试剂对正确校准、控制、量化和评估分析操作中使用的LC、SFC或LC/MS系统至关重要。而对于一家拥有全球实验室网的组织而言,保持分析与分析、仪器与仪器,以及实验室与实验室之间质量水平的一致性非常重要。而在数据的可比性和可防御性方面,在较长的一段时间内,完全可重复地配制标准品极为关键,因此沃特世公司按照严格的规范生产标准品和试剂。 沃特世标准品和试剂具有绝对的可追溯性,这是她标志性的特征。为了确保真实性,测定的属性必须通过明确与完整的可追溯链条,直接与标准品的来源相关联。 沃特世公司作为一个有资质的,可随时使用的标准品与试剂的单独来源的认证的供应商,它能帮助实验室: 将员工从繁琐和低效的手工操作中解放出来 让员工参与到更有价值的工作中 压缩库存控制/控制运营成本 降低损耗和对环境的影响 简化工作流程/降低运营成本/采用更加一致 更容易地评估分析测定的质量 通过消除标准品和试剂导致的错误,提高了对分析准确性和质量的信心 符合更严格的法规要求 缩短了分析结果的周转时间 沃特世公司为客户提供标准品与试剂的历史可以回溯到很多年前。沃特世公司对每个工序的所有权与控制权,促进了每批次、每月和每年生产的产品性能不变,从而可以确保目前开发出的分析方法在产品的有效期之内始终有效。 沃特世分析标准品和试剂的推出,使沃特世公司实现了它作为端对端系统解决方案供应商的承诺,它为分析测定提供了最佳的设备、信息、色谱柱,现在又为它提供了标准品和试剂。 实验室可以通过www.waters.com网上直接购买沃特世产品。 了解更多信息:www.waters.com/standards 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
新品
2012.04.17
NuGenesis 8可以100%减少实验室的抄写错误,缩短75%的数据审核时间,加快了产品的放行速度 奥兰多,福罗里达州 沃特世公司(WAT:NYSE)推出了具有实验室执行技术(LE)的NuGenesis® 8,它是一项全面数据管理和工作流程解决方案,可以更有效地把分析实验室数据系统连接到公司的业务信息技术系统。 沃特世公司系统营销高级主管Mary Ellen Goffredo说:“也许客户面临的最大信息挑战,就是做到分析数据与公司信息,以及公司业务决定之间的无缝连接”。“每台仪器都有一套软件,采集数据软件、办公应用软件、支持数据库、电子表格、文字处理文档,所有软件都是为了保证实验室有效运行。我们希望能权衡这些程序生成的数据,并且将其集成到公司业务层次的系统中。但是这么多的软件程度和连接点,使以科研为基础的组织不能随心所欲和有效地收集、处理、汇总和分布实验室数据。NuGenesis 8保证全球各大洲、跨国界、跨实验室间领导层能够消息畅通、标准化流程、执行最佳方法。这意味着更高的效率、更易执行和更加明智的业务决策。” NuGenesis 8的核心部分是其新开发的LE技术,它是一种可以通过常规标准操作规程指导实验室分析者的记录和工作流程解决方案。在其工作站中,为分析配备了电子表格,通过已设定的工作流程加强实验操作,确保完成每一步,并可验证所有的输入以符合既定标准。完成的任务通过审批并且自动和业务部门共享,就像LIMS和ERP一样。 除了特有的LE技术,NuGenesis 8还可以自动捕获和分类各种来源的信息,并且提供了一套信息管理工具,包括共享、重复使用和样本管理。使用NuGenesis 电子实验室记事本(ELN),可以跟踪、分配和管理样品、测试过程和结果。以用户为中心的设计围绕实验室管理者和分析人员,有助于管理人员寻求实验室工作量指标,分析人员在测试期间便于了解情况和测试过程的状态,从而达到高效运行实验室的目的。 目前全世界已经销售了数以万计的许可证,NuGenesis正在帮助全球知名的制药、化学、食品与饮料和环境公司深入了解自身面临的挑战,促使它们迅速做出决定,使其更快地实现最佳业务目标。 了解更多信息:www.waters.com/nugenesis8 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
新品
2012.04.17
UPC2技术架起了联接LC与GC的桥梁,为实验室解决复杂分析问题提供了一种新选择奥兰多,福罗里达州沃特世公司(WAT:NYSE)的新产品沃特世ACQUITY UPC2™(ACQUITY 超高效合相色谱)系统,今天在2012年分析化学和应用光谱学匹兹堡会议上荣膺最佳新产品,获得了颇具声誉的2012匹兹堡编辑金奖。ACQUITY UPC2系统运用了超高效合相色谱(UPC2)的原理扩展了反相液相色谱法(LC)和气相色谱法(GC)分离的界限,提供了一种能够补充正相色谱的选择。沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。沃特世公司总裁Art Caputo致辞说:“我们谨代表沃特世公司遍布全世界的所有员工,最诚挚地感谢匹兹堡大会的编辑们对全新ACQUITY UPC2系统,及其为分离科学带来的新范畴的认可。”“自从61年前成立以来,匹兹堡大会就已经跻身于重要年会的行列,科研人员借此之际了解能够帮助他们加快研发速度、揭示全新真相,以及进一步推动科学发展的最新实验室科技发展。2004年匹兹堡大会的编辑们授予了ACQUITY UltraPerformance LC®(UPLC®)最佳金奖。从此之后,全世界数以千计的知名实验室采用了ACQUITY UPLC系统,从而改变了色谱分析的模式和影响。我们坚信,ACQUITY超高效合相色谱在LC和GC技术之间架起了一座桥梁,因此她具备同样的潜质——很显然,知名的科学编辑们也同意这一点。”控制压缩的CO2拓宽了分离的选择压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。配以业界领先的亚2微米颗粒色谱柱,沃特世的ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、系统压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留——这些化合物以任何其他方法分离通常都是困难的。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。ACQUITY UPC2系统是沃特世公司高品质产品设计与研发经验悠久历史的结晶,它体现了沃特世品牌的耐用性、可靠性和易用性。它的主要特点包括: 10微升的固定进样环可实现所载样品进行体积为0.5微升至10微升的部分进样,消除了更换进样环的需求。 减少了系统容积,可以缩短运行时间、优化梯度性能、减小带宽,使用更小粒径的色谱柱。 助溶剂和色谱柱切换功能,可以快速地筛选溶剂和色谱柱,提高了方法开发的灵活性。 梯度的准确性与精确性保证了保留时间的重现性。 改善了光学检测和MS的兼容性,可以进行定量和定性分析。 由于其具有溶剂载量少、分离度高、峰形窄、分离速度快等特点,因此也可以作为MS的完美接口。无论您需要对天然产物、传统药物、药品、食品添加剂或污染物、杀虫剂、表面活性剂、聚合添加剂、脂质或生物燃料进行分析,沃特世ACQUITY UPC2系统都能呈现给您无与伦比的分离性能和峰形。与所有以ACQUITY为基础的产品一样,ACQUITY UPC2系统将沃特世在化学行业领先的信息软件以及专家支持方面最大化的优势。目前,ACQUITY UPC2系统已经与LC和GC并驾齐驱,成为实验室应对极其困难分离问题的有力武器。了解更多信息:www.waters.com/upc2关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
新品
2012.04.13
在匹兹堡会议上,沃特世公司的超高效合相色谱成为分离科学的新类别 UPC2和新认证标准品与试剂,以及全面的数据管理/实验室执行技术 奥兰多,福罗里达州 2012年匹兹堡会议上,沃特世公司(WAT:NYSE)以几个重要的新技术和新创新,拉开了业界最重要的年度新产品发布会及展览会的序幕。 沃特世 ACQUITY UPC2™系统是沃特世公司的领先技术,成为分离科学仪器的一个新的类别,为实验室攻克分析挑战带来了前所未有的机遇。 沃特世公司还推出了具备实验室执行(LE)技术的NuGenesis® 8,这是一个全面的数据管理和工作流程解决方案,能更有效地把分析实验室数据系统和公司业务信息技术系统连接在一起。 此外,沃特世公司还推出了一个分析标准品和试剂的新生产线,最初的套件包含了科学实验室需要的200多种的预置参比物和试剂。产品的推出反映了客户的需求,能够提高客户解决问题能力,提高效率,增加认证数据的质量。 “这是沃特世公司第53次参加匹兹堡会议,这是沃特世公司和我们整个行业今年的一件大事。就创新的规模、与客户的互动性,没有任何一个会议能够和匹兹堡会议相提并论,她培养了新一代的分析化学科学家。”沃特世公司总裁Art Caputo说“沃特世公司的UPC2, NuGenesis 8、及分析标准品和试剂新产品线的推出,也会使今年的匹兹堡会议成为我们最激动人心的一次。” 沃特世推出业内首款超高效合相色谱系统 沃特世公司今天推出沃特世ACQUITY UPC2系统,该系统扩展了反相液相色谱LC和气相色谱GC的分离范围,为正相色谱应用提供了一种补充,开创了分离科学的一个新类别。运用超高效合相色谱(UPC2)概念,沃特世的ACQUITY UPC2系统成为一种新型的分析系统,为科研人员解决疏水性和手性化合物、脂类、热不稳定的样品和聚合物等难分析化合物提供了一种不可或缺的工具。 沃特世公司UPC2项目总监Harbaksh Sidhu说“ACQUITY UPC2经受了每一个挑战。我们把胺、维生素的同分异构体、类固醇、抗菌剂等18种化合物混合在一起,得到的结果令人震惊。我们看到重复、狭窄、一致的峰宽,基线噪音极低,这些都在梯度模式下运行的。小粒径色谱柱减少了系统体积,这个整体设计增加了之前使用压缩二氧化碳时没有见过的优势。作为采用该技术工作18年多的人员,我之前从来没看到过这么高水平的分析性能。” 压缩二氧化碳是UPC2的主要流动相,比过去液相色谱的液体流动相和气相色谱的载气有很多突出优势。一方面,二氧化碳单独使用或与其他助溶剂混合,都是低粘度的流动相,和液相色谱的液体相比,能够获得较高的扩散率,并有利于传质。另一方面,和气相色谱相比,二氧化碳是一种可以在较低温度进行分离的流动相。 科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。 配以业界领先的亚2微米颗粒色谱柱,沃特世ACQUITY UPC2系统使得科学家能够更加精确地改变流动相的强度、压力和温度。从而调整出系统的分离度和选择性,科学家分离、检测和定量结构类似物、异构体、对映体和非对映异构体混合物时,能够更好的控制分析物的保留——这些化合物以任何一种方法分离都是一种挑战。沃特世的ACQUITY UPC2系统一个主要优势就是使用廉价、无毒的压缩二氧化碳作为主要流动相,代替了购买和处理昂贵的有毒、挥发性的有机溶剂。 了解更多信息:www.waters.com/upc2 分析标准品和试剂的新业务 经过多年为其高效液相色谱和液质系统定制校准品和参比物之后,沃特世公司引入了一条分析标准品和试剂的新生产线,并于今年1月在Golden, Colorado投产。使用这些设备,沃特世目前向全球客户群提供超过200种的预包装、预测定,随时可用的标准品和试剂。 “通过调查,我们知道,90%进行LC或LC/MS分析的科学家每天都在使用标准品和试剂。科学家们从开始在众多供应商处购买材料,然后到制定自己的标准品、缓冲液和试剂,所花费的时间是惊人的,”化学商业运营部高级总监Mike Yelle说。到目前为止,还没有一家独立来源供应商能够专门为LC和LC/MS系统提供预制备、经认证的标准品和试剂。沃特世希望成为这样一个独立来源供应商。” 现在科学家们只需从沃特世就可以订购需要的一切,从预配置、小分子、单一化合物标准品、多化合物混标、到蛋白酶切和多糖标品,品种繁多。为满足客户需求,沃特世今后还将推出更多新品。 客户使用沃特世分析标准品和试剂,就意味着首先通过文档可追溯的完整链条,获得绝对可追溯性的原始资料信息,使实验室的管理人员及核数师可以评估化学测量的质量。其次,沃特世的分析标准品和试剂每一次都是精确的配方,这就大大降低了每次分析,仪器之间,实验室之间变异的来源。 沃特世产品的分析标准品和试剂配件包体现了沃特世公司提供全面系统解决方案的承诺,最大化发挥了沃特世技术的价值。 了解更多信息:www.waters.com/standards 连接科学研究和业务的实验室管理技术 沃特世公司还推出了具备实验室执行(LE)技术的NuGenesis 8,这是一个全面的数据管理和工作流程解决方案,能更有效地把分析实验室数据系统和公司业务信息技术系统连接在一起。 沃特世公司系统营销高级主管Mary Ellen Goffredo说“也许客户面临的最大信息挑战来自于太多的软件产品。”“每台仪器都有一套软件,采集数据软件、办公应用软件、支持数据库、电子表格、文字处理文档,所有软件都是为了保证实验室有效运行。面对如此多的软件,管理层缺乏自如有效地收集、运行、巩固和分发实验室数据的能力。NuGenesis 8保证全球各大洲、跨国界、跨实验室间领导层能够消息畅通、标准化流程、执行最佳方法。这意味着更高的效率、更易执行和更加明智的业务决策。” NuGenesis 8的核心部分是其新开发的LE技术,它是一种可以通过常规标准操作规程指导实验室分析者的记录和工作流程解决方案。在其工作站中,为分析配备了电子表格,通过已设定的工作流程加强实验操作,确保完成每一步任务,并可验证所有的输入以符合既定标准。所采集的信息可以和QC部门、业务部门共享,就像LIMS和ERP一样。 除了LE技术,NuGenesis 8还提供了一套信息管理技术功能,包括样品管理。使用NuGenesis 电子实验室记事本(ELN),可以跟踪、分配和管理样品、测试过程和结果。以用户为中心的设计围绕实验室管理者和分析人员,有助于管理人员寻求实验室工作量指标,分析人员在测试期间便于了解情况和测试过程的状态,从而达到高效运行实验室的目的。 了解更多信息:www.waters.com/nugenesis8 第一次参加匹兹堡会议的沃特世公司其他产品 以下产品也将在奥兰多的匹兹堡会议上亮相: MV-10 ASFE 系统 - 首款超临界流体萃取(SFE)系统,可以通过半自动的方式,以超临界CO2作为主要萃取溶剂,最多从10个萃取容器中提取样品。 BEH125 SEC色谱柱 - 新型UPLC® SEC色谱柱,作为目前分子量为10,000至450,000之间的生物分子使用的ACQUITY UPLC BEH200, SEC 1.7mm系列产品的补充。与传统采用4mm或更大粒径SEC的HPLC分离相比,使用沃特世SEC色谱柱可以缩短时间,改善成份的分离度。 TruView LCMS认证样品瓶 - TruView™ LC/MS认证样品瓶为科研人员分析低浓度的分析物,这些分析物会因为被吸附而损失,他们需要使用干净的样品瓶来获得MS分析结果。与目前使用的标准样品瓶不同,TruView是唯一经过测试并认证的样品瓶,测试的吸附水平为1ng/mL。 eXtended Performance [XP] 2.5mm 色谱柱 - XBridge™ 、 XSelect™ eXtended Performance [XP] 2.5mm色谱柱是高效、低反压的HPLC色谱柱,可以在所有HPLC、UHPLC和UPLC技术平台上方便使用。XP 2.5mm色谱柱填补了HPLC和UPLC之间的空白,它与表面多孔型HPLC色谱柱相比,可以提供平衡的反压和优越的性能。XP 2.5mm色谱柱提供了无与伦比的分离性,具有3种完全可伸缩的颗粒物质(高强度硅胶颗粒、亚乙基桥杂化颗粒、带电表面杂化颗粒),14种化学构成(C18, Phenyl-Hexyl, C8, Shield RP18, HILIC, Amide, Fluoro-Phenyl, Cyano和PFP),以及180余种色谱柱配置。 SQ Detector 2 - SQ Detector 2是ACQUITY UPLC, UPC2, HPLC,GC,以及制备HPLC和SFC使用的质谱检测器。我们的Engineered Simplicity™(工程精简)设计,确保了在无需过多培训的前提下,每种分析物都能够生成高质量的数据。 Xevo TQD - Xevo® TQD是定量UPLC/MS/MS中使用的串联四极杆质谱仪。Xevo TQD采用了通用的离子源结构,在确保独立性的同时,构建适应于各种样品类型变化的灵活平台。 SYNAPT G2-S - SYNAPT® G2-S保证科研人员能够从最难以分析的样品中得到最高质量的信息。您可以开展其它方法不可能的科学探索。超越传统质谱分析法的束缚,开创出高效离子淌度分离的另一个天地。 科学讲座 每年与者都会有一个大型见面会,沃特世今年提供了18场研讨会和培训会,涵盖多种重要议题。包括:UPLC理论与实践,HPLC到UPLC方法转变,固相萃取原理,FDA认证,和基本故障排除。沃特世报告和研讨会日程请登录www.waters.com/pittcon. 您可以到沃特世展台#2267,了解更多沃特世产品介绍和沃特世在2012年匹兹堡会议期间的培训班日程安排。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters, UPC2, UltraPerformance Convergence Chromatography, ACQUITY, NuGenesis, UPLC, TruView, XSelect, XBridge, Synapt, Xevo 和 Engineered Simplicity是沃特世公司的商标。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
新品
2012.04.13
沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters®)公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案——Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column; 2.1x100 mm,1.7μm 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚C 检测波长: 215nm 进样量: 5μL 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column; 2.1x100 mm,1.7μm 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚C 进样量: 2μL 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1μg/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
标准
2012.04.10
使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量 目的 使用沃特世(Waters®)ACQUITY UPC2™系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。 背景 目前,美国药典(USP)规定了含有氨苯砜(4,4’-二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µm的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。 对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。 解决方案 使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。 SFC方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µm 柱温: 45 °C 流动相: 85% CO2:15% MeOH 流速: 3.0 mL/min, 背压: 130 bar/1885 psi 检测器: UV /PDA,254 nm 药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。 总结 使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。 联系方式: 叶晓晨 沃特世科技(上海)有限公司市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
标准
2012.04.10
目的 采用沃特世(Waters®)ACQUITY UPC2™系统比较正相HPLC和UPC2™方法分离联二苯酚对映体的效果。 背景 生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。 在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。 解决方案 联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。 图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。 UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。 总结 ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
标准
2012.03.28
目的 使用沃特世(Waters®)ACQUITY UPC2™系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography™,UPC2™)方法,用于四种氯菊酯异构体的基线分离。 背景 公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。 氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。 与HPLC方法相比,UPC2™实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。 解决方案 人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991; 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß-环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010; 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004; 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。 图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。 总结 利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
标准
2012.03.28
沃特世超高效合相色谱(UltraPerformance Convergence Chromatography)再次重新定义色谱分离科学 UPC2技术使用压缩CO2,搭建了LC和GC技术之间桥梁,为实验室应对难分离的和复杂化合物分析提供了新选择。 即时发布 佛罗里达州奥兰多市—2012年3月12日——今天,伴随着Waters® ACQUITY UPC2™系统的上市,沃特世公司(WAT:NYSE)再次重新定义了色谱分离科学。该技术拓展了反相色谱(LC)技术和气相色谱(GC)技术的局限,能完全替代正相色谱技术。沃特世新型ACQUITY UPC2™系统采用超高效合相色谱(UltraPerformance Convergence Chromatography™,简称UPC2)原理,为分析实验室解决不同类型的分析难题包括如疏水化合物、手性化合物、脂类、热不稳定样品以及聚合物等提供了强有力的不可缺少的工具。 “不管我们给ACQUITY UPC2出什么难题,它都解决了。我们尝试分析一个极具挑战性的样品,该样品包含18种化合物,有胺类、维生素异构体、甾体和抗菌剂”,沃特世UPC2项目总监Harbaksh Sidhu说。“分析结果令人震惊:在一个梯度条件下,不仅基线噪音极低,而且重复性好、峰形窄、峰宽一致。整体设计的UPC2系统(系统体积小、色谱柱颗粒小)为分析实验室开辟了全新的领域。我已经在色谱领域干了18年,从来没有见过这么高的分离性能,这在以前的压缩CO2系统上是不可能实现的。” 调控压缩CO2,拓宽分离技术的应用 压缩二氧化碳(CO2)是UPC2的主要流动相,它比LC所使用的液体流动相以及GC所使用的载气有更多突出的优点。其中一个优点是,CO2单独使用或与少量共溶剂共同使用作为流动相,流体粘度小,比HPLC中所使用的液体流动相扩散率更高、更有利于传质。另一个优点是,与GC相比,CO2单独作流动相可在更低的温度下实现分离。 科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。 沃特世ACQUITY UPC2系统,加上行业领先的亚2µm色谱柱,科学家们能够精确地调节流动相强度、压力和温度获得所需要的系统分辨率和选择性,对待测物的保留和分离进行有效调控。这非常适合结构类似物、异构体以及对映体和非对映体的分离、检测和定量——而这类分析任务是其它方法不能或很难实现的。沃特世ACQUITY UPC2系统的一个重要优点是它以成本低且无毒的压缩CO2为主要流动相,将挥发性有毒溶剂的使用和废液处理降到最低水平,极大地节省了成本,同时保护了环境和实验人员健康。 ACQUITY UPC2系统是沃特世长期以来设计和开发的高品质分析仪器产品之一,它也同样带有沃特世的品牌特性:耐用、可靠并且容易使用。这套系统有以下重要特征: 10µL固定进样环,进样体积范围0.5µL~10µL,节省样品且不需更换进样环。 系统体积小,有利于缩短运行时间,优化梯度性能,减少谱带展宽,最大程度发挥小粒径色谱柱的性能。 共溶剂选择和柱切换技术,流动相和色谱柱筛选过程更加快捷,方法开发更方便。 梯度准确性和精密性保证了保留时间的重现性。 同时兼容光学检测器和MS检测器,是定性和定量分析的理想选择。 沃特世ACQUITY UPC2系统溶剂加载量小、超高分离度、窄峰以及快速分离,因此是接入MS的最佳选择。 无论是分析天然产物、中药、药品、食品添加剂或污染物,还是分析农药、表面活性剂、聚合物添加剂或者生物燃料等,沃特世ACQUITY UPC2系统都能实现无法比拟的分离与峰形效果。 像所有沃特世ACQUITY产品一样,沃特世ACQUITY UPC2系统的卓越性能也包括充分发挥了如新型的ACQUITY UPC2色谱柱以及行业领先的信息学软件和应用支持。 作为LC和GC强有力的互补技术,沃特世ACQUITY UPC2系统必将成为色谱分离科学领域的重要成员,帮助众多实验室迎接越来越多的挑战。 更多信息见: http://www.waters.com/upc2 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com
新品
2012.03.14
贾伟、陈熙 沃特世科技(上海)有限公司实验中心 氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在“拳头”的结构中处于外表面,而较为干燥的手心表明它是“拳头”的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案——nanoACQUITY UPLC® HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。 氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC®系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT®质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。 沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。 参考文献 (1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870–7875 (2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61 (3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554 (4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933. (5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27 (6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214–217 (7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9;142(1):112-22. (8) Zhang J, Adrián FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506 (9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167 (10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820 (11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414 (12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40 (13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52. (14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132 (15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat Chem. 2011, 3, 172-177 (16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
标准
2012.03.13
王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC®系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7μm的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC®配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-μm填料的HPLC方法相比,使用1.7-μm填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50μl的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 μ l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400μl 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50μl标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200μl MiniQ纯水,再加入 200μl 90% ACN,重复 90% ACN 2.吸取 50μl 标记溶液,加入 450μl ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200μl,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200μl 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20μl50% ACN中,超声5 min 后转入UPLC采样瓶,进样5μl。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
标准
2012.03.13
贾伟 沃特世科技(上海)有限公司实验中心 PEG修饰蛋白及多肽类药物后,可在不产生毒性、不损害药效的情况下,通过增加蛋白类药物的溶解性、减少免疫原性、增加稳定性、延长体内药物半衰期等功效增强大分子药物的疗效。PEG的这种功效在1970年代后期被发现,到了1990年PEG化修饰的Adagen被美国FDA批准,至今已有若干个PEG修饰的大分子药物上市销售,这些药物在癌症、肝炎、痛风、糖尿病等疾病治疗中为患者带来了福音。 明确PEG修饰位点、确定修饰位点的数量、以及表征PEG的聚合度分布性是PEG化大分子药物运用于临床前以及药品质量监控必须且非常重要的工作。由于PEG的高分子聚合物性质,由PEG修饰后的蛋白及多肽的结构变得极为复杂。在早期对其进行质谱分析,特别是对PEG的聚合度分布性分析方面,多使用MALDI离子源类型的质谱。这是因为MALDI源离子化的样品,所带电荷数较少(单电荷离子居多),因此其质谱图相对简单;而通过ESI源离子化的样品将携带多个电荷,这使离子信号复杂,致使其质谱图谱较难解析。随着LC-ESI技术的发展, 美国Indiana大学的Lihua Huang等学者通过在色谱分析柱后加胺的技术,使样品的ESI离子化时的荷电数适当减少,从而使PEG化样品的ESI图谱得到高效的解析[1]。而MALDI TOF类质谱由于质谱分辨率的限制(目前MALDI TOF分辨率在8万内),面对分子量动辄十几万甚至更高的PEG化蛋白,其可获得的数据质量较差,因而MALDI方法可得到的PEG化蛋白的有效结构信息非常有限。 Lihua Huang等学者进一步开发了ESI Q-TOF分析PEG化蛋白的修饰位点的质谱方法[2]。这种方法包括源内裂解(ISF,In Source Fragmentation)与二级质谱(MS/MS)两个步骤。在第一步ISF过程中,PEG化多肽的PEG部分被裂解而变短;在第二步MS/MS过程中,多肽被打碎产生b、y离子碎片。通过分析携带缩短的PEG链的b、y离子信息,最终得出确切的PEG化修饰位点。ISF与MS/MS为什么可以分别 “选择”碎裂PEG化多肽的PEG与多肽两个部分呢?推测与PEG化多肽的电荷分布有关。在PEG化多肽的离子化过程中,PEG的醚键附着了大量的H+,并在ISF下完全断裂,而使冗长的P EG链缩短到一两个单位大小。之后的MS/MS过程中,由于缩短的PEG链已无H+附着不再断裂。而多肽在MS/MS中获得了碎裂的机会,并产生携带“PEG短标签”的b、y离子碎片。论文中,研究人员运用此方法成功地分析了IgG4与胰高血糖素的PEG修饰位点。 参考文献 (1) Huang L, Gough PC, Defelippis MR. Characterization of Poly(ethylene glycol) and PEGylated Products by LC/MS with Postcolumn Addition of Amines. Anal Chem. 2009, 81, 567-577. (2) Lu X, Gough PC, DeFelippis MR, Huang L. Elucidation of PEGylation site with a combined approach of in-source fragmentation and CID MS/MS. J Am Soc Mass Spectrom. 2010, 21, 810-818
标准
2012.03.05
全信息串联质谱——MSE简介 贾伟 沃特世科技(上海)有限公司实验中心 未知物的(一级)母离子与(二级)碎片离子数据是对其进行质谱分析所必须的信息。除了具备DDA串联质谱采集方法外,沃特世质谱更提供了独有的全信息串联质谱(MSE)技术。那么MSE技术是如何获得串联信息,并做到信息收集的最优化与最大化呢? 全信息串联质谱(MSE)能提供什么样的信息? 1. 未知分析物的定性与定量在同一次分析中完成。 2. 同时获得母离子及碎片离子的高分辨、高质量精确数据。 3. MSE普遍适用于各种未知物分析,而且方法设置非常简便。 4. 充分发挥UPLC-MS液质联用的卓越性能。 什么是全信息串联质谱(MSE)? 1. MSE是在一次液质分析中同时获得高精确的母离子及碎片离子信息的串联质谱方法。 2. MSE由“无碰撞能”与“高碰撞能”两种扫描交替构成,分别记录母离子及碎片信息。 3. MSE通过母离子与其碎片离子具有相同色谱行为的特性进行母-子离子的关联归属。 全信息串联质谱(MSE)有哪些特点? 1. 全面:所有的离子信息都被记录,定量、定性更加准确。 2. 精准:全部母离子与碎片离子信息都是高精度、高分辨的质谱数据。 3. 简单:方法设置仅需:质量范围、采集时间、碰撞能量三个参数。 4. 灵活:碰撞能量为线性升高的方式,因此不同分析物可在其最佳碰撞能下实现碎裂。 与常规的DDA串联质谱法比较,MSE的优点是什么? 数据依赖型串联质谱法(DDA. Data Dependent Acquisition)是通过选择特定母离子进入碰撞池,从而采集相应的碎片离子。而MSE并不选择特定母离子进行单独碎裂,而是同时采集了所有母离子的碎片离子。这样MSE就避免了由于DDA采集速率的限制而造成的信息采集不全的问题。此外,MSE这种匀速高频的数据采集模式,对每个离子都可以得到其“完美”色谱图,而用以精准定量。相较之下,DDA由于采集的偶然性问题,其色谱峰往往存在缺陷,而影响定量准确度。 为什么说MSE与UPLC是最佳搭档? UPLC®在色谱分辨率(选择性)、峰高(灵敏度)和运行时间(速度)方面都较HPLC有了质的飞越。但是UPLC短暂而修长的色谱峰也给质谱分析提出了更高的要求。一方面,MSE质谱方法巧妙地解决了DDA采集频率的限制问题;另一方面,UPLC也为MSE方法实现高准确的母子离子归属提供了坚实的基础。 MSE技术在生物制药分析、蛋白质组学、代谢物鉴定、代谢组学、脂质组学、杂质鉴定、法医毒理学、环境分析、食品检测、化学材料分析等不同的领域已经得到了广泛的应用。 参考文献 (1) Bateman, Carruthers, Hoyes, Jones, Langridge, Millar, Vissers; A novel precursor ion discovery method on a hybrid quadrupoleorthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation, J. Am. Soc. Mass Spectrom., 2002; 13, 792-803. (2) Silva, Denny, Dorschel, Gorenstein, Kass, Li, McKenna, Nold, Ric hardson, Young, Geromanos; Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005 Apr 1;77(7):2187-200. (3) Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 2010 Jul 2;9(7):3621-37. (4) C ha kra borty AB, Berger SJ, Gebler JC. Use of an integrated MS-multiplexed MS/MS data acquisition strategy for highcoverage peptide mapping studies. Rapid Commun. Mass Spectrom. 2007;21(5):730-44. (5) Tiller PR, Yu S, Castro-Perez J, Fillgrove KL, Baillie TA. Hight hroughput, accurate mass liquid c hromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’approach for metabolite identification studies. Rapid Commun. Mass Spectrom. 2008 Apr;22(7):1053-61. (6) Simplified approac hes to impurity identification using accurate mass UPLC/MS; Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720 03850en.pdf (7) T he utility of MSE for toxicological screening; Waters Technology Brief, http://www.waters.com/webassets/cms/library/docs/toxicology_brief_8_2010.pdf (8) A case of pesticide poisoning: T he use of a broad-scope Tof screening approach in wildlife protection; Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720003470en.pdf (9) Addressing c hemical diversity and expanding analytical capabilities with APGC; Waters White Paper, http://www.waters.com/webassets/cms/library/docs/72003292en.pdf (10) McEwen, McKay; A combination atmospheric pressure LC/MS:GC/MS ion source: Advantages of dual AP-LC/MS:GC/MS instrumentation, J. Am. Soc. Mass Spectrom., 2007; 16, 1730-1738.
新品
2012.03.05
评估UPLC/UV分析中的交叉污染 目的 为证实ACQUITY UPLC® I-Class系统对于多种样品(包括极高浓度的样品)均具有低交叉污染性能。 背景 当需要在同一次色谱分离中同时定量高浓度及低浓度的组分时所面临的最大的挑战是需解决样品残留问题。通常,为观察低含量的与主要分析物相关的杂质,必须注射高浓度的样品。为对分析物中的杂质进行精确分析,必须解决好分析物的样品残留问题,以使得不会因为低估存在于样品中的杂质的量,从而影响杂质计算值。在进行杂质分析时,样品浓度需达很高,且解决途径可能颇具挑战性。应注意稀释液、流动相、以及清洗溶剂的组分,以使样品残留量较低。系统设计在解决样品残留问题上也具有重要作用。通常,样品导入分析系统的方式越简单,则越容易解决样品残留问题,特别是当采用注射方法导入多种疏水性及极性差异较大的化合物时。 ACQUITY UPLC I-Class系统可以轻松解决颇具挑战性的某些相关化合物分析时的交叉污染问题。 解决方案 ACQUITY UPLC I-Class系统在设计上可实现低交叉污染,因而在用于分析多种相关化合物时具有极佳性能。Sample Manager的流通针式进样(FTN)设计可带来优化的高精度注射,并获得极佳的样品回收率。在等度运行期间使用梯度溶液清洗针头的内部,且在色谱运行期间清洗针头外部。 这样就很好地解决了样品残留问题,并且不会使总注射循环时间增加。为证实使用ACQUITY UPLC I-Class系统可很容易解决样品残留问题,选择性质差异较大的三种不同化合物。氯已定较粘稠,且通常非常难以完全自进样器去除。邻苯二甲酸二辛酯是疏水性极强的一种化合物,且需要高浓度的乙腈来使它从色谱柱上洗脱。咖啡因是亲水性物质,且通常不难以从进样器上去除,因而使其成为极佳的探针化合物,用以确定没有样品仍残留于该系统中。按UV响应为1.5 AU ± 0.1 AU的浓度注射各化合物,并测定在随后的空白注射中的样品残留量。如图1所示,对所有 这些化合物,均未检测到可测得的样品残留量。为确定每种化合物的样品残留量,制备高浓度的样品(20x至40x浓缩),并注射至ACQUITY UPLC I-Class FTN。测定每种化合物在首次空白注射中的样品残留量,得知这三种性质差异较大的分析物的样品残留量均少于0.001%。 小结 解决多种分析物的样品残留问题的能力是一个分析系统的重要性能。不论分析物的性质为何,ACQUITY UPLC I-Class系统的设计均可产生极低的交叉污染。Sample Manager的FTN注射平台的设计简单、灵活,因而可简单直观地对方法进行优化;因而可满足挑战较大的应用的要求, 例如分析低浓度相关化合物。 联系人: 张林海 沃特世公司市场部 86(21) 61562642 lin_hai__zhang@waters.com 周瑞琳(Grace Chow) 泰信策略(PMC) 020-83569288 grace.chow@pmc.com.cn
标准
2012.02.20
ACQUITY UPLC I-Class系统:优化的系统扩散性,优化的UPLC性能 目的 为证实ACQUITY UPLC® I-Class系统可使柱外谱带扩展达到最低,从而使进行高分离度及高通量UPLC®分离时的分离效果更佳。以下将通过杂质分析以及弹道梯度说明这些改善的重要性。 背景 已证实在多种应用中,采用填装亚2-_m颗粒的色谱柱能够改善色谱分离的峰容量以及分离度,从而大幅度提高分离度以及通量。 然而,为使一项指定分离所可能达到的分离度达到最大,需要使系统扩散性达到最小。属于进样器后系统流路的任何液体管路或连接均可导致柱外谱带展宽。包括进样阀、溶剂预热装置、连接管路、配件、及光学流通池。许多供应商已尝试改善UHPLC系统的扩散性,但收效甚微。虽然 可减小扩散性,但仍无法达到最佳从而可获得窄孔UPLC色谱柱(内径2.1 mm)的全部优点。这些色谱柱要求较低的流速,这使得分析每份样品时的投资回报率更高,从而可在足够的分离度下进行高效分离. 解决方案 ACQUITY UPLC I-Class系统可减小柱外谱带分布。新设计的UV检测器流通池的光学路径与先前的ACQUITY UPLC的光学路径相同,可获得同样高的灵敏度;另外,已重新设计流体管路以及连接,以使谱带扩散进一步减小。必须使用溶剂预热器以使可导致柱上分散效应的温度梯度减至最低。因此,溶剂预热器的体积应足够小,以确保使样品簇(sample plug)以最小的扩散度到达色谱柱头部,而且即使在高温及高流速下也可提供极佳的溶剂加热性能。根据您实验室的需求,可在两种样品管理器(Sample Manager)中选择一种来构成ACQUITYUPLC I-Class系统。不管是使用固定定量环式(SM-FL)还是流通针式(SM-FTN)进样器,均已通过采用小体积的针头端口、连接管路、及内部阀门通道使由进样器所导致的扩散性减至最低。通常,固定环式进样器的设计可使柱外谱带扩展程度更小,这是由于其减小了注射器流动路径的体积。通过对每一组件进行优化,已使柱外谱带扩展较之任一其他市售LC系统显著降低。表1总结了在使用多种系统(包括UHPLC系统)后所获得的谱带扩展数值。 ACQUITY UPLC家族在保持超高效分离的整体性方面的性能优于所有其他系统,其中ACQUITY UPLC H-Class系统的谱带扩展减少至9 _L,而ACQUITY UPLC I-Class系统则减少至低至5.5 _L。 降低的系统扩散性可直接导致ACQUITY UPLCI-Class系统的分离度增加。分离可以达到弹道梯度,同时保持典型分析梯度中的分离度。图2说明对丁卡因进行杂质分析的结果。 采用ACQUITY UPLC I-Class系统及购自供应商B的UHPLC系统,在相同条件下进行分离,结果 ACQUITY UPLC I-Class的分离度显著更佳。供应商B的系统按其建议安装有光路长度为60 mm的流动池,结果发现其产生了明显的谱带扩展,以至于测不到肩峰。 小结 ACQUITY UPLC I-Class系统具有不可比拟的性能,可用于当今最具挑战性的分离任务。不管您的实验室需要增加分离时的分离度还是需要增加样品通量,它灵活的系统构造都可使得UPLC色谱柱上的柱外谱带扩展最低,从而获得最佳的分离性能。 联系人: 张林海 沃特世公司市场部 86(21) 61562642 lin_hai__zhang@waters.com 周瑞琳(Grace Chow) 泰信策略(PMC) 020-83569288 grace.chow@pmc.com.cn
标准
2012.02.20
沃特世公司UPLC技术以及HLB萃取小柱见于国家食品药品监督管理局近期发布化妆品中4-氨基联苯及其盐的检测方法 4-氨基联苯是芳香胺类化合物中典型的致癌物之一,可以经呼吸道、胃肠道、皮肤进入人体,它有刺激作用,对皮肤可引起接触性皮炎。2012年1月18日,为了规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品质量安全,由国家食品药品监督管理局发布了《关于印发化妆品中氢化可的松等禁用或限用物质检测方法的通知》[1](国食药监保化[2012]13号),其中也包括对化妆品中4-氨基联苯及其盐的检测方法[2]。 该方法使用液相色谱/串联质谱测定方法(内标法),用于检测化妆品中4-氨基联苯及其盐,检测限为1.0ug/kg,定量限为3.3ug/kg。使用UPLC®技术,取样量仅要求0.2g,样品制备后定容至2mL,取2uL进样,等度洗脱,可在2.5分钟内即完成一次进样分析。其中,对于洗面奶、沐浴液类化妆品,在样品处理过程中使用了HLB萃取小柱。 方法中所列举的相关产品规格: 萃取小柱:HLB,500mg/6mL 色谱柱:C18,1.7μm,100mm x 2.1 mm(内径) [1] 国家食品药品监督管理局网上通告 http://www.sfda.gov.cn/WS01/CL0846/68514.html [2] 同上,检测方法附件8
标准
2012.02.14
紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治卵巢癌和乳腺癌及NSCLC的一线和二线治疗。头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 USP对紫杉醇[1]以及紫杉醇注射液[2]的含量测定系统方法(系统方法参见色谱通则*): 流动相:水-乙腈 11:9(即 55:45),如需要时可适当调整比例。 洗脱:等度,1.5mL/min[1] 色谱柱:5um, 4.6[1] 或 4.0[2] mmID x 250mmL,L43(即:PFP,全氟苯基) 检测:UV227nm 要求:拖尾因子0.7-1.3范围内[1];紫杉醇峰的保留时间在6.0-10.0min范围内[2] *USP Chromatography 允许调整范围如下而仍具有法规依从性: - 色谱柱粒径可减小(但减小程度最多为50%) - 柱长度可调整±70% - 流速可调整±50% 使用沃特世最新产品XSelect™ HSS PFP色谱柱(3.5um, 4.6x150mm, PN186005862),流速1mL/min,可对混标得到如下分离效果,满足对紫杉醇定量分析的要求。沃特世公司也提供更多规格XSelect HSS PFP色谱柱以满足不同应用与需要。 适当调整流动相,如降低乙腈浓度至42%v/v,即可获得更完全可靠的紫杉醇分离度如下: 关于沃特世XSelect™ HSS PFP柱产品: 是目前市场上稳定性最好的、最具重现性的PFP(全氟苯基)柱 基于沃特世HSS(高强度硅胶)颗粒,有完全对等的ACQUITY UPLC亚二微米柱,可供未来无忧升级至UPLC技术平台 独特的PFP(全氟苯基)键合相对碱性化合物和平面状芳香族化合物具有独特选择性 (产品手册请见:http://www.waters.com/waters/library.htm?cid=511436&lid=134643659,欢迎垂询索取中文资料) [1] USP34, 3798, Assay of Paclitaxel Monograph. [2] USP34, 3799, Assay of Paclitaxel Injection Monograph.
百态
2012.02.06
紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治:卵巢癌和乳腺癌及NSCLC的一线和二线治疗;头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 中国药典对紫杉醇[1]以及紫杉醇注射液[2]规定了有关物质检测及含量测定方法。 有关物质检测方法要求使用C18柱,以水-乙腈进行梯度洗脱,检查三杉尖宁碱(杂质I)与7-表-10-去乙酰基紫杉醇(杂质II)等杂质。使用沃特世经典高纯硅胶色谱柱Symmetry C18(5um, 4.6x250mm, PN WAT054275)按药典方法可得如下谱图,充分满足紫杉醇峰与杂质II峰之间的分离度大于1.2的药典方法系统适应性要求: 对于实际样品检测杂质的效果图: 药典方法要求,维持初始流动相乙腈-水(40:60)不变,待紫杉醇主峰洗脱完毕后再进行梯度洗脱,时间较长,使用沃特世UPLC技术可以帮助提高通量效率并节约样品耗量及溶剂消耗量。 含量测定要求使用C18柱,以甲醇-水-乙腈(23:41:36)为流动相等度洗脱。使用同上Symmetry C18柱进行分离,得到谱图如下,充分满足紫杉醇峰与杂质I峰及杂质II峰的分离度均大于1.0的药典方法系统适应性要求。 药代研究参考:中国新药研究者也已经使用UPLC技术开展了对红豆杉属植物根须的代谢轮廓分析[3]以及对紫杉醇衍生物(NPD-103)和紫杉醇脂质体的药物动力学分析[4-5]。 关于沃特世Symmetry系列色谱柱产品: 1994年以来的制药行业内标杆产品,高纯度、高品控,全程依从cGMP生产规范! 质优价中,优惠后仅为三千,帮助您平衡对数据品质和对成本的双重要求! 具有最广泛的文献引用,多达百余个USP方法使用(可垂询),多达170多个应用的应用手册,即索即得 [1][2]中国药典2010版,二部,1007-1008页。 [3] 红豆杉属植物根须的UPLC-ESI-MS代谢轮廓分析。沃特世液相色谱质谱通讯,第47期,23-28页。 葛广波等。 [4] Determination of a novel paclitaxel derivative (NPD-103) in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatograr. 2009 May; 23(5): 510-5. Zhang SQ, et al. [5] Clinical pharmacokinetics of paclitaxel liposome with a new route of administration in human based on the analysis with ultra performance liquid chromatography. J Pharm Sci. 2010 Nov; 99(11): 4746-52. Wang X, et al.
标准
2012.02.06
即时发布 上海 - 2012年1月11日 2012年1月11日,由沃特世(Waters®)公司发起的“沃特世生物样品分析研讨会”在上海成功举办,来自上海地区生物分析领域的专家出席了此次会议。 当前,在分析血浆、尿液、这些复杂基质的生物样品时,面临的最大挑战就是基质效应,因此在进行LC/MS分析前如何选择最合适的前处理方法来消除“离子抑制或离子增强”作用成为科学家们最关心的问题。 沃特世公司深刻了解生物样品分析的需求、并在这方面一直处于业界领先地位,沃特世的生物分析系统解决方案可以帮助解决从样品前处理到液质联用分析方法开发的所有难题:Oasis®固相萃取技术和OstroTM磷脂去除板带来最快、最便捷、最干净的样品前处理方法,ACQUITY UPLC®带来最快速、最有效的分离效果和最高的灵敏度,Xevo® TQ-S将带来无可匹敌的灵敏度和您期望的多功能性。此次研讨会邀请到了来自沃特世公司美国总部的应用专家Jessalynn P. Wheaton作了“基质效应对生物样品分析的挑战”及“如何建立系统的生物样品分析方法”的报告,并且在实验室进行现场演示和分析,相信通过此次研讨会,与会专家们从前处理到方法开发都能找到适合自己的生物分析解决方案。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 ### 沃特世联系方式 Brian J. Murphy, 公司联系电话: +1 508-482-2614 brian_j_murphy@waters.com 联系人: 叶晓晨 电话:021-61562643 电子邮箱:xiao_chen_ye@waters.com
会展
2012.01.30
目的为证实在进行四个以上数量级进行定量时, LC/MS/MS的样品残留量可降低至可测得的水平以下。背景现今质谱仪的灵敏度已经能够实现跨五个数量级的检测,且柱上进样量的定量下限可低至阿克级。要使高性能质谱仪的灵敏度不断增加,也要求LC系统上的样品交叉污染达到最低,以优化分析性能。有关验证跨多个数量级的生物分析方法的规范通常要求最高浓度校准品的样品残留量不多于最低浓度校准品的20%。1因此,为使校准范围跨四个数量级,必须使样品残留量低至0.002%以下。若校准范围在四个数量级以上,则必须使交叉污染减少至更低的水平。通常,随着对柱上进样量交叉污染的要求不断严格,系统污染变得非常关键。LC系统及方法必须能够重复地将分析物自进样器、管道及色谱柱上去除,以使每次进样都没有交叉污染。在对奥美拉唑进行分析时,Xevo® TQ-S上的ACQUITY UPLC® I-Class系统可使样品残留量减少至0.0005%以下,且其线性定量范围跨度可达四个数量级以上。解决方案Xevo TQ-S是具有高灵敏度的用于LC/MS/MS分析的质谱仪。它需要一个能够解决交叉污染问题的UPLC® 入口,以与该仪器宽泛的线性动态范围相匹配。ACQUITY UPLC I-Class系统可选用两种样品管理器:固定定量环(SM-FL)或流通针式(SM-FTN)进样器,这两者在设计上均能实现良好的抗交叉污染性能。在分析奥美拉唑时,采用SM-FTN设计。该种类型的进样器,在分析过程中,以移动相(梯度)冲洗针头内部。在进样口,FTN采用单种溶剂清洗针头外部,且在设计上能够实现防止清洗溶液与样品或流动相接触。在密封面同时清洗针头以及密封垫可减少污染几率。清洗程序已编入本方法中,且可设置为在进样之前以及进样之后清洗。清洗溶剂的组成取决于样品,且其必须能够很容易地溶解分析物。对于pKa为8.8的奥美拉唑来说,可采用含有氢氧化铵的清洗溶剂来清洗注射器。此外,当将氢氧化铵用于流动相时,系统的交叉污染将更低。在碱性条件下,可使奥美拉唑的离子化效率进一步提高。为评估交叉污染,向色谱柱注射具最高浓度(10 ng/mL或10 pg)的标准品。如图1所示,在注射最高浓度标准品之后首次进行空白注射时,未观察到有交叉污染。基于校准曲线,确定样品残留量低于0.0005%,而这低于质谱的检测下限。如图2所示,在500 ag至10 pg范围内,采用1/x权重系数,可获得相关系数为0.99997的线性,这足以证实可在与Xevo TQ-S连用的ACQUITY UPLC I-Class系统上对奥美拉唑进行线性校准。小结ACQUITY UPLC I-Class系统非常适用于需要跨四个以上数量级进行定量的高灵敏度LC/MS/MS方法的交叉污染要求。在对奥美拉唑进行分析时,在Xevo TQ-S上未检测到样品残留,且由此可知,样品残留量已减少至0.0005%以下。由于样品残留量很少,可在500 fg/mL至10 ng/mL或500 ag至10 pg之间进行校准。参考文献1. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf
百态
2012.01.30
利用超高效色谱系统,可从干血斑的化学干扰物以及已沉淀大鼠血浆样品的内源性物质中中成功分离出氟替卡松丙酸酯及昔美酸沙美特罗。 目的 为证实在利用与串联四级杆质谱仪联用的 ACQUITY UPLC® I-Class系统进行超高效色谱生物分析时,能够将分析物从复杂基质中分离出来。 背景 精确检测生物分析样品需要一种具高特异性且高灵敏度的方法。LC/MS/MS已经成为首选的方法;该方法的特异性是依赖于采用色谱分离来分离分析物与内源性基质组分,以及在质谱仪中采用多反应监测技术(MRM)进行检测。 为实现分析的耐受性,应使待检测的分析物与内源性基质峰(例如磷脂)分离,否则可能会导致离子抑制并由此导致结果不可重现。 通常会权衡生物分析的分析速度与分离度,以达到最佳的色谱分析效果。较长的分离时间会使分离度更佳,但会使通量减少。 采用亚-2-ìm颗粒UPLC技术可改善生物分析的通量。 然而,随着相关法规日渐严格,以及对分析灵敏度的要求逐渐提高,对色谱性能也提出了更高的要求。例如干血斑以及微量采样这样的采样技术已经对当前方法的检测极限提出了挑战。 解决方案 ACQUITY UPLC I-Class系统专为进行超高效色谱分离而设计。它的先进技术可以使即使在较高系统背景压力下工作时,也能很好的控制扩散以及谱带扩展。这些因素使得在进行生物分析时能够采用更长的分析色谱柱,同时也不会减少通量,还能够产生非常尖锐的分析峰。 一超高效UPLC/MS/MS性能实例如图1所示。中我们可以观察到氟替卡松丙酸酯及昔美酸沙美特罗已从干血斑中分离出来。该次分析是在2.1 x 150 mm ACQUITY UPLC C 18 1.7-ìm色谱柱上进行,并用50:85甲醇/氢氧化铵水溶液梯度梯度洗脱10分钟。橙色图谱表示正离子全扫描MS数据;沙美特罗及氟替卡松丙酸酯的MRM谱图已用蓝色分别表示。 从中我们可以看出,干血斑中含有大量干扰物质,这些干扰物质是来自于添加至板上的化学药品。超高效ACQUITY UPLC I-Class系统可产生非常尖锐的峰形,可在无基质干扰下定量两种药物分子。 为进一步说明该系统的超高效,将氟替卡松丙酸酯及昔美酸沙美特罗添加至大鼠血浆,并利用乙腈使其沉淀(比例2:1)。于该实例中,经时5分钟,利用5:95甲醇/甲酸水溶液梯度来洗脱分析物,如图2 上述数据说明,如蓝色所示的背景全扫描MS色谱的复杂程度比干血斑更高。橙色线表示两种药物化合物的MRM信号,在2.58分钟时洗脱出沙美特罗,且在2.65分钟时洗脱出氟替卡松丙酸酯。自UPLC/MS/MS数据可以看出,ACQUITY UPLC I-Class系统可以超高效使已沉淀血浆样品中的内源性物质与分析物分离,因此可准确且可靠地定量分析物。 小结 ACQUITY UPLC I-Class系统可提供最高水平的色谱性能,提供极佳的分布特性,以及由于增加的背压能力因而可使用长度更长的色谱柱。使用超高效UPLC进行生物分析可产生尖锐的分析物峰,因而可产生最大的灵敏度以及最高的分离度,并使样品中内源性物质的共溶出最少。该系统的高背压有利于使用较长的超高效色谱柱,运行时间仅为5至及10分钟。
标准
2012.01.18
诺氟沙星(Norfloxacin)是第三代喹诺酮类药物,具有抗菌谱广、作用强的特点,尤其对革兰阴性菌有较强的作用,在临床治疗上广为使用。中国药典规定和收录了对诺氟沙星[1]、诺氟沙星软膏[2]、诺氟沙星乳膏[3]、诺氟沙星胶囊[4]、诺氟沙星滴眼液[5]以及诺氟沙星片[6]的检测方法,需要进行含量测定以及有关物质检查。药典方法要求使用C18柱和25mM磷酸溶液(用三乙胺调节pH至3.0左右)-乙腈的流动相,系统适应性要求诺氟沙星/环丙沙星与诺氟沙星/依诺沙星的分离度都应该大于2.0。 药厂QC工作者发现,该检测条件对于色谱柱的要求比较高,表现为: 不易得到峰形对称性良好的色谱峰 因为峰拖尾问题,诺氟沙星与依诺沙星之间的分离度不够理想 柱寿命不理想,通常只有约500针甚或更少的柱使用寿命,沙星类药物峰就呈现严重拖尾,而不再适用于该药物的质检项目 沃特世某药厂用户购买沃特世XBridge C18柱(5um, 4.6x250mm, PN 186003117)用于诺氟沙星质检工作,到目前为止,使用7个月,累计进样针数600针,峰形与分离度的表现仍然良好如初,用户非常满意,与我们分享使用心得与目前的谱图数据如下: XBridge色谱柱,是基于沃特世第二代杂化颗粒专利技术BEH(亚乙基桥杂化颗粒)的HPLC柱系列,具有极强的耐受性与广泛的通用性,包括: 多达6种固定相(C18,RP18,C8,Phenyl,HILIC,Amide),充分满足各种色谱方法需求 与ACQUITY UPLC BEH柱完全对应,可确保未来方法向UPLC技术的无忧升级 极强的高pH耐受性,是迄今为止所有硅胶颗粒与杂化颗粒产品中的最优者 耐压能力强,柱效高,具有和超纯硅胶相当的柱效 共有2.5um, 3.5um, 5um和10um四种粒径,柱规格覆盖从1.0mmid微径柱到50mmid制备柱,确保适应各种分析和制备需求 关于XBridge更多产品信息与应用资料,欢迎进入沃特世网站或联系我们获取: http://www.waters.com/XBridge [1] – [5] 中国药典2010年版二部868- 870页 [6] 国家食品药品监督管理局国家药品标准 WS1-(X-040)-2003Z-2011,2011年12月23日公布于国家药典委员会官方网站
标准
2012.01.17
由于近期发生的乳制品中被检测出含有黄曲霉毒素事件严重威胁着人们的健康。沃特世公司ACQUITY UPLC® H-Class系统的多元混合能力,配合使用沃特世黄曲霉毒素分析包,可提高黄曲霉毒素M1,G2,G1,B2和B1分离的分辨率且缩短分析时间。 黄曲霉毒素是由真菌、黄曲霉菌和寄生曲霉代谢生成的一组真菌毒素。它们可出现在各种食品中,如谷物、花生、调味料和乳制品。天然形成的黄曲霉毒素有四种:B1,B2,G1和G2。二次代谢产物M1,是乳牛食用B1污染的谷物后代谢生成的副产物,可污染乳制品,如牛奶。这些化合物具有毒性,可对人类和动物产生致癌作用。B1和G1是四种天然产生的毒素中毒性最大的两种。由于其毒性强,政府法规部门对食品中黄曲霉毒素的含量进行了严格的限制。因此,食品行业需要灵敏、精确且重现性良好的分析方法对这些物质进行检测。 点击以下链接,下载沃特世公司测定黄曲霉毒素的应用文章。 http://www.waters.com/waters/library.htm?cid=511436&lid=10153983
标准
2012.01.04
Andrew Aubin、Ronan Cleary and Darcy Shave Waters Corporation, Milford, MA, U.S. 应用效益 本应用文献介绍了通过开放操作型纯化系统来帮助化学师简化原料提取物纯化方法选择的技术。与一种用于各种提取物的通用方法相反,简单的方法选择标准(基于薄层色谱分析)使分离方法可根据具体的提取物量身打造。这使化学师可减少进行再分析和再纯化步骤的次数;最终加快整个纯化过程的速度。 沃特世的解决方案 基于组件的制备型HPLC模块 MassLynx™软件 FractionLynx™和开放操作型应用管理程序 基于OBD™技术的SunFire™ C18制备柱 关键词 五味子、肉桂、野葛、开放操作、制备型色谱、FractionLynx应用管理程序 引言 从植物材料中提取药用活性化合物可通过多种不同的方法得以实现。最终,化学师得到一种包含可能活性化合物并混有其他非活性成分的原料提取物。提取后,下一个步骤是对那些目标化合物进行纯化或分离。制备型液相色谱多用于完成这项任务。可能被提取的化合物具有较大的差异性,这样进行一次充分纯化需要使用不同的色谱方法才能达到有效分离。因此,能为化学师提供多种方法的开放操作型液相色谱系统是值得拥有的。分析方法在柱大小、运行时间、梯度条件、溶剂、改性剂和其他变量方面可有所改变。这些选项使化学师难于选出适用于其提取物的最佳方法并会拖延目标化合物的分离和开发进程。 为帮助每位化学师简化对其提取物选择适当首试方法的过程,本文介绍了一台使用简单方法选择标准(基于薄层色谱分析)的开放操作系统。 通过使用为其提取物量身打造的分离方法,化学师能更好地获得纯度更高的化合物。与对所有提取物使用一种通用方法相反,化学师通过选择适当的方法,可从根本上减少进行再分析和再纯化步骤的次数,进而最终加快了整个过程的速度。 实验 样品和提取 本试验对三种不同的植物材料进行了提取: 五味子粉(Schisandra Chinenis)、肉桂片(CinnamomumZeylanicum)和野葛根粉末(Pueraria lobata)。将10克干样品加入至50 mL、体积比为60:40的甲醇/水混合液后,振荡1小时。对提取物进行离心;之后直接使用离心后的清澈提取液。未尝试对提取过程进行优化。 薄层色谱(TLC) 提取物使用正己烷和乙酸乙酯的混合液在5 x 20 cm的TLC硅胶板上(Partisil LK6F硅胶60A及荧光指示剂,英国梅德斯通市沃特曼公司)进行分离。通过将层析板暴露于紫外光下并观察斑点而实现了样品的可视化。比移值从这些观察结果中得出。 制备型液相色谱 制备型HPLC分析使用一台由沃特世2545型四元梯度模块、2489型紫外/可见光检测器、制备型色谱架以及基于SunFire Prep C18 OBD柱(5 μm、19 x 100 mm)的馏份收集器III组成的系统。整台系统使用同时配备FractionLynx和 开放操作型应用管理程序的MassLynx软件进行控制。表1概述了方法参数、流动相组分和梯度条件,如第3页所示。 结果和讨论 为简化决定“我应使用哪种分离方法”的过程,用户必须先收集一些样品信息。理想状态下,将先进行一系列分析级HPLC分离,然后制备型方法根据这些结果导出、形成并按比例扩大。在很多情况下,这种复杂过程非常耗时,而且不必要。当在研究最初阶段一次性处理多种提取物时,这一点尤其正确。现有一种更简单的方法可进行基于薄层色谱的初期评估、评价所得出的结果并根据目标化合物的比移计算值设计出一种适当的制备型液相色谱方法。在本例中,提取物先通过薄层色谱进行分析,如图1所示。用户根据薄层色谱的分析结果可设计出一种具有特异性分离特征的方法或者使用已在HPLC系统中设计好的方法,如图2所示。 为进一步精简HPLC纯化过程,仅使用开放操作系统的登录页面即可简化方法的选择,如图2所示。勾选登录按钮后,用户可通过手动进样器简单实现进样。检测运行完成后,结果可被打印出来或电邮发送给用户。这些梯度旨在确保即使用户选择了一种欠佳的方法,所有潜在的目标化合物也能从柱上被洗脱下来并得到收集。关于这一点的一个示例可参见图3,该色谱图 显示了使用梯度2分离出的肉桂提取物。两种洗脱时间非常晚的化合物在薄层色谱目标化合物之后较长时间才得到收集。 图4和图5显示了使用所述技术分离出的野葛根提取物和五味子提取物。这三种天然产品提取物的色谱图与薄层色谱板得出的结果类似,表明此项技术提供了一种适合的工作流程。一旦分析完成,样品结果可根据需要电邮发送给用户或打印出来。系统管理员可决定登录准入权限、方法选择和报告生成,进而完成系统配置和设置。系统管理员也可增加或减少用于分析选择的可用方法个数。2545型四元梯度模块可同时选择四种溶剂,这提供了选择多种缓冲液或替代型有机改性剂的可能性。制备型色谱架可便捷容纳多根色谱柱和一对进样器,从而增加了方法选择的灵活性。 作为系统功能的最终确认,收集自野葛根提取物的馏份使用一台分析型HPLC系统进行了再分析,如图6所示。结果显示分离和收集到野葛根的纯净单峰,这可用于后续的研发步骤。 结论 ■ 沃特世的开放操作系统使化学师能仅通过走到液相色谱系统旁、登录样品信息、进样、离开几个步骤就能对其制备前的样品进行分析。 ■ 方法参数可自定义,从而能满足个体实验室工作流程的要求。 ■ 由于可为一位化学师呈现所需的多种方法,因此能对潜在活性化合物的收集实现最优化。 ■ 通过使用为其化合物量身打造的方法,化学师能用可能最短的时间从混合物中获得更高质量的馏份,从而加快了研究过程的速度。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
标准
2011.12.30
Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl; Waters Corporation, Milford, MA, U.S. 引言 用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。 试验方法 梯度开发步骤 ■ 确定制备规模的系统体积 ■ 运行搜索梯度 ■ 设计聚焦梯度 ■ 在制备柱上运行聚焦梯度 试验条件 仪器 液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、 AutoPurification™流通池 色谱柱: XBridge™制备型OBD™ C18柱19 x 50 mm、5μm(货号186002977) 流速: 25mL/分钟 流动相A: 0.1%的甲酸水溶液 流动相B: 0.1%甲酸-乙腈溶液 波长: 260 nm 样品混合物 磺胺: 10 mg/mL 磺胺噻唑: 10 mg/mL 磺胺二甲嘧啶: 20 mg/mL* 磺胺甲二唑: 10 mg/mL 磺胺甲唑: 10 mg/mL 磺胺二甲异唑: 4 mg/mL 总浓度: 64 mg/mL(溶于二甲基亚砜) *选定用于聚焦梯度的色谱峰 结果和讨论 确定制备规模的系统体积 ■ 取下色谱柱并更换成两通。 ■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。 ■ 在254 nm下进行监测。 ■ 采集100% A的基线数据5分钟。 ■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。 ■ 测定100% A和100% B之间的吸光度差异。 ■ 计算存在50%吸光度差异时的时间。 ■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。 ■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。 设计聚焦梯度 第1步 在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步 计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。 根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。 第3步 旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。 结论 当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
百态
2011.12.27
Jacquelyn Cole and Rui Chen TharSFC, a Waters Company, Pittsburgh, Pennsylvania, USA. 引言 当比较HPLC和SFC的多项应用时,有人发现SFC因超临界液体的低粘滞度和高扩散率而能提供更好的选择性和更短的分析时间。 SFC用于制备模式时可显著降低成本,这是因为馏份通常收集在较小体积的挥发性醇中而由此减少了相当多的纯化后续工作。乙腈(ACN)的持续短缺也促使多个行业对SFC在分析和纯化方面能否替代乙腈依赖性反相液相色谱(RPLC)进行评价。现在,科学家在探寻、企业也在开发更多适用于SFC的包括UV、FID、MS和ELSD在内的检测器。 蒸发光散射检测器(ELSD)最初为高效液相色谱(HPLC)进行基于质量的非挥发性化合物检测而设计1。因为这种检测机制不依赖于化合物的光学属性,所以ELSD被认为是一种通用检测器,特别适用于检测不存在紫外光发色团的分析物。很多制药实验室和化学实验室将ELSD与紫外检测和质谱(MS)同时使用,以确保用于对组成各异或比较复杂的混合化合物进行色谱分析的通用检测的“真实性”。ELSD也被发现可广泛用于包括膳食补充剂、运动营养品、维生素、有机食品、饮料、化妆品和美容产品在内的天然产品的分析和纯化。 我们曾报告过使用SFC ELSD分析运动饮料中甜味剂的个案研究2以及对SFC ELSD试验参数所进行的详细评价3,这两项研究均采用分析规模。我们在此呈现关于ELSD用于小规模制备型SFC的可行性研究。我们希望此处所述的结果能促进专业人员将ELSD并入涉及分析和制备规模SFC的日常工作流程中。 试验 材料 酮洛芬和对乙酰氨基酚购自西格玛奥德里奇公司(美国密苏里州圣路易斯市)。将酮洛芬和对乙酰氨基酚溶解于HPLC级甲醇中,制得用于分析试验的0.5 mg/mL储备液和用于纯化的5 mg/mL储备液。硅胶柱(分析型:4.6 x 250 mm,填充5 μm颗粒;制备型:10 x 250 mm,填充6 μm颗粒)购自普林斯顿色谱仪器公司(美国新泽西州普林斯顿)。 色谱分析 各项试验均使用配备沃特世2998型光电二极管阵列(PDA)检测器和沃特世ELSD(美国马萨诸塞州米尔福德)的一台SFC Investigator II仪器(沃特世子公司T harSFC,美国宾夕法尼亚州匹兹堡)进行。 ELSD信号(模拟信号输出)通过模数转换器传输到SuperChrom软件。一个10 μL的定量环用于各次分析型进样,而一个200 μL的定量环则用于各次制备型进样。ELSD使用一根内径0.010英寸的不锈钢三通和25 μ x50 cm的PeekSil管在PDA和反压调节器之间分流出来。分析型方法在流速为4 mL/分钟(85:15 CO2/甲醇)、反压为150巴和温度为40˚C的条件下运行。分析型方法的ELSD条件设置如下:增益=1000、喷雾器温度= 45˚C、管道温度= 45˚C、压力= 30 psi。制备型方法在流速为10 mL/分钟(80:20 CO2/甲醇)、反压为150巴和温度为40˚C的条件下运行。ELSD条件设置如下:增益=1000、喷雾器温度= 28 ˚C、管道温度= 50 ˚C、压力= 60 psi。收集装置上的补偿泵被设置为每分钟用泵抽吸2 mL甲醇。对于纯化应用,以200μL的进样量连续进样五次,或者说每种化合物进样1 mg(两种化合物共2 mg),那么每种化合物的进样总量为5mg(两种化合物共10 mg)。 结果和讨论 图1显示了使用ELSD和UV得出的酮洛芬/对乙酰氨基酚混合物的分析型SFC色谱图。ELSD和UV信号之间略微存 在时间滞后(约2秒)。由于ELSD信号用于馏份触发,因此滞后时间对制备型色谱特别重要。应充分注意确保信 号处理时间与流出液达到收集阀的时间保持一致,或者需要进行适当的计时补偿,以尽可能减少收集过程中的 损失。例如,在我们的试验中使用了一根25 μ × 50 cm的PeekSil管,以将主流量分流到ELSD中。首选小内径管, 以尽可能减少进入ELSD的流量,实现样本损失量的最小化。然而,管长由UV和ELSD信号之间的时间滞后而决 定。较长的管子将因抗性增强而进一步减少流入ELSD的样本量;然而,这也将增加两种信号之间的时间滞后。 在本例中,2秒的时间滞后小于总峰宽的3%。 其次,我们优化了制备型进样的ELSD设置,结果如图2所示。从分析型到制备型设置出现了两个改变:流速从4 mL/分钟提高到10 mL/分钟,改性剂百分比从15%增加20%;这两种改变将导致流入ELSD的液体增多。在我们的前一项研究3中,对气体流速和蒸发温度的作用进行了描述。简言之,气体流速越高,停留时间就越短,出现散射的次数也越少,进而信号越差。气体流速越高,喷雾过程中所形成的小颗粒就越多。粒径的减小也导致散射光的强度降低。此外,也建议将蒸发温度维持在尽可能低的水平下,以保持粒径的一致性,并通过增强溶解结晶作用而获得更好的信号。这一点与图2所示的结果吻合:增加气体流速和降低蒸发温度似乎可产生带有更少“尖峰”的更窄色谱峰。注意制备型进样的样本浓度要高得多;灵敏度不再是主要关注点。恰恰相反,优化目标在于产生可靠且重现性好的信号。有代表性的制备型SFC色谱图见图3。图3(b)显示了叠加进样的SFC色谱图。循环时间通过进行叠加进样而更为缩短,进一步提高了产能。回收率和纯度通过再次进样所收集的馏份并将由此得到的峰面积与预先绘制的校准曲线进行比较而确定。在本研究中,酮洛芬和对乙酰氨基酚的回收率分别为88%和84%,纯度分别为98%和100%。 结论 在本研究中,我们证实了使用ELSD可触发小规模制备型SFC的馏份收集。本研究所用标准品的回收率大于84%,纯度大于98%。仪器配置和ELSD优化方面的根本原则应该同样适用于大规模制备型SFC。 参考文献 [1] M. Dreux、M. Lafosse和L. Morin-Allory,液相色谱和气相 色谱国际版,9, 148–156 (1996). [2] J.L. Lefler和R. Chen,液相色谱和气相色谱美国国内 版,应用文集增刊,26(6), 42–43 (2008). [3] T. DePhillipo、J.L. Lefler和R. Chen,液相色谱和气相色 谱欧洲版,应用文集增刊,22(3), 38-39 (2009). 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
标准
2011.12.16
Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. 引言 寡核苷酸合成是非常高效和高产率的过程。在固相载体上进行寡核苷酸反应的典型产率为每耦合阶98~99.5%。在典型的多阶寡核苷酸合成中,杂质聚集在一起,即使是一般大小的21基体寡核苷酸的总产率也达到67~90%,较长链的寡核苷酸的产率相应较低。研究人员通常需要使用纯度高于初步合成混合物的材料。因此,用于基因敲除、基因分型和诊断目的寡核苷酸通常需要在合成后进行纯化。适合实验室规模寡核苷酸纯化的经济可行的解决方案很少,而现有的方法(比如离子交换色谱分析法和聚丙烯酰胺凝胶电泳法)通常比较繁琐和费时。在本应用说明书中,我们介绍了一种成本低、速度快的中等数量材料的纯化方法,单次进样载量高达140 nmoles,采用沃特世 ACQUITY UPLC®系统和寡核苷酸分离技术(OST)色谱柱化学技术可达到95%以上的最终纯度。所提出的纯化规模与标准的寡核苷酸合成规模匹配良好(50至250 nmol)。下述方法可在15至30分钟时间内完成寡核苷酸纯化,得到高纯度产品。 结果和讨论 样本 RNA寡核苷酸5' -CCU UGU AAU CGC UUG ACG ATT -3'由供应商处购买,并在110 μL的0.1 M 醋酸三乙胺(TEAA)中进行复溶,得到大约2.8nmol/ μL的溶液。为防止降解,样品是在使用前不久制备的。 HPLC条件 RNA寡核苷酸通过沃特世Alliance® HPLC生物分离系统进行纯化,使用了沃特世 XBridge™ BEH OST C18 4.6 x 50mm的2.5 μm色谱柱,采用离子对反相色谱法进行分离。1 液相色谱系统:沃特世 Alliance HPLC生物分离系统 色谱柱: XBridge OST BEH C18 4.6 x 50mm, 2.5 μm 柱温: 60 ˚C 流速: 1.0mL/min 流动相A: 0.1M TEAA,pH 7.5 流动相B: 80:20 0.1MTEAA/ACN 梯度: 30 – 52.5% B洗脱10.0分钟(0.15% ACN/分钟) 检测: PDA,260nm 分离产物用沃特世 PDA检测器在260nm处检测。流动相A由0.1% M醋酸三乙胺(TEAA)组成,流动相B为80:200.1 MTEAA/乙腈。柱温保持在 60℃。 如图1中所示,尽管寡核苷酸合成的效率很高,在21-基体中仍存在许多失败序列。 尽管色谱柱上超负荷加载了更大的质量负荷,分离度仍保持N-1, N-2... 杂质在主峰前洗脱。对21-基体寡核苷酸主峰从顶点开始进行适当的切割,就会得到极高纯度的产物。 图2中所示被选中的馏份收集窗表示不同的质量负荷。峰值采集后,样品可以根据需要对等分和干燥,以便长期储存。TEAA的挥发性使离子对缓冲组分的去除非常容易。溶剂蒸发后被纯化的寡核苷酸实际上是不含盐的。 UPLC条件 纯化RNA寡核苷酸的纯度通过ACQUITY UPLC系统来验证。如图3所示,我们的纯化方法有效地减少了失败序列杂质,所产生的寡核苷酸的纯度比市面上可以买到的未经纯化的寡核苷酸高出许多。 液相色谱系统: 沃特世 ACQUITY UPLC系统 色谱柱: ACQUITY UPLC OST C18柱, 2.1 x 50mm,1.7 μm 柱温: 60 ˚C 流速: 0.2 mL/min 流动相A: 0.1M TEAA,pH 7.5 流动相B: 80:20 0.1MTEAA/ACN 梯度: 35 – 85% B洗脱10.0分钟 (1%ACN/分钟) 检测: PDA,260 nm 结论 本文介绍的单链RNA寡核苷酸的纯化策略速度快,成本低,可生成高纯度材料。使用OST色谱柱化学技术和Alliance HPLC系统,大量的单链RNA粗产物可以在短时间内成功纯化,进而得到高纯度(约95%)的材料;根据所收集峰面积与样品总峰面积的比值进行估计,产率可达55%。 该方法对用于RNAi实验(这类实验中保证纯度和目标的特异性至关重要)的单链RNA的纯化极为有用。此外,由于T EAA的可挥发性,该策略可以将纯化的寡核苷酸储存,在没有T EAA这种不必要的盐的环境中,也可以避免其他纯化手段中产生的不必要的杂质。总的来说,该策略提出了一个比目前可用方法更优越的全面纯化方法。此外,在考虑样品纯化所需的时间成本、反应剂和沃特世XBridge OST色谱的寿命时,这种纯化方法非常经济。 参考文献 [1] 寡核苷酸的UPLC分离:方法开发。沃特世应用说明书。2007: 720002383EN。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
标准
2011.12.16
Steve Zulli、Dan Rolle、Ziqiang Wang(博士)、Timothy Martin、Rui Chen(博士)和Harbaksh Sidhu Waters Corporation, Milford, MA, U.S. 应用效益 使用叠加进样模式进行手性化合物纯化证明了质谱引导的Prep 100 SFC系统所提供的收集方案具有多用性和灵活性。大气压条件下的开放床式收集平台在同时使用包括质谱检测器在内的多种检测器进行触发收集时,可提供更高的效率及成功率。 沃特世解决方案 质谱引导的Prep 100 SFC系统,2998型光电二极管阵列(PDA)检测器,3100型质谱检测器,2767型样品管理器MassLynx™软件,FractionLynx™应用管理程序,叠加进样模块 关键词 手性,Prep 100 SFC,叠加进样,质谱引导,开放床式收集 引言 根据FDA的规定1,手性色谱已经成为药物开发早期为通过药理学、毒理学和临床信息准确鉴定单一纯对映体并进行分离的首选工具。 超临界流体色谱(SFC)因其具有更高的效率、更大的通量和更宽的适用性而被证实成为手性化合物分离的一种主流技术。手性SFC越来越受到关注并且其应用范围不断扩大,在一些情况下逐渐成为首选方法。 通常情况下,对映体混合物含有一定数量的杂质,对于常用的叠加进样和基于信号阈值的收集策略而言(例如UV/ PDA检测),这些杂质可降低实际纯化过程的效率。多数情况下,进行一步预净化是必要的,但因存在资金和工作量限制却是不实际的。这需要一种能将对映体与其它杂质鉴别开来的多功能检测方案。除了UV/PDA检测器之外,3100型质谱检测器是一种可广泛用于手性分离的理想选择。 在本应用文献中,展示了质谱引导的Prep 100 SFC系统及其在开放床式平台上进行叠加进样和收集的功能,并被证实是一种手性化合物纯化的有效工具。下文回顾并描述了用于手性分离案例的系统配置和方法。 试验 化学品 CO2由Airgas(Salem,NH,USA)公司提供,并以加压液体的形式在大约1100 – 1300 psi的条件下,通过内置管道供应给质谱引导的Prep 100 SFC系统。甲醇和反式芪氧化物(T SO,MW:196)由Sigma-Aldrich(St.Louis,MO ,USA)提供。 SFC色谱柱 ChiralPak AD-H和ChiralCel OD-H(均为 21 mm x 250 mm、5 μm)由Chiral Technologies公司(West Chester,PA,USA)提供。 SFC系统 质谱引导的Prep 100 SFC系统配备一个附加的叠加进样器。 2767型样品管理器配置为一个简化型重复馏分收集器。 方法条件 SFC梯度和流速程序 对于所述的全部数据而言,100 g/分钟的最大总流速与各种等度的改性剂程序配合使用。 质谱检测器的条件 用于各种试验的3100型质谱检测器标准ESI模式使用以下关键参数: 毛细管电压: 3.5 KV 锥孔电压: 40.0 V 二级锥孔电压: 3.0 V 射频透镜电压: 0.1 V 源温度: 150 ˚C 脱溶剂气温度: 350 ˚C 脱溶剂气体流速: 400 L/小时 锥孔气体流速: 60 L/小时 0.1%的甲酸-甲醇溶液用作补偿液流进入质谱,以提高电离效率。 数据管理 MassLynx/FractionLynx,第4.1版 结果和讨论 叠加进样模式下的纯化放大 手性分离中通用的最佳做法是利用叠加进样模式进行样品进样和馏分收集,这可实现效率最大化并降低生产成本。 在含有一定杂质的复杂体系中,质谱引导的系统可以鉴定和选择性的收集感兴趣的目标化合物,并正确的忽略不需要杂质。因而,该系统对于手性化合物的SFC纯化,具有高效、适用范围广的特点,并成为手性药物开发的常规主流工具。 我们对质谱引导的Prep100 SFC系统进行了一定的改造,以便将该系统用于手性化合物分离纯化时达到其最大效益,其中包括添加了一个专用进样器并改变了收集床布局以容纳更大的容器,从而可重复收集对映体的馏分。 层叠进样/进样器的启用 Prep 100 SFC系统整合了一个沃特世叠加进样模块,用户选择“进样类型”并输入叠加进样的总次数以及软件程序中的其它相关参数,如图1和图2所示。以叠加进样的模式,运行一个自定义的进样序列,该进样器可从单一样品容器中抽取多份等量样品。 未使用叠加进样模式时,2767型样品管理器能继续按照“样品列表”所定义的顺序从样品架上逐个进样单一样品。 图3显示了对一种双峰混合物进行叠加进样后得出的典型色谱图。紫外和质谱对所需物质的检测结果均是正确的,从而确保了通过紫外或质谱触发可进行可靠而成功的馏分收集。在本例中,紫外信号用作收集触发;必要时也可使用质谱信号。 自定义用于单个样品瓶的收集床布局 质谱引导的Prep 100 SFC系统使用2767型样品管理器作为专用馏分收集器。在手性化合物纯化中,由于馏分收集数为两份(或者在某些情况下可能多达四份),因此需要用更大容器及重复式前后收集模式取代一对一模式下的常规类型试管架。 所以,2767型样品管理器可通过定义收集的位置及更大容器而进行定制。从而可对同一个对映体的所有叠加进样序列结果,通过重复式的前后收集方式,收集到相同的收集瓶中。 如图3所示,两种对映体馏分分别被收集进1号瓶(粉红色条带)和2号瓶(绿色条带)。这在2767型样品管理器上以反复模式根据序列内的单一进样管线而完成。这表明使用Masslynx软件和Fractionlynx样品管理器进行样品收集的过程是成功的,并且满足了依据对映异构体对的信号强度水平进行正确鉴定和收集的关键标准。 图4所示,是对一个包含无关杂质峰与对映异构体对的体系进行分离和选择性收集的实例。如彩色条带所示,通过目标化合物的质谱引导,只有两个分离开的目标化合物被收集,而第三个峰(无关的杂质)没有被收集。 MassLynx/FractionLynx AutoPurify™平台拥有众多高级、适用于复杂工作流程的检测和收集算法,例如,使用多种检测器信号进行触发的布尔逻辑算法。如果样品已足够纯净,那么用户可选择使用UV/ PDA进行检测;如果样品包含相当数量的杂质,那么用户可选择使用组合型信号和斜率算法以及特定的目标分子量,以确保得到更纯的收集馏分。 结论 已经证实质谱引导Prep 100 SFC系统在不同药物的开发过程中具有高效、适用性强及用途广的特点。本文所述的质谱引导Prep 100 SFC系统叠加进样和收集的附加特点使其对手性分离具有更强的定制能力,从而可为纯化实验室的色谱分析师带来效益,例如: ■ 多重、多功能检测模式实现了更高的成功率; ■ 基于开放床式平台的相同叠加进样和收集模式简化了 使用方法; ■ 能提供一个遵从行业和政府规定的更安全的实验室环 境。 沃特世质谱引导的Prep 100 SFC系统是一种在药物发现以及其它制备型色谱中进行手性纯化的强有力工具,可满足实现更大产能和更高成功率的需求。 参考文献 [1] http://www.fda.gov/cder/guidance/stereo.htm 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
标准
2011.12.06