脱硫塔密计

仪器信息网脱硫塔密计专题为您提供2024年最新脱硫塔密计价格报价、厂家品牌的相关信息, 包括脱硫塔密计参数、型号等,不管是国产,还是进口品牌的脱硫塔密计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脱硫塔密计相关的耗材配件、试剂标物,还有脱硫塔密计相关的最新资讯、资料,以及脱硫塔密计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

脱硫塔密计相关的厂商

  • 河北宁杰环保科技有限公司主要产品有布袋除尘器,除尘布袋,旋风除尘器,静电除尘器,滤筒除尘器,脱硫塔,光氧催化废气净化器、UV光解、等离子空气净化器,焊烟净化器,湿式除尘器,脱硫脱销设备等整机除尘器及高炉喷煤设备和磨煤喷煤机,还供应各种高温、中温、常温除尘布袋,除尘骨架,电磁脉冲阀及膜片,卸料器,脉冲控制仪,散装机伸缩收尘滤袋,插板阀,翻板阀,通风蝶阀,百叶阀,粉尘加湿搅拌机,螺旋输送机,刮板机,除尘气缸,滤袋胀圈,骨架口底,文氏管,电除尘高分子振打绝缘棒,95瓷振打绝缘子电瓷支柱,电磁锤振打器,瓷套,电晕线,阳极板,流化器,煤粉分配器,煤粉过滤器,弹子阀,喷煤枪,喷煤粉软管,补气调节器,充压放散装置,流化装置、煤粉浓相输送混合器(高炉喷煤沸腾器),煤粉筛等各种高炉喷煤配件和除尘配件,磨喷煤机.源头厂家,自产直销,专业技术,质量保证,大品牌,可信赖。
    留言咨询
  • 山东永达勇拓商贸有限公司是一家集成型集团供应商,公司生产各种金属制品,环保设备,并代理各种中高端品牌环保设备及防护用品。山东永达勇拓商贸有限公司是雷克兰、杜邦、安思尔防护用品在中国的一级代理商,公司坐落于山东省省会城市济南,并在滨州及烟台等地设有分公司。山东永达勇拓商贸有限公司经营范围包括:劳保用品、环保设备、实验设备、五金机电、化工产品,建筑材料等。山东永达勇拓商贸有限公司产品包括:一、环保设备:焊烟净化器;UV光氧催化废气处理设备;多元复合氧催化一体机;UV光解废气处理设备;烟气脱硝;烟气脱硫;烟气除尘;输灰系统;污水处理等系统设备。二、劳保用品:各种防护用品,高性能化学防护服;消防战斗服;工业用隔热服;阻燃防护服;电弧防护服;抗静电防护服;反光服;防寒服;抗切割、耐高温、防化学专业手部防护等。三、实验设备:全木实验台,全钢实验台,钢木实验台,各种试剂柜、药品柜、通风柜、器皿柜,各种实验试剂等。24小时服务电话:0531-68658305 13256765611闫勇
    留言咨询
  • 南京托米实验设备有限公司,地处风景秀丽的全国生态示范区南京高淳,是致力于中、高档智能分析仪器生产、销售、科研、售后、培训于一体的现代化高科技企业。汇集行业中优秀的化学、电器工程师及一支多年从事于分析仪器行业的销售,服务团队。 公司坚持以诚为本,以质为主的宗旨,凭借认真严谨的科研态度,坚实的技术力量,稳健的发展战略,在充分消化、吸收国内外先进技术基础上,研制开发出具有自主知识产权的“托米”牌系列高速分析仪器,主要有2011系列红外碳硫分析仪、CS系列碳硫高速分析仪、运用光电比色分析的BS系列智能元素分析仪、铸造炉前分析仪等十几个系列,六十多个品种的理化分析仪器。 可测定普碳钢、合金钢、铸铁、球铁、生铁、不锈钢、合金铸铁、各类矿石、有色金属中碳、硫、锰、硅、磷、铬、镍、钼、铜、钛、镁、稀土等元素的含量。广泛应用于铸造、医疗、冶金、机械、交通、石化、质检、院校等多个领域的炉前分析、材料控制、在线检测、成品验收及质量监管。可根据用户需求接受各种特殊定货。 托米仪器真诚期盼与您牵手,共赢共享,共同成长!
    留言咨询

脱硫塔密计相关的仪器

  • 电厂污染源烟气排放及脱硫系统监测污染源排放监测系统被广泛应用到电厂污染源排放和脱硫系统中。对于污染源排放的SO2、NOX 、流量、温度、压力、粉尘、湿度和氧进行连续监测,并可将数据传送到地方环保局,满足环保局对电厂污染排放监测的要求。在脱硫系统中对FGD入口的SO2 、粉尘、氧等用户要求的参数进行连续监测,FGD出口的SO2、NOX 、CO、流量、温度、压力、粉尘、湿度和氧进行连续监测。为用户提供脱硫效率换算所必须的数据,由于稀释法彻底解决了烟气采样、传输中的凝结问题,因而彻底消除了烟气凝结对SO2的吸收,消除了直接抽取法中凝结带来的系统误差,防止了脱硫装置出口SO2 浓度比较低,湿度比较大的情况下,由于烟气凝结而使脱硫出口测量的不准确。由于我们采用了高性能的分析仪,可以在SO2高、低浓度的条件下都能达到理想的精度。稀释法系统是脱硫系统烟气监测的最佳解决方案。钢厂动力锅炉烟气排放的监测随着国家对环保的重视日益增加,所有的污染源排放都将进行烟气排放监测。钢厂就是其中非常重要的监测点。由于钢厂锅炉燃烧有煤和煤气之分,Thermo Scientific 烟气监测系统针对各种情况作出不同的配置用以适应不同条件的烟气排放监测和环保要求。对于烟气中 SO2、CO、流量、温度、压力、粉尘、湿度和氧进行连续监测。可为钢厂环保部门和地方环保局提供实时可靠的监测数据。纸浆厂动力锅炉及碱石灰炉的烟气排放监测Thermo Scientific 烟气排放监测在纸浆厂有着非常成熟的技术和广泛的应用,特别对于纸浆厂烟气排放中总还原硫(TRS)的监测技术非常成熟。在美国具有70%的市场占有率。针对纸浆厂的情况,Thermo Scientific 开发出烟道外干态稀释探头。除总还原硫(TRS)外还对烟气中SO2、NOX、CO、H2S 、温度、压力、流量、粉尘和氧进行连续监测,实时数据可传送到厂DCS系统和环保局。
    留言咨询
  • Thermo Scientific TM AM16 船舶脱硫洗涤水质监测系统AM16船舶脱硫洗涤水质监测系统根据国际海事组织(IMO)颁布的MEPC.259(68)决议,从2020年1月1日起,各成员国船级社登记注册的船舶,其烟气硫氧化物排放必须0.5%或0.1%。脱硫洗涤塔(EGC)作为降低硫氧化物排放的高效手段之一,已在大量船舶上安装使用。而洗涤前、后水质必须遵守IMO相应标准和排放要求,pH、浊度、多环芳烃PAH和温度等参数需要连续在线监测并记录数据。赛默飞世尔科技基于五十多年的传感器和分析仪研发生产经验,结合自动监测、自动控制、专业分析软件和实时通讯等技术,开发出AM16型船舶脱硫脱硝洗涤水质监测系统,可在线监测洗涤水中pH、浊度、多环芳烃PAH和温度等参数。整个系统具有体积小巧、运行稳定、安装维护简易等特点,可在船舶脱硫洗涤工艺流程中即插即用。产品特点:1. 设计符合IMO MEPC.259(68)标准2. 适用于开式、闭式、混合式EGC系统3. 可同时测量pH、浊度、多环芳烃PAH、温度4. U-PVC法兰管路连接,全带压运行管路设计,适应EGC系统温度、压力和流量要求5. 机箱材质316SS,IP65防护等级,系统上下结构水电分离,外形紧凑美观,防盐雾,抗震动,耐腐蚀6. 长寿命直流无刷励磁离心泵,保证系统长期不间断在线运行7. 高效除泡器,消除洗涤水中气泡对测量的干扰8. 空气吹洗功能,保障仪器长期使用不受污染,减少维护量9. 管路流程泄压保护设计,保证系统压力安全10. 7”工控触摸屏,操作界面直观丰富,数据处理、数据通信功能强大11. 系统操作简单,维护量小,成本低
    留言咨询
  • 仪器简介:MasterPrep 脱气站为6 站真空和流动脱气站,配合AUTOSORB, QUADRASORB™ SI 以及NOVA 系列比表面和孔径分析仪进行大批量样品准备。 6 个脱气端口各自具有独立的加热炉,独立的数字温度控制,独立的冷却站,允许多种样品在不同条件下同时准备。 可用流动脱气和真空脱气两种方式操作。对任何类型的材料都可找到可行的样品准备方法。 流动速率和真空脱气速率可调。 六通道数字温度控制器使每个样品脱气端口各自具有独立的程序升温功能(多达20步)。 升温程序可连接计算机进行控制,也可在控制器上直接进行设置。 6个独立的冷却站在流动脱气或真空脱气后将样品冷却至室温。 技术参数:温度: 六通道数字温度控制器 双路升温程序: 可从计算机软件中进行选择,也可在控制器上直接进行设置 用户可分别设定温度爬升速率和保持时间(各站最多20段) 四位温度显示 口令保护功能 温度设定:1º C 递进 准确度(样品处):+/- 5 º C 或设定点的 +/-5% 环境: 周围温度:15 to 40º C 最大相对湿度:80% 无冷凝安全性: 符合CE标准 各站均有独立断热开关,以防过热 内置冷却风扇 电源: 电压:100 - 240 VAC, 50/60Hz 功率:600 VA(不包括真空泵)体积: 高 28.6 cm, 长64.8 cm, 宽43.2 cm重量: 20.7 kg运行要求: 纯度99.99%的干燥氮气或氦气,精确调节输出压力至7 psia 真空泵:至少能达到20 millitorr 的真空度 主要特点:性能: 具有六个样品准备站(端口) 温度范围:室温至425º C 流动脱气方式或真空脱气方式 各站独立温度控制 用户可选回填气/吹扫气(常用 N2 或 He) 当达到用户指定的真空度时,自动触发并转换阀门由慢(精细)抽真空到快(粗放)抽真空,以防止粉末样品扬析 在流动脱气方式下,各站流动速率可独立调节,高至100 ml / min 六个独立的冷却站 适用于6,9和12mm颈杆外径的样品管 数字真空圭表显示真空度
    留言咨询

脱硫塔密计相关的资讯

  • 红外气体分析仪技术之焦炉煤气脱硫为什么要选择负压脱硫?
    国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。某公司焦炉煤气净化一开始采用HPF正压脱硫工艺,但脱硫效率低,且正压脱硫需将煤气冷却,送入脱硫塔进行脱硫、脱氰,经过脱硫后,煤气进入硫铵单元,又需对煤气进行预热,煤气经过冷却、预热存在较大的能源浪费,不利于节能降耗生产,对此该公司将正压脱硫工艺改为负压脱硫工艺,采用红外气体分析仪(防爆型)Gasboard-3500对脱硫效果进行监测,项目运行3年来,脱硫效率提高,节能效果显著,具有良好的经济效益和环保效益。 一、正、负压脱硫工艺对比1、正压脱硫工艺 从鼓风机来的约55~60℃的煤气,先进入预冷塔,用循环水冷却至30℃左右,然后进入脱硫塔。预冷塔用冷却水自成循环系统,从塔底排出的热水经循环泵送往冷却器,用循环冷却水换热后进入预冷塔顶部喷洒用于冷却煤气,预冷循环水定期进行排污,送往机械化澄清槽,同时往循环系统中加入剩余氨水予以补充。 从预冷塔来的煤气进入脱硫塔底部与塔顶喷淋的脱硫液逆向接触,脱除H2S、HCN后由塔顶溢出去往硫铵单元。 从脱硫塔底排出的脱硫液经液封槽进入反应槽,再由脱硫液循环泵送出,一部分经过冷却器冷却后与另一部分未冷却液体混合后经预混喷嘴送入再生塔底部,同时在再生塔底部鼓入压缩空气,使脱硫液在塔内得以再生,再生后的脱硫液于塔上部经液位调节器流至脱硫塔循环喷洒使用,上浮于再生塔顶部扩大部分的硫泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至离心机离心分离,滤液返回反应槽,硫膏装袋后外销。 脱硫所用成品氨水由蒸氨每班送至脱硫反应槽加入脱硫液循环系统。 2、负压脱硫工艺 电捕来的约25℃煤气进入填料脱硫塔底部,与塔顶喷洒下来的再生溶液逆向接触,吸收煤气中的H2S和HCN(同时吸收煤气中的NH3,以补充脱硫液中的碱源)。脱硫后煤气进入鼓风机单元。脱硫塔底吸收了H2S、HCN的循环液,经脱硫液泵进入再生塔底预混喷嘴(脱硫液温度高时,部分进入板框式换热器进行冷却),与压缩空气剧烈混合,形成微小气泡后进入再生塔底部,沿再生塔上升过程中,在催化剂作用下氧化再生。再生后的脱硫液于再生塔上部经液位调节器进入U型管后,进入脱硫塔顶分布器,循环喷淋煤气。 上浮于再生塔顶部扩大部分的硫磺泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至板框式压滤机,滤液进入放空槽后,由放空槽自吸泵送至脱硫塔底继续循环使用,硫膏装袋后外销。脱硫所用成品氨水由蒸氨每班送至脱硫塔底,加入脱硫液循环系统。 3、正、负压脱硫运行指标对比 在同等煤气发生量情况下,采用红外气体分析仪(防爆型)Gasboard-3500对正负压脱硫工艺的脱硫效果进行对比监测,再综合脱硫工艺各方面运行参数,可得出正压脱硫与负压脱硫运行指标如下。 由上表可知,负压脱硫较正压脱硫,脱硫塔入口煤气温度降低了6℃,脱硫液温度降低了5.5℃,脱硫液温度的降低,有利于挥发氨(游离氨)浓度的提高,挥发氨浓度提高了5.2g/L;副盐浓度由300g/L以上降低至250g/L以下,降低了52.8g/L,副盐浓度的降低有利于脱硫效率的提高,脱硫效率由86.3%提高至99.0%,提高了12.7%。 二、正、负脱硫工艺特点对比1、 温度变化 正压脱硫位于鼓风机后,进入脱硫工段的煤气温度约55~60℃,而脱硫反应适宜温度为25~35℃左右,脱硫工段后为硫铵工段,而硫铵工段适宜吸收反应温度为50~55℃,因此煤气经正压脱硫进入硫铵工段需对煤气现冷却再加热,存在较大的能源浪费。 负压脱硫位于电捕后,鼓风机前,进入脱硫工段的煤气约25℃,满足脱硫吸收、再生要求,而经过风机后的煤气直接进入硫铵工段,避免了对煤气冷却和预热,温度变化梯度更加合理,节约了冷能和热能,降低了系统能耗。 2、游离氨浓度 HPF法脱硫是以氨为碱源的湿法氧化脱硫,吸收过程为化学反应,即通过吸收煤气中的氨(或外加氨水),增加氨的浓度提高对硫化氢、氰化氢等物质吸收效率,脱硫液中游离氨的浓度越高越有利于脱硫反应。 正压脱硫经过预冷后煤气温度一般在30℃左右,负压脱硫煤气温度为25℃左右,其脱硫液温度较正压降低5℃左右,脱硫液温度低有利于氨的吸收、溶解,同时避免了正压条件下预冷喷洒液的直接接触吸收煤气中的氨。因此,负压脱硫工艺有效提高了游离氨(挥发氨)浓度,游离氨浓度由正压脱硫的4~6g/L提高至负压脱硫的10~12g/L,达到较高的吸收效率,进而提高了脱硫效率。 3、设备投资 负压脱硫与正压脱硫设备上相比,脱硫工段不再用预冷塔及其配套的循环喷洒泵、换热器等设备,硫铵工段不再用预热器,节约大量设备投资,占地面积减少近80m2。 负压脱硫根据工艺特点,不用反应槽,节省两个约150m3的反应槽,占地面积减少约120m2。 4、环保效益 负压脱硫再生尾气回收至煤气系统内,减轻对大气污染的同时,尾气中的氧气、氨气等有效组分进入脱硫吸收塔内,参与脱硫吸收、解离反应,进一步增强了脱硫效率。 三、负压脱硫经济经济效益 负压脱硫较正压脱硫减少预冷塔、预冷喷洒泵、预冷换热器、反应槽等设备;减少煤气冷却消耗循环冷却水量150m3/h;节省硫铵预热器蒸汽量1t/h(冬季)。因此负压脱硫较正压脱硫节省成本为: 1)降低循环消耗成本:节约循环水量为150m3/h,按0.5元/m3、年运行360天计,则年节约循环冷却水成本为150×24×360×0.5=64.8万元。2)降低蒸汽消耗:节约蒸汽量为1t/h,蒸汽按150元/t、冬季按120天计,则年节约蒸汽消耗成本为1×24×120×150=43.2万元。 3)降低设备投资成本:减少预冷塔、循环泵、换热器、反应槽等设备及工程投资费用约500万元。按设备折旧费用计,年降低投资费用50万元。 则年降低成本为:64.8+43.2+50=158万元。另外,脱硫效率的提高,降低了脱硫后煤气中硫化氢含量,进一步降低燃烧时二氧化硫排放量,环保效益显著。 四、结论 1、负压脱硫较正压脱硫减少预冷系统、反应槽等设备,投资费用低,占地面积小,操作简便。 2、负压脱硫较正压脱硫较好地利用了煤气温度变化梯度,避免煤气经过冷却再加热,降低了循环冷却水及蒸汽消耗成本,经济效益显著。 3、负压脱硫入口煤气温度、脱硫液温度较正压脱硫降低约5℃,挥发氨浓度提高至10g/L以上,提高了对硫化氢的吸收,进而提高了脱硫效率。 4、负压脱硫再生尾气全部并入煤气负压系统,实现了脱硫尾气“零”排放,改善了工作环境,降低了大气污染。 5、负压脱硫较正压脱硫效率显著提高,降低了煤气中硫化氢含量,进而减少燃烧时二氧化硫的排放量,具有显著的环保效益。(来源:微信公众号@工业过程气体监测技术)
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 【案例分享】某沼气工程脱硫系统效率优化解决方案
    一、案例背景 某公司新上一套日处理10km3沼气净化装置,该装置分脱硫和脱碳两部分,其中,脱硫装置又分湿法脱硫和干法脱硫两部分,湿法脱硫装置参照国内化肥行业半水煤气脱硫装置的工艺设计,两个干法脱硫罐串联于脱硫塔后。 但在生产过程中,脱硫系统多次出现了脱硫塔效果差、脱硫罐阻力大等问题,以至于两周之内两次停产重新装填脱硫剂,既增大劳动强度又影响正常生产。经多方面分析原因并反复试验,确定新的工艺指标和操作方法。二、脱硫系统工艺简介 沼气在脱硫塔内与脱硫液逆向接触,脱除硫化氢,经气液分离器去干法脱硫罐二次脱硫,进入压缩机,送脱碳工序。 沼气流程:沼气气柜一脱硫塔一气液分离器一干法脱硫罐一压缩机一脱碳工序。 脱硫液流程:脱硫塔一富液槽一富液泵一再生槽一贫液槽一贫液泵一脱硫塔。 主反应: H2S+Na2CO3=NaHS+NaHCO3 2NaHS+O2 (TTS)=2S↓+2NaOH NaOH+NaHCO3=Na2CO3+H2O 副反应: Na2CO3+H2O+CO2=2NaHCO3 2NaHS+2O2=2Na2S2O3+H2O 干法脱硫: Fe2O3H2O+3H2S=Fe2S3H2O+3H2O 再生: 2Fe2S3H2O+3O2= 2Fe2O3H2O+6S 主要工艺指标: 脱硫塔后:H2S≤100ppm 脱硫罐后:H2S~20ppm 总碱度:0.4~0.6mol/L Na2CO3:4.0~7.0g/L NaHCO3:25.0~30.0g/L 脱硫液温度:30~40℃ 脱硫液流量:30~40m/h三、问题分析 1.存在的问题 在脱硫液温度、流量正常的情况下,脱硫塔后、脱硫罐后硫化氢严重超标,脱硫液脱硫效率低,造成大量硫化氢被吸附于脱硫罐中,造成脱硫罐严重堵塞,不得不停产重装处理。 脱硫效率按下式计算: 脱硫效率=(原料气硫化氢含量-脱硫塔后硫化氢含量)/原料气硫化氢含量x100% H2S超标情况见表1。 2.分析原因 当加入纯碱后,脱硫液的脱硫效果有所好转,脱硫罐后硫化氢含量亦有所降低,说明脱硫塔的脱硫效果在脱硫系统中起主要作用。由于脱硫塔后硫化氢含量太高,造成脱硫罐负荷高,以至脱硫罐严重堵塞,系统不得不停产重装两个串联的脱硫罐,但由于脱硫塔的脱硫效果没有好转,仅两周后又得重装脱硫罐,影响正常生产。 从脱硫液方面看,在装置原始开产时,用软水配了共25m3脱硫液,碳酸钠起始浓度高达48.0g/L,但是仅仅运行了五天,碳酸钠含量急剧下降,虽然每天往脱硫液中加入的纯碱相当于5.0g/L,但并没有阻止碳酸钠含量的下降,而且很快降至指标下限(4.0g/L)以下,具体数据见表2。 从表2数据可以看出,尽管每天加入的纯碱相当于5.0g/L,但并没有控制住碳酸钠含量,而碳酸氢钠含量却一直上升:开产第四天已达到了指标上限的两倍左右,虽然总碱度也一直上升,但总碱度的升高并没有提高脱硫效率。 反复分析问题产生的原因,认为沼气与半水煤气成分有较大差异,尤其是二氧化碳含量的差距更为突出:沼气中CO2在30% ~40% ,而半水煤气CO2仅在8%~10% ,可能是副反应消耗了大量的纯碱,造成了碳酸氢钠含量的居高不下,因为从脱硫反应来看,脱除沼气中硫化氢并不消耗纯碱。为验证这一想法,分析脱硫塔后CO2含量,原料气中CO2为37.4%~42.3% ,脱硫塔后CO2为14.6% 一17.2% 。 从开产之前的数据来看,原料气CO2最高为42.6% ,最低为34.7%。经过脱硫塔后被吸收了气体总体积的15%左右,造成脱硫液中碳酸钠含量的急剧下降和碳酸氢钠含量的迅速升高,使得脱硫效率大为降低。 四、解决方案 要解决脱硫塔脱硫效率低的问题,应控制住脱硫液中碳酸钠和碳酸氢钠的含量。在脱硫液中,碳酸钠为有效成分、碳酸氢钠为无效成分,只加人纯碱不一定能够控制住碳酸钠含量,而且还会进一步增高碳酸氢钠含量。需要采取既能保持碳酸钠含量,提高脱硫效率,还能降低碳酸氢钠的含量方法。从主反应来看,可以加入烧碱。 为避免加烧碱会对生产造成大的影响,采取烧碱和纯碱一起加的方式:先往配碱槽中加人脱硫液2~3m (含碳酸氢钠约100~150kg),然后加入50kg烧碱,待烧碱全部反应后,再加入40kg纯碱和适量脱硫剂,将该脱硫液送人系统脱硫液,脱硫效果见表3。 由表3可以看出,在脱硫液中加入一定量烧碱后,碳酸钠含量得到控制,碳酸氢钠含量也有大幅下降,脱硫效率明显提高。从以上分析数据来看,因碳酸氢钠的含量较高,总碱度不能控制在0.4~0.6mol/L,而应控制在0.7mol/L以上。 五、结语 (1)使用沼气分析仪监测甲烷含量,掌握甲烷回收率、脱硫效率等关键数据,并据此进行厌氧发酵、提纯过程的工艺优化,可以显著提高沼气和生物天然气工程的经济效益。 (2)沼气脱硫不同于半水煤气脱硫,其二氧化碳高的性质决定了其脱硫不能照搬半水煤气脱硫工艺,需要加以改进。 (3)因沼气的二氧化碳量较高,造成脱硫液碳酸氢钠含量高,因此总碱度指标应控制在0.7mol/L以上。 (4)在沼气二氧化碳含量高的情况下,可以往脱硫液中加入一定量的烧碱,但要注意加入量必须参照系统脱硫液中碳酸氢钠含量,必须在配碱槽中加入,不能让烧碱直接进入脱硫液中,特别是在脱硫效率低、碳酸氢钠高的情况下更应如此。 (5)改进后成本没增加多少,但脱硫效率却大大提高,而且还避免了碳酸氢钠含量继续升高。 (6)如果原料气量有变化,脱硫液中碳酸氢钠含量会随生产情况变化,每天加入的烧碱也要随之调整。若碳酸氢钠含量在50~60L或更高时,可只加烧碱。 (7)烧碱溶于脱硫液时会放出大量热,且具有强腐蚀性,操作务必注意安全。(来源:微信公众号@沼气工程及其测控技术)

脱硫塔密计相关的方案

  • 关于脱硫脱碳剂起泡趋势检测方案
    脱硫脱碳剂是酸性气净化工艺重要的使用材料。在天然气净化、合成气脱硫脱碳、炼厂气处理的现代工艺中,基本上形成了甲基二乙醇胺 MDEA)的催化(活化)溶剂体系,涉及到了选择性脱硫、脱碳、同时脱硫脱碳、酸性气提浓、脱除有机硫等各个方面。很多环保公司便是以醇胺类脱硫脱碳剂产品的研发和生产。
  • 脱硫剂的检测分析应用报告
    近年来,随着机动车的增多,汽车尾气已成为主要的大气污染源,酸雨也因此更加频繁,严重危害到了建筑物、土壤和人类的生存环境。因此,世界各国纷纷提出了更高的油品质量标准,进一步限制油品中的硫含量、烯烃含量和苯含量,以更好地保护人类的生存空间。 随着对含硫原油加工量的增加及重油催化裂化的普及,油品含硫量超标及安定性不好的现象也越来越严重。所以脱硫工艺的完善和脱硫效果的精确控制是当今很重要的一个研究课题。目前天然气和石油裂解气的脱硫工艺中常用的高效率脱硫剂为N-甲基二乙醇胺(MDEA)。

脱硫塔密计相关的资料

脱硫塔密计相关的试剂

脱硫塔密计相关的论坛

  • 差压式密度计在石灰石-石膏法烟气脱硫中的新运用

    石灰石-石膏法烟气脱硫系统中进入吸收塔的石灰石浆液密度和吸收塔浆液密度都需要准确测量,前者关系到脱硫效率,后者则控制着吸收塔生成物石膏的品质。 石灰石浆液中固态物质含量较高,达20%一30%;脱硫后的浆液中含有大量的石膏结晶,磨蚀性较强。因此,脱硫系统浆液密度测量仪器选型应充分考虑脱硫浆液的腐蚀、磨损、悬浮固体颗粒的沉积、结垢等各种因素,尽可能兼顾到其可用性、可靠性和可控性。 国内脱硫系统浆液密度测量方法以科氏力质量流量计为主,由于该种形式的密度计对流量要求高,但实际现场由于流速高,磨损非常大;同时由于使用过程中逐步磨损,测量的零点会出现飘移,经常出现测量不准和备品备件频繁损坏的现象,需要不断的进行校验和更换新的备品、维护成本极高。 差压式原理测量浆液密度的方法占5%。传统的测量方法是分别将两台液位变送器安装在距离吸收塔或石灰石浆槽底部标高0.5米和1.5米的地方,安装角度采用向下倾斜30度安装并加装手动隔离阀,采用间隔性冲洗。这种方法需要在系统里设定公式计算出浆液的密度,现场没有密度显示,同时这种安装方式经常造成介质沉积和堵塞问题。 我公司生产的智能差压式密度计,直接显示和输出密度值,用户无需再计算。同时我公司经过大量的实践,总结出两种比较好的安装方式,可以达到稳定测量。 第一种,塔或罐体侧壁双法兰安装: 这种安装方式式不会造成气泡或介质颗粒的沉积和堵塞,只要取压口避开搅拌器搅拌时产生的漩涡面,就可以达到稳定测量。当存在线性误差时,我公司可以免费提供软件进行修正。 第二种安装方式:管道旁通安装。 这种管道安装方式,如果浆液流速过快,会造成大的测量误差和测量的不稳定、甚至无法测量,所以,需要控制好流速,才能稳定测量。控制流速,首先考虑旁通安装,这样便于选择小管径的密度计,节约经费。当密度计只能安装于主管道时,我们会根据实际流量大小计算流速后选择合适的密度计管径,将流速降到最佳值,流体流经密度计时会经历扩管、缩管的过程,这其中要避免产生涡流现象。密度计测量室与膜片之间有足够宽的距离,喇叭状狐形焊接,这种结构的好处除了介质流经测量室时不会直接冲刷膜片保证产品的寿命外,也能防止颗粒介质或气泡聚集所带来的测量误差。另外,管道式密度计都加装有在线清洗口,当停机时,不用拆下管道就可以在线清洗膜片,这样大大减少了维护人员的维护时间。同样当密度计存在线性误差时我们也可以用软件进行修正。同样是差压式密度计,由于存在质量和结构方面的差别,有的厂家的产品并不好用。我公司的密度计结构方面的优势,上面已经介绍了,质量方面,膜片的焊接技术和充油技术也很重要。如果膜片焊接技术不好,当测量中存在过压或负压时会造成感压膜片失去弹性作用导致测量终止。充油技术也很重要。充的硅油量要适量,如果油少了,测量值会慢慢漂移偏低,充得太多,温度变化时可能引起膜片膨胀变形等后果。差压式密度计是一款简单、实用、性价比高的产品。我公司的产品在东湖高新安庆电厂、大唐电信韩城电厂、北方联合电力临河电厂、丰镇电厂、攀钢、链钢、轧钢等石灰石湿法脱硫中都运行良好。

  • 焦炉烟气脱硫脱硝技术应用

    1、前言  在烟气治理领域焦炉烟气脱硝一直是时下关注的重点,特别是国家颁布了最新的《炼焦化学工业污染物排放标准》之后,对焦化烟气脱硝技术提出了更高的要求,本文针对焦炉烟气脱硫脱硝技术进行阐述,希望能给钢铁企业提供一定的借鉴价值。  2、脱硫脱硝工艺及原理  2.1 密相干塔脱硫+SCR脱硝技术  密相干塔脱硫+SCR脱硝技术是利用脱硫脱硝等各分系统的协同组合,实现焦炉烟气大气污染物的协同治理,具有良好的脱硫脱硝除尘效果和技术经济性,正在逐步被国内各大钢厂所采用。其中脱硝采用烟气经热风炉升温后(烟气温度280—320℃)的准低温SCR技术,脱除效率高,运行稳定可靠,脱硝后烟气利用余热锅炉进行热量回收。  2.2 半干法SDA脱硫+SCR脱硝技术  半干法SDA脱硫+SCR脱硝的主要流程为:废气首先进入脱硫塔,在脱硫塔内进行脱硫;从脱硫塔出来的脱硫后烟气进入除尘装置,烟气先经除尘器布袋除尘,除尘后的烟气与加入的还原剂(氨气)充分混合,混合后的烟气进入脱硝催化剂层,在催化剂作用下发生还原反应,脱除NOx;净化后的洁净烟气经过系统引风机送回烟囱排放。该工艺采用低温脱硝工艺,在脱硝之前采用半干法高效脱硫并除尘,延长低温脱硝催化剂在高效脱硝区的使用寿命,降低烟气净化工艺运行费用。主要工艺流程图如下:  3、两套脱硫脱硝装置的优越性  3.1 密相干塔脱硫+SCR脱硝技术的优势  3.1.1对脱硫脱硝原料品质要求低,价格低廉  该脱硫脱硝使用的原料为CaO和自产氨水,CaO的价格相对便宜,而且原料充足,脱硝效果良好。脱硝效率在80%以上。  3.1.2、节能效果良好  脱硝后的烟气经余热锅炉进行余热回收,除盐水吸收热量最终形成饱和蒸汽,送至焦化厂蒸汽总管,降低能源消耗,余热锅炉采用全自动运行。  3.1.3、自动化性能高,安全性能好  整个过程采用自动控制,工艺流程简单,设备少,容易操作。热风炉程序设有自动点火和自动吹扫操作,当高炉煤气压力较低时,可以适当补充焦炉煤气,提高炉膛温度,进而提高废气温度,满足脱硝要求。  3.2 半干法SDA脱硫+SCR脱硝技术的优势  3.2.1采用旋转喷雾干燥法(SDA法)进行高效低温降烟气脱硫,满足SO2排放要求的同时,吸附烟气中焦油等粘性物质,降低烟气中SO2及其他组分對低温脱硝效率的影响;并可根据烟气入口SO2浓度调节脱硫剂溶液的喷入量,实现在满足排放要求的前提下减少脱硫剂的使用量,以最经济的方式运行。  3.2.2采用低温脱硝催化剂利用NH3-SCR原理进行低温脱硝。此种催化剂对焦炉烟气具有很强的适应性,具有良好的低温活性,焦炉煤气升温幅度小,降低了高炉煤气的用量。  3.2.3脱硝前除尘,减少烟气中的粉尘在通过脱硝催化剂层时对催化剂表面的磨损,可以有效延长脱硝催化剂的使用寿命,减少脱硝催化剂的用量,同时可以脱出烟气中的粉尘等颗粒物,使烟气的颗粒物排放达标。  4、结语  通过两套脱硫脱硝装置的应用,焦炉废气中的颗粒物、SO2和NOx等三大指标全部满足国家特排标准,氮氧化物和颗粒物已经完全实现了超低排放,确保了焦炉生产稳定,有很好的推广价值。

  • 天然气净化脱硫剂、脱硫石膏

    [font=微软雅黑][size=16px][color=#161616]天然气净化脱硫剂、脱硫石膏属于固体废物,不属于危险废物。天然气脱硫剂主要成分为氧化铁,本身不具有危险特性,未纳入《国家危险废物名录》(2016版),但天然气脱硫剂往往含有二氧化硫或其他有机成分,部分省市在管理过程中将其参照危险废物进行管理,提高管理级别。[/color][/size][/font][font=微软雅黑][size=16px][color=#161616]普通烟气脱硫剂与脱硫石膏最后成分主要为硫酸钙,不属于危险废物。如果脱硫剂、脱硫石膏中混入了其他危险废物(如重金属、焚烧飞灰),按照危险废物混合原则,按照危险废物进行管理。[/color][/size][/font]

脱硫塔密计相关的耗材

  • 脱硫废水pH电极
    脱硫废水pH电极 脱硫废水主要来自燃煤电厂运行过程,脱硫废水含盐量高,污染物种类多,成分复杂,具有高浊度、高硬度的特点。无论是直接排放还是并入市政污水厂都对环境造成不利的影响。相关联合会对脱硫废水排放制定了相应的控制标准,其中pH值是脱硫废水处理系统出口的必测指标之一。一般的pH电极在这种高浊、高硬度,高盐量的废水中使用效果差强人意。英国GREENPRIMA公司为脱硫废水开发了专用电极,即脱硫废水pH电极Bsens120/120T。 脱硫废水pH电极目前已有很多的现场使用案例。 根据用户需求,如不需温度补偿可选择脱硫pH电极Bsens120, 如需要温度补偿请选择脱硫pH电极Bsens120T.脱硫pH电极Bsens120/120T技术参数: 测量范围: pH0...14 温度范围:-5...100℃ MAX工作压力:6 bar 电极材质:玻璃 电解液:聚合物 参比系统:Ag/AgCl cartridge 阻抗: ≤300Ω at 25℃ 电极长度:120mm 电极直径:12mm 连接:PG13.5 固定 膜: S-玻璃 温度传感:PT1000 ZUI小浸没深度:20mm 零点:0±20mV 灵敏度:57...59mV/pH at 25 ℃ 水样最小电导:150μs/cm响应时间:pH4...7
  • 上海博取CPH809型进口脱硫PH电极
    CPH809型进口脱硫PH电极脱硫pH电极用于烟气脱硫中的pH测量,该电极采用凝胶电极,免维护,电极在高温或高pH值下仍能保持高精度。一、PH电极基本原理:PH测量中使用的电极又称为原电池。原电池是一个系统,它的作用是使化学能量转成为电能。此电池的电压被称为电动势(EMF)。此电动势(EMF)由二个半电池构成。其中一个半电池称作测量电池,它的电位与特定的离子活度有关;另一个半电池为参比半电池,通常称作参比电极,它一般是与测量溶液相通,并且与测量仪表相连。二、技术参数:1、测量范围:0-14PH2、温度范围:0-95℃3、耐压:0.6MPa4、材质:PPS/PC5、斜率:96%6、零点电位:7PH±0.37、安装尺寸:上下3/4NPT管螺纹8、连接方式:低噪音电缆线直接引出9、应用:用于各种工业废水、环保水处理,烟气脱硫中的pH测量
  • 气相色谱脱氧管
    不锈钢、有机玻璃色谱过滤器(脱氧管、脱水管、脱硫管、脱CO管、脱CO2管、气体净化管)脱氧管:脱氧管有不锈钢脱氧管和有机玻璃透明脱氧管两种脱氧管规格Φ40mm*280mm;M8*1Φ3.2接口,常温下脱氧深度可达0.01ppm,可从外观直接观测脱氧管的使用情况。接口规格如有特殊要求可订制,须注明。1.接口规格如有特殊要求可定制,必须注明。2.入口气体压力不得0.5Mpa,最大流量5L/min。3.在常温下可直接除去氢、氮、氩、氦、甲烷、一氧化碳、乙烯等气体中的杂质氧,使残余氧量小于0.01ppm。4.每支脱氧管可脱掉5L纯氧,脱氧后管内脱氧剂变为灰黑色,可观察脱氧管的使用情况。当脱氧剂全部变色后,用户可以与我们厂家联系进行再生,使得脱氧管可以重复利用。净化管透明脱水管、不锈钢脱水管、不锈钢脱一氧化碳管、不锈钢脱氢管、不锈钢脱卤管、不锈钢脱硫管、不锈钢脱烃管、不锈钢脱二氧化碳管,接头可做各种英制、公制规格不锈钢净化管系列:名称型号脱出气体使用温度残留量不锈钢脱氧管TBF-1O2、H2O、CO2常温O2≤0.01ppm不锈钢脱水管TBF-1H2O常温H2O≤0.1ppm不锈钢脱CO管TBF-3CO、CH4、H290~150℃CO≤0.1PPM不锈钢脱氢管TBF-4H2、CO、CH4150~200℃H2≤0.1ppm不锈钢脱卤管TBF-5卤化物常温卤化物≤1ppm不锈钢脱硫管TBF-6硫化物常温硫化物≤1ppm不锈钢脱烃管TBF-7H2、CO、CH4350~400℃CmHn≤0.1ppm不锈钢脱CO2管TBF-8H2O、CO2常温CO2≤0.1ppm1.规格Φ30mm*280mm M8*1Φ3.2接口。接口规格如有特殊要求可定制,须注明。2.入口气体压力不得0.5Mpa,最大流量5L/min。3.不锈钢系列管耐压较高,且可以在一定温度下使用,客户可根据自己的设备的相关情况选择。4.常温下一般脱出相应的气体纯度到0.1ppm,如果想深度脱掉相关杂质,可配合再生炉使用,在高温下脱掉的相应杂质可以达到0.01ppm,提高气源或样品气体浓度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制