太阳能电池载流子迁移率测试仪

仪器信息网太阳能电池载流子迁移率测试仪专题为您提供2024年最新太阳能电池载流子迁移率测试仪价格报价、厂家品牌的相关信息, 包括太阳能电池载流子迁移率测试仪参数、型号等,不管是国产,还是进口品牌的太阳能电池载流子迁移率测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳能电池载流子迁移率测试仪相关的耗材配件、试剂标物,还有太阳能电池载流子迁移率测试仪相关的最新资讯、资料,以及太阳能电池载流子迁移率测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

太阳能电池载流子迁移率测试仪相关的厂商

  • 400-860-5168转1431
    巨力科技有限公司专门经销欧美、日本等国家制造的先进科学仪器,为客户提供完备的售前咨询和售后服务、技术支持。目前产品涵盖材料科学、微纳米技术、表面测量及表征、半导体、光伏和生命科学等领域。 主要产品:d33测量仪,压电系数测试仪,精密压电测试仪; 电容充放电测量系统高压漏电流及热释电测量系统电滞回线及高压介电击穿强度测量系统低温宽频介电测量系统高场宽频谱介电测量系统kSA MOS US薄膜应力测量系统,kSA MOS Thermal Scan薄膜热应力测量系统,kSA MOS原位薄膜应力测试仪,kSA MOS薄膜残余应力测试仪; kSA 400 RHEED 分析系统; kSA BandiT 测温系统;石磨盘发射率测量系统;kSA RateRat沉积速率检测仪; ALD 原子层沉积系统 碳纳米管生长系统 纳米碳制备CVD炉 石墨烯制备系统SPD喷雾热解成膜系统太阳能电池量子效率测试系统/光谱响应测量系统/IPCE测量系统; AAA级太阳光模拟器,全光谱太阳光模拟器(A+A+A+);高准直太阳光模拟器;稳态太阳光模拟器; 单体测试仪,太阳能电池IV测试仪,全自动太阳能电池IV测试; 大面积组件太阳能模拟器及IV测试系统; 有机太阳能电池太阳光模拟器;光催化太阳光模拟器;有机半导体载流子特性测量系统有机/钙钛矿太阳能电池载流子测量系统钙钛矿太阳能电池/LED寿命分析系统OLED光谱分析系统有机/钙钛矿太阳能电池扩散长度测量系统有机/钙钛矿太阳能电池量子效率测量系统有机/钙钛矿太阳能电池缺陷测量系统有机/钙钛矿太阳能电池制备系统实验室涂布机等等
    留言咨询
  • HT ITALIA来自于美丽的欧洲小镇——意大利法恩莎,公司自1983年成立以来,产品年销售额超过4000万欧元。并在2009年在中国广州建立办事处,负责中国地区的产品销售和售后服务。 HT ITALIA公司设立专业的研发团队,在1992年研制生产出HT2038,1999年研制生产了世界上第一台带电能质量分析仪功能的便携式多功能电气安全测试仪——GENUIS 5080,在2001推出具有三相电能质量分析仪功能的多功能电气安全测试——GSC系列,刷新了便携式仪器的多功能之最。2007年HT公司开始涉及太阳能光伏系统测试,以提供太阳能光伏电站的现场测试仪表,HT可提供全面的太阳能光伏电站测试仪表:并网太阳能光伏电站性能验证测试SOLAR300N,太阳能电池I-V特性曲线分析测试仪I-V400,离网太阳能光伏电站性能验证测试SOLAR I-V等。近年来,HT公司又基于自身的设计现场测试理念,推出自主品牌的全新系列红外热像仪产品,以充分满足客户的个性化需求,HT品牌的红外热像仪家族包括:THT41/42/44的经济型系列,THT49的专业级红外热像仪和THT50专家型红外热像仪。现在HT公司拥有:红外热成像仪,电气安全测试仪(含:绝缘电阻测试仪,接地电阻测试仪,漏电保护开关-RCD测试仪,耐压测试仪和多功能电气安全测试仪)、电能质量分析仪、通用测试仪表(含:数字万用表,数字电流钳表,红外测温仪,数字测温仪,数字噪声计,激光测距仪等)、GEF专业绝缘工具(含:绝缘镙丝批,各种绝缘剪钳,各种型号的工具套包,工具箱等)等系列产品。
    留言咨询
  • 广州三赫太阳能科技有限公司是领先的太阳能光伏产品制造商、系统集成服务商。致力于为客户提供个性化、专业化、系统化的太阳能光伏应用工程和风光互补系统工程设计、生产、安装及维护服务。是一家专业从事新能源科技研究及产品开发、生产于一体的高新科技企业。公司技术力量雄厚、生产设备精良、生产工艺先进,拥有高级工程师和专业技术人员团队。  自创建以来,一直坚持绿色环保、节能减排、科技创新的思想,研发并生产了一系列太阳能光伏发电产品,广泛应用于家庭照明、移动电源、通信设备、森林防火、抽水蓄能、道路监控、路灯照明、园林设施、农场养殖、野外露营、船泊照明、屋顶阁楼排气扇、小型电站、航标导航、沙漠山区、农村菜地、无电农村的生活及生产等用电,解决了电网延伸困难地区用电难的问题。产品已畅销欧美、非洲、东南亚等市场,并受到用户一致好评。产品通过了CE、Rohs等认证,并有多项产品获得获得国家专利。 在太阳能应用方面,我们掌握了大量实际应用经验,可全方位为客户提供解决方案,也可按客户的需求量身订造产品,真正做到节约资源,环保节能,让产品稳定可靠的情况下成本降到最低,用户最终受益更高!
    留言咨询

太阳能电池载流子迁移率测试仪相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统功能 适用电池:全系列太阳能电池 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、内量子效率、反射率、透射率、积分短路电流密度、光束诱导电流、量子效率制图、反射率制图、光束诱导电流制图 可测样品尺寸:156mmX156mm 可测样品模式:交、直流测试法、交、直流偏置光测试法 太阳能电池量子效率测试系统特点 1. 全光谱太阳光模拟,双光源切换可选,高光强稳定性 系统采用符合最新IEC60904 标准的双光源配置,采用氙灯和溴钨灯来覆盖太阳光谱的整个范围。无论是氙灯还是溴钨灯,都可以提供超高的光强稳定性,从而保证系统测试结果的高重复性。当不同的波段光谱测量时,选择合适的光源波长与相匹配的标准探测器,可以最大限度的优化太阳能电池量子效率的测试结果。 1000s 的持续光强测试与局部放大图测试光源:氙灯或溴钨灯 测试时间:1000s 光源时间不稳定度:0.8% 2. 高重复性测试结果系统从光源的稳定性、单色仪的波长准确性与重复性、特有的光路设计、样品的加持、数据的采集方式上确保测试结果的高重复性。 5 次每次间隔1 小时的测试结果与全波段重复性测试 3. 窗口化软件设计 在系统软件设计中,将实用的仪器控制部分汇总到一个界面,将实用的仪器参数设置部分汇总到另一个界面,从而最大限度的将控制操作简化,实现一键运行。 仪器参数设置可以按照不同样品的测试需求保存为独立的配置文件并导出,从而实现快速还原与测试的功能,随时调出原有保留的参数设置。同样配置的不同系统之间也可以统一相互调用。系统软件可以准确得到理论积分电流密度值,并按照需求保存原始数据,支持ASCII、Excel、XML 等多种格式数据导出。以便使用主流数据处理软件调用,方便后续数据处理与分析。 4. 快速Mapping功能快速Mapping 功能包括:1)量子效率Mapping 功能2)反射率Mapping 功能3)光束诱导电流(LBIC)功能该功能针对100mmX100mm 以上的较大面积的成品太阳能电池片,用户可以从Mapping 功能获得的数据中得到关于电池片的少子扩散情况、电池片缺陷分布等信息。缺陷分布等信息 上图显示6 寸单晶硅电池IQE mapping,样品右上角IQE 数值明显低于其他区域,因为那里有肉眼无法直接观察到的缺陷上图显示单晶硅电池的反射率mapping,均匀度明显不好,这显示出酸洗过程中酸液有残留,影响了整个电池的反射率均匀性 上述Mapping 数据是在同一个电池片上用400nm、650nm 和950nm 三个波长做QE(LBIC) 扫描得到的。650nm 和950nm 的扫描数据显示电池具有良好的均匀性,但400nm 扫描数据上,我们发现电池边缘有不均匀区域。 不同的测试波长对样品的穿透深度不同。蓝光波长短,穿透深度浅,因此很容易将样品制备过程中产生的表面裂痕等问题反映出来; 近红外光波长相对较长,穿透深度更深,更加适用于扩散长度的计算,从而能反映样品材料内部的缺陷等问题。
    留言咨询
  • SolarIV系列太阳能电池伏安特性测试系统在太阳能光伏器件的所有特性表征手段中,I-V 特性测试无疑是最直观、最有效、最被广泛应用的一种方式。通过测量I-V 特性曲线,并进一步进行数据处理与分析,可以直接交接到光伏器件的主要物理性能,包括光电转换效率、短路电流、开路电压和填充因子等。这些数据可以为光伏器件的研究、质检以及应用提供可靠的依据。卓立汉光提供高性价比的I-V 特性测试系统,并提供最完善、最专业的技术支持。 SolarIV系列太阳能电池伏安特性测试系统主要功能: 测量太阳能电池在光照条件和暗场条件下的I-V曲线 测量太阳能电池短路电流、短路电流密度、开路电压、*大功率、*大功率电流、*大功率电压、填充因子、光电转换效率 可实现正反向调速扫描与暗电流扣除功能 标准太阳电池校准功能SolarIV系列太阳能电池伏安特性测试系统主要特点: 完整I-V特性测试和数据处理分析的解决方案 多种太阳模拟器选型,满足不同测试需求 可更换照射方向,适配多种测试环境 使用高精度数字源表,提供精确测量结果 测试方法符合IEC国际标准 最小化探针阴影,提高测量精度 温度控制功能,符合IEC标准测试条件 真空吸附功能,样品固定更为方便 图形化界面,软件操作更加方便 支持ASCII、Excel、XML等多种格式数据导出 报表打印功能,自动生成完整测试报告SolarIV系列太阳能电池伏安特性测试系统选型规格与附件1.系统选型表系统名称系统说明SolarIV-150A 150W AAA太阳能电池I-V特性测试系统150W AAA级太阳光模拟器、Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2) SolarIV-150 150W ABA太阳能电池I-V特性测试系统 150W AAA级太阳光模拟器、Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2) SolarIV-500A 500W AAA太阳能电池I-V特性测试系统500W AAA级太阳光模拟器、Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2) SolarIV-500 500W ABA太阳能电池I-V特性测试系统500W ABA级太阳光模拟器、Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2) SolarIV-1000A 1000W AAA太阳能电池I-V特性测试系统1000W AAA级太阳光模拟器、Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2) SolarIV-1000 1000W ABA太阳能电池I-V特性测试系统1000W ABA级太阳光模拟器Keithley 2400数字源表(IV-2400) 伏安特性测试专用分析软件(IV-Software) 标准太阳电池(QE-B1)、样品台(IV-F2)2.系统规格系统名称辐照面积(mm) *大辐照度(W/m2) 电流量程(A) 电压量程(V) 光谱匹配度不均匀度(%) 不稳定度(%) SolarIV-150A 40×40 1200 0-1A 0-20V AM 1.5G A级匹配2% A级2% A级SolarIV-150 50×50 1200 0-1A 0-20V AM 1.5G A级匹配5% B级2% A级SolarIV-500A 75×75 1200 0-1A 0-20V AM 1.5G A级匹配2% A级2% A级SolarIV-500 100×100 1200 0-1A 0-20V AM 1.5G A级匹配5% B级2% A级SolarIV-1000A 100×100 1200 0-1A 0-20V AM 1.5G A级匹配2% A级2% A级SolarIV-1000 156×156 1200 0-1A 0-20V AM 1.5G A级匹配5% B级2% A级 2.系统型号型号说明Sirius-SS150A 150W AAA级太阳模拟器,40mm×40mm有效辐照面积,向上出光Sirius-SS150 150W ABA级太阳模拟器,50mm×50mm有效辐照面积,向上出光Sirius-SS150A-D 150W AAA级太阳模拟器,40mm×40mm有效辐照面积,向下出光Sirius-SS150-D 150W ABA级太阳模拟器,50mm×50mm有效辐照面积,向下出光Sirius-SS150A-L 150W AAA级太阳模拟器,40mm×40mm有效辐照面积,向左出光Sirius-SS150-L 150W ABA级太阳模拟器,50mm×50mm有效辐照面积,向左出光Sirius-SS500A 500W AAA级太阳模拟器,75mm×75mm有效辐照面积Sirius-SS500 500W ABA级太阳模拟器,100mm×100mm有效辐照面积Sirius-SS1000A 1000W AAA级太阳模拟器,100mm×100mm有效辐照面积Sirius-SS1000 1000W ABA级太阳模拟器,156mm×156mm有效辐照面积IV-2400 Keithley 2400数字源表,电流测量量程0-1A,电压输出范围0-20V IV-2440 Keithley 2440数字源表,电流测量量程0-5A,电压输出范围0-40V IV-Software 伏安特性测试专用分析软件QE-B1 标准太阳电池,包含中国计量科院研究院标定证书QE-G5 AM 1.5G太阳光谱校正滤光片
    留言咨询

太阳能电池载流子迁移率测试仪相关的资讯

  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 南开刷新有机太阳能电池光电转化效率最高纪录
    p style="text-align: justify " 南开大学化学学院陈永胜教授领衔的团队在有机太阳能电池领域研究中获突破性进展。他们设计和制备的具有高效、宽光谱吸收特性的叠层有机太阳能电池材料和器件,实现了17.3%的光电转化效率,刷新了目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录。这一最新成果让有机太阳能电池距离产业化更近一步。美国东部时间8月9日下午,介绍该研究的论文在线发表于国际顶级学术期刊《Science》上。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/62f3136a-548f-4a98-8fae-d391287a7e56.jpg" title="1.jpg"//pp style="text-align: justify "有机太阳能电池的柔性特征和本工作主要结果/pp style="text-align: justify " 有机太阳能电池是解决环境污染、能源危机的有效途径之一,其在质轻、柔软、半透明、可大面积低成本印刷、环境友好等方面都远远优于传统太阳能电池,被认为是具有重大产业前景的新一代绿色能源技术。然而,实现高效率的太阳能电能转化是有机太阳能电池研究的核心难题。而这一难题能否解决也直接决定着有机太阳能电池能否走出实验室、走进人类的实际生产生活。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/243c9699-f8c4-4bb5-89cc-a57b9b15c3bc.jpg" title="2.jpg"//pp/pp style="text-align: justify " 近年来,虽然有机太阳能电池研究获得了迅猛发展,实现了14%~15%的光电转化效率,但仍远远落后于其它主要以无机材料(如硅)为主的太阳能电池转化效率。“主要原因在于,有机高分子材料本身较低的载流子迁移率限制了活性层厚度,因此太阳光不能够获得充分和有效的利用。”陈永胜说。/pp style="text-align: justify " 据介绍,叠层太阳能电池不仅可以克服上述难题,还可以充分发挥有机和高分子材料结构和性质优良的可调性特征,通过叠层电池中前后电池里活性材料互补的光吸收,更有效地利用太阳光,从而实现更高的能量转换效率。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/54c72967-855b-4761-8dbd-15b23150ffa7.jpg" title="3.jpg"//pp/pp style="text-align: justify " 陈永胜教授团队与中科院国家纳米科学中心丁黎明教授、华南理工大学叶轩立教授研究团队合作,首先利用半经验模型,从理论上预测了有机太阳能电池实际可以达到的最高效率和理想活性层材料的参数要求。在此基础上,他们以在可见光区域和近红外区域具有良好互补吸收的PBDB-T:F-M和PTB7-Th:O6T-4F:PC71BM分别作为前电池和后电池的活性层材料,采用成本低廉、与工业化生产兼容的溶液加工方法,制备得到了高效的有机太阳能垫层器件,获得了17.3%的验证效率。/pp style="text-align: justify " 该团队研究人员介绍,依据该工作提出的模型和设计原理,结合有机高分子材料结构的多样性和可调性,通过对材料和器件的进一步优化,非常有望获得和无机材料类似的能量转化效率,从而为有机太阳能电池的产业化提供有力技术支撑。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/3a090dba-e3eb-4db6-9406-053ba9748a44.jpg" title="4.jpg"//pp/pp style="text-align: justify " “依据我们提出的半经验模型预测,有机太阳能电池(垫层)的最高转化效率理论上可以达到20%以上。本次工作中,我们同时也对电池的寿命进行了初步试验,发现166天实验后电池效率仅降低4%。未来,我们将继续设计新的材料,在进一步提高能量转化效率的同时,针对电池寿命问题进行系统的实验,争取让有机太阳能电池早日从实验室走向实际应用。”陈永胜说。/pp style="text-align: justify " 据了解,该研究得到了科技部、国家自然科学基金委、天津市科委和南开大学的项目支持。/ppbr//p
  • 化学所在钙钛矿太阳能电池材料与器件方面取得系列进展
    p style="text-indent: 2em text-align: justify "近年来,钙钛矿太阳能电池因其高的转换效率、简单的制备工艺和低廉的制造成本受到了全球学术界和产业界的广泛关注,发展迅速。钙钛矿太阳能电池实际应用的重要瓶颈和关键问题在于如何实现低成本、大面积、高效率器件及解决稳定性的难题。/pp style="text-indent: 2em text-align: justify "在中国科学院战略性先导科技专项和国家自然科学基金委的支持下,中科院化学研究所分子纳米结构与纳米技术重点实验室研究员胡劲松课题组科研人员在这一领域开展了相关研究,并于近期与相关合作者一起取得了系列新进展。他们开发了一种风刀涂布方法,实现了大面积钙钛矿薄膜、电子传输层(ETL)和空穴传输层(HTL)的高质量涂布,在全程不需旋涂和反溶剂的情况下,获得了转换效率(PCE)可达20%以上的电池器件(图1),为高效率钙钛矿光伏器件的低成本规模化制备提供了一种思路。相关工作发表于Joule (DOI:10.1016/j.joule.2018.10.025)上。在HTL方面,开发了新型低成本、易制备的二维共轭有机小分子空穴传输材料OMe-TATPyr代替spiro-OMeTAD,实现了平均20%的PCE(Angew. Chem. Int. Ed. 2018, 57, 10959)。在ETL方面,研究人员发现在无ETL时透明电极与钙钛矿薄膜间的费米能级差距减小,接触界面能带弯曲减弱,因此对光生电子的抽取及光生空穴的排斥作用同时减弱,使得电子在界面的转移效率急剧下降,导致载流子复合严重,器件PCE降低。这一新的理解提高了对钙钛矿光伏器件结构与异质结界面的认识,阐释了无ETL器件PCE低的原因。据此,他们提出通过延长载流子寿命来解决无ETL钙钛矿光伏器件转换效率低的新方案。发现当载流子寿命接近微秒时,无ETL器件的PCE可以接近传统p-i-n结构器件,并且获得了PCE为19.52%的无ETL钙钛矿光伏器件(图2)。这些结果有助于解决钙钛矿器件对传统器件结构的依赖问题,也为钙钛矿光伏技术的低成本规模化制备提供了多样化的选择。相关工作发表于Chem上(Chem, 2018, 4, 2405-2417)。/pp style="text-indent: 2em text-align: justify "  钙钛矿电池的稳定性是其应用的瓶颈和关键。研究人员在钙钛矿层与HTL间引入高迁移率疏水共轭高分子界面层,一方面改善空穴的提取效率,另一方面可以有效阻隔湿气与传输层中添加剂对钙钛矿层的侵蚀,从而显著提高了钙钛矿太阳能电池的空气稳定性和光电转换效率(Solar RRL, DOI: 10.1002/solr.201800232,inside cover;Nano Res., 2018, 11,185-194)。相比于有机无机复合钙钛矿材料,纯无机钙钛矿材料表现出更优异的热稳定性。其中,立方相CsPbI3具有合适的带隙而备受关注,但其立方相室温下是热力学不稳定相,因此理解立方相CsPbI3在合成与器件制备过程中的相不稳定性机制,进而制备室温下相稳定的光伏相CsPbI3,对于其在光伏和光电领域中的应用具有重要意义。研究人员近期首次从原子尺度上观测到了极性溶剂会诱导立方相CsPbI3纳米晶晶格发生畸变,进而相变失稳,从实验和原理上解释了极性溶剂对立方相CsPbI3纳米晶稳定性的影响,揭示了极性溶剂诱导立方相CsPbI3纳米立方体相变的机制及其多级次自组装成单晶纳米线和微米线的机制(图3)。这一研究结果对理解立方相CsPbI3相不稳定机制提供了新的认识,并为立方相CsPbI3的制备及保存使用过程中的溶剂选择提供了指导。相关工作发表于J. Am. Chem. Soc., 2018, 140, 11705–11715,并入选当期封面。/pp style="text-indent: 2em text-align: justify "在此基础上,研究人员发展了一种方法,通过高介电常数质子性溶剂控制CsPbI3钙钛矿前驱体结晶时的表面能,在不引入有机配体或进行金属/卤素掺杂的情况下,利用一步溶液沉积和低温退火工艺,获得了在室温下稳定的新光伏相-正交相g-CsPbI3薄膜。通过XRD精修确定了其晶胞参数,研究了薄膜的形成机制和能带结构,并构建了基于g-CsPbI3薄膜的平面异质结太阳能电池,获得了11.3%的PCE(图4),这是目前为止报道的全无机纯CsPbI3钙钛矿太阳能电池的最高效率。由于所得g-CsPbI3薄膜在室温下的热力学稳定性,电池表现出显著改善的长达数月的空气稳定性。该研究首次报道了室温下热力学稳定的新型正交光伏相g-CsPbI3薄膜及其高效率电池器件,为解决全无机CsPbI3钙钛矿光伏相室温下结构不稳定问题提供了全新的视角和思路。紧接上述极性溶剂对立方相CsPbI3纳米晶稳定性影响的工作,相关研究结果以全文形式发表于J. Am. Chem. Soc., 2018, 140, 11716–11725。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/f0d4fd56-3c93-4498-8a6b-2116edd0aad2.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: left "图1. 全程风刀涂布制备高效率钙钛矿太阳能电池/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/ffccfd44-cbfd-433a-8ac8-ba29e66f6683.jpg" title="2.png" alt="2.png"//pp style="text-indent: 2em text-align: left "图2. 高效率无电子传输层钙钛矿太阳能电池/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/94a0fedd-8d1f-40c2-9b2f-95eea8b72344.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em text-align: left "图3. 极性溶剂诱导立方相CsPbI3纳米晶的晶格畸变及其多级次自组装/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/ae415cdf-6e56-4dc1-832d-ba11459b3873.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em text-align: left "图4. 室温热力学稳定的正交光伏相g-CsPbI3薄膜及全无机钙钛矿太阳能电池/p

太阳能电池载流子迁移率测试仪相关的方案

  • 使用光谱和寿命共焦光致发光映射在 VACNT 钙钛矿太阳能电池中成像电荷提取
    由于钙钛矿具有高载流子迁移率、大的吸收系数、可调带隙和长载流子扩散长度等特性,卤化物钙钛矿太阳能电池成为目前研究热点。如何有效地将电荷载流子从器件中提取出来是太阳能电池设计中的挑战之一。为了帮助提取电荷,通常会将电子和空穴提取层合并到器件中。垂直排列的碳纳米管 (VACNTs)是目前研究较多的太阳能材料,常被用于空穴提取层。VACNTs空穴提取层的太阳能电池如图 1 所示。VACNTs 在 ITO 电极顶部以网格状图案生长,以实现改进的电荷提取,同时保持ITO/VACNTs 具备较高的光传输功能。光致发光 (PL)强度与钙钛矿中电荷载流子的数量成正比,因此对电荷转移到相邻层中很敏感。这使得基于 PL 的技术对于研究新提取层的性能非常宝贵。在本文中,空穴转移到基于 VACNT 的空穴提取层是通过使用爱丁堡仪器 RMS1000 共焦显微拉曼成像获取到的。
  • 南京大学谭海仁团队钙钛矿/晶硅叠层太阳能电池实现大规模制备
    钙钛矿太阳能电池(PSCs)自2009年报导以来,由于其高效能、低成本和简单制备工艺迅速引起了学术界和工业界的广泛关注。其核心材料钙钛矿具有优异的光电特性,如高吸光係数、长载流子扩散长度和高载流子迁移率,使其成为下一代光伏技术的潜力选手。在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,钙钛矿太阳能电池(PSCs) 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。叠层结构的出现自2017开始,在過去三年中,钙钛矿/晶硅叠层太阳能电池的效率取得显着的突破。钙钛矿/晶硅叠层太阳能电池,更是被认为是未来实现更高效率和更低成本的理想方案。然而,在空气环境下实现宽带隙钙钛矿 (~1.68 eV) 的可扩展制备一直是一个巨大的挑战,因为水分会加速钙钛矿薄膜的降解。南京大学谭海仁教授团队近期取得重大突破,他们在研究中发现,溶剂的性质对水分干扰的影响程度至关重要。通过深入研究,他们发现正丁醇 (nBA) 由于其低极性和中等挥发速率,不仅可以有效缓解空气环境中水分对钙钛矿薄膜的负面影响,還可以提高钙钛矿薄膜的均勻性,进而实现可扩展制备。
  • “水活化动力钝化技术” 打造高效稳定钙钛矿太阳能电池
    钙钛矿太阳能电池(PSC)近年来发展迅猛,已成为最有潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性和制备工艺仍存在一些挑战,阻碍着 PSC 的大规模应用。提高钙钛矿电池效率和稳定性的一个重要方法是缺陷钝化,以减少缺陷态和陷阱态,提高电荷载流子传输效率。在最近发表在《Nature》期刊的一项重要研究中,由香港城市大学冯宪平教授和英国牛津大学 Henry J. Snaith 教授共同领导的团队,发展出了一种具有突破性的水活化动力钝化策略,为高效且稳定性的钙钛矿太阳能电池技术的实现铺平了道路。

太阳能电池载流子迁移率测试仪相关的资料

太阳能电池载流子迁移率测试仪相关的论坛

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 【科普】有机太阳能电池(OSCs)

    [font=&]太阳能是指太阳的热辐射能,又被称为“太阳光线”。地球上自生命诞生以来。就主要依靠太阳提供的热辐射生存。而在化石燃料日趋减少情况下,面对能源的巨大需求和日趋严重的环境污染问题,太阳能是大自然赋予人类的一个取之不尽、用之不竭的能源宝库。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳直接发电的光电半导体薄片。它只要被满足在一定光照条件下,瞬间就可以输出电压及在有回路的情况下产生电流。在物理学上可以称为太阳能光伏。太阳能电池是通过光电效应或者光化学效应直接把光能转换成电能的装置。[/font][font=&]目前占主导地位的太阳能电池主要以无机半导体材料构成,主要包括单晶硅、多晶硅和非晶硅无机太阳能电池。经过多年的发展,硅太阳能电池技术最为成熟,在大规模应用和工业化生成中占据主导地位。但是,提纯硅工艺复杂,成本高,造成在制造硅太阳能电池过程中能耗大、污染高等问题,同时制备工艺复杂且成产设备昂贵,限制其发展。高效的非晶硅薄膜无机太阳能电池包括硫化镉、碲化镉、砷化镓等多晶薄膜,但是由于镉、砷等元素有毒性,同时会造成严重环境污染,因而这类材料的发展也必然受限。有机太阳能电池,顾名思义,就是由有机材料构成核心部件的半导体材料替代无机材料,以光伏效应而产生电压形成电流,实现太阳能发电的效果。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8748.png[/img] [/font][/align][align=center][font=&]太阳能电池的广阔应用(网络图)[/font][/align][font=&]有机太阳能电池(OSCs)具有低成本、质量轻、超薄、柔性、易于大面积制备等诸多优点,在便携式、柔性电池、光伏建筑供能等领域具有广阔的应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8749.png[/img] [/font][/align][align=center][font=&]柔性透明电极与柔性有机太阳能电池的示意图(南开大学提供)[/font][/align][align=center][font=&][b]有机太阳能电池发展历程[/b][/font] [/align][font=&]1958年美国加州大学伯克利分校Kearns和Calvin将镁酞菁夹在两个功函不同的电极之间,检测到了200 mV的开路电压;表现出了光伏效应,成功制备出了第一个有机太阳能电池(Organic Solar Cells,简称OSCs),但是能量转换效率(Power Conversion Efficiency, 简称PCE)非常低。科学家们也一直在尝试不同的有机半导体材料,但是所得到的PCE都很低。直到1986年,柯达公司邓青云博士创造性制备双层异质结有机太阳能电池,以四羧基苝的一种衍生物(PV)作为受体,铜酞菁(CuPc)作为给体,制备双层活性层,其PEC1%。异质结的引入,就像是给有机太阳能电池注入新鲜血液一样,为其开辟了新的研究方向。有机太阳能电池也逐渐成为科学家的研究热点。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8750.png[/img][/align][align=center][font=&]邓青云教授[/font][/align][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8751.png[/img][/align][align=center][font=&]双层有机太阳能电池结构和PV、CuPc的化学结构[/font][/align][align=center][font=&]Appl. Phys. Lett., 1986, 48, 183-185[/font][/align][font=&]1992年,Sariciflci等人发现,激子在有机半导体材料和富勒烯的界面上可以快速实现电荷分离,并且激子分离成的电子和空穴在界面上不复合,从而更利于电荷的收集。次年他们首次将富勒烯作为活性层中的受体材料应用于有机太阳能电池器件中,并且取得较好的光伏器件能量转换效率。在很长一段时间内,富勒烯都成为有机太阳能电池的主要受体材料。1995年,诺贝尔化学奖得主Heeger等人首次提出体异质结结构(Bulk Heterojunction Structure)的有机太阳能电池,创造性将富勒烯衍生物(PCBM)和聚苯乙炔(MEH-PPV)溶液混合,并旋涂加工,获得具有三维互传网络结构的有机太阳能电池活性层,其PCE高达2.9%,自此,体异质结有机太阳能电池成为主流,并且进入快速发展期。2003年Sariciflci等人使用聚3-己基噻吩(P3HT)作为给体,富勒烯衍生物(PC61BM)为受体,制备体异质结有机太阳能电池,PCE达到3.5%。随着加工工艺的不断改善和提高,基于富勒烯衍生物作为受体材料的有机太阳能电池PCE已经超过10%。同时,性能优良的给受体有机半导体的不断被开发,PCE不断提高。中科院化学所李永舫院士、华南理工大学曹镛院士、中科院化学所侯剑辉研究员、北京大学占肖卫教授、南开大学陈永胜教授、香港科技大学颜河教授、中南大学邹应萍教授等国内外众多有机太阳能电池领域的科研团队的不懈努力以及卓越的科研工作,有机太阳能电池的PCE已经达到18%,取得巨大进展。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8752.png[/img][/align][font=&]另外,McGehee教授的研究报告表明,基于P3HT/PC70BM和PCDTBT/PC70BM体系的有机太阳能电池各项器件参数均表现出良好的稳定性,经过理论模拟,有机太阳能电池的的理论寿命可达7年以上。有机太阳能电池的高能量转化效率以及高稳定性,充分展现出其商业应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8753.png[/img] [/font][/align][align=center][font=&]有机太阳能电池工作4400 h之后的器件参数[/font][/align][align=center][font=&]Adv. Energy Mater. 2011, 1, 491–494[/font][/align][align=center][font=&][b]有机太阳能电池的器件参数[/b][/font] [/align][font=&]太阳能电池器件在光照条件下测试电流密度-电压([i]J[/i]-[i]V[/i])曲线,从中可以获得重要的输出特征参数:开路电压([i]V[/i][sub]oc[/sub])、短路电流([i]J[/i]sc)、填充因子([i]FF[/i])以及能量转换效率(PCE)。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8754.png[/img] [/font][/align][align=center][font=&]太阳能电池的电流密度-电压(J-V)曲线[/font][/align][font=&]开路电压([i]V[/i][sub]oc[/sub])是指在没有电流回路(正负电极断路)时经过光照后器件产生的电压,即太阳能电池的最大输出电压,单位为V;开路电压由给体的HOMO能级和受体的LUMO能级的能级差决定。短路电流([i]J[/i]sc)是指在外加电场为零时,受光照的器件在形成回路(正负电极短路)时所能产生的电流,即太阳能电池的最大输出电流;单位为A/cm[sup]2[/sup]或mA/cm[sup]2[/sup]。短路电流可根据[i]J[/i]-[i]V[/i]曲线中,电压为0时的电流值获得。理论上,吸收的光子越多,短路电流越大。填充因子([i]FF[/i])是电池具有最大输出功率时的电流和电压的乘积与短路电流和开路电压乘积的比值,理论最大值为1。能量转换效率(PCE)是指太阳能电池将太阳能转化为电能的效率,是输出功率([i]P[/i]m)与入射光功率([i]P[/i]in)的比值。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8755.png[/img][/font] [/align][font=&]式中[i]V[/i][sub]oc[/sub]是在开路时的光电压;[i]J[/i]sc是在零电压时的电流密度,即短路电流密度;FF为填充因子。当入射光为AM 1.5太阳光时辐射照功率为[i]P[/i]in = 100 mW/cm[sup]2[/sup],这也是实验室实验条件下的常用模拟光照辐射照功率。[/font][align=center][font=&][b]有机太阳能电池的器件结构和工作原理[/b][/font] [/align][font=&]有机太阳能电池的工作原理主要包括四个重要步骤:(1)活性层吸收光子并产生激子;(2)激子扩散到给受体界面层;(3)激子在界面层分离成正负电荷,并迁移至正负电极;(4)正负电极收集正负电荷。[/font][font=&]有机太阳能电池的器件结构可以分为单层Schottky器件、双层异质结器件、体异质结器件和叠层器件等。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8756.png[/img][/font][/align][align=center][font=&]单层Schottky器件结构和工作原理[/font][/align][font=&]由于两个电极功函数不同,有机半导体与具有较低功函数电极之间将形成Schottky 势垒(能带弯曲区域W),即内建电场。光照下,有机半导体材料吸收光后产生激子。由于较大的库仑力使得这些激子不能分离成自由电子和空穴。有机半导体内激子的扩散长度一般都很小,只有扩散到Schottky势垒附近的激子才有机会被分离,所以单层Schottky结构电池的能量转换效率很低,在目前的有机太阳能电池研究中很少再使用这种结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8758.png[/img][/font][/align][align=center][font=&]双层异质结器件结构和工作原理[/font][/align][font=&]在双层异质结器件中,给体和受体有机材料分层排列于两个电极之间,形成平面型给体-受体界面。而且阳极功函数要与给体HOMO能级匹配;阴极功函数要与受体LUMO能级匹配,这样才有利于电荷收集。双层异质结器件结构中电荷分离的驱动力主要是给体材料和受体材料的LUMO能级之差,即给体和受体界面处的电子势垒。在界面处,如果电子势垒较大,大于激子结合能,激子的解离更为有利,电子易转移到有较大电子亲和能的材料上(较低LUMO),从而使得激子有效分离,明显高于单层结构,使得器件性能获得很大提升。双层异质结器件的最大优点是同时提供了电子和空穴传输的材料。当激子在D-A界面产生电荷转移后,电子在受体材料中传输至阴极收集,空穴则在给体材料中传输至阳极收集。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8759.png[/img] [/font][/align][align=center][font=&]体异质结器件结构和工作原理[/font][/align][font=&]在本体异质结器件结构中,给体和受体在整个活性层范围内充分混合,D-A界面分布于整个活性层,其工作原理和双层异质结器件结构相似,都是利用D-A界面效应来转移电荷。主要区别在于:(1)本体异质结中的电荷分离产生于整个活性层,而双层异质结中的电荷分离只发生在界面处的空间电荷区域。因此,本体异质结器件中的激子可以高效解离,同时激子符合降低,从而减少或者避免由于有机物激子扩散长度小而导致的能量损失;(2)由于界面存在于整个活性层中,本体异质结器件中载流子向电极传输主要是通过粒子之间的渗滤作用,双层异质结器件中的载流子传输介质时连续空间分布的给受体,因此双层异质结中具有相对高效的载流子传输效率。[/font][font=&]本体异质结可以通过将含有给体和受体材料的混合溶液以旋涂方式制备,也可以通过共同蒸镀的方式获得,还可以通过热处理的方式将真空蒸镀的平面型双层薄膜转换为体异质结器件结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8760.png[/img] [/font][/align][align=center][font=&]两个子电池组成的叠层器件结构和工作原理[/font][/align][font=&]叠层器件结构电池是将两个或两个以上的电池单元以串联的方式做成一个器件。一般子电池单元按照活性材料能隙不同采取从大到小的顺序从外向背电池串联,即与电池非辐射面(背面)最近的机构单元,其活性层材料的能隙最小。子电池1中产生的空穴和子电池2中产生的电子扩散至连接层并复合,每个子电池中只有一种电荷扩散至相对应的电极。叠层结构电池可利用不同光吸收谱的材料来改善电池对太阳光的吸收,减少高能量光子的热损失,最终提高电池效率。由于串联的叠层电池的开路电压一般大于子单元结构,其转换效率主要受光生电流的限制。因此叠层电池设计的关键是合理地选择各子电池地能隙宽度和厚度,并保证各个电池之间地欧姆接触,以达到高效能量转换效率地目的。[/font][align=center][font=&][b]有机太阳能电池展望[/b][/font] [/align][font=&]有机太阳能电池作为一种新兴高效太阳能电池,近年来得到飞速发展,虽然有机太阳能电池的PCE以及达到18%,初见商业化应用曙光,但是和成熟的无机太阳能电池相比,有机太阳能电池无论从能量转换效率、机理还是器件稳定性等方面都处于尚未成熟阶段。因此,成熟的无机太阳能电池技术以及研究思路对有机太阳能电池的发展具有重要的借鉴意义。挑战与机遇并存,随着科学家对有机太阳能电池的不断深入的探索,高能量转换效率、高稳定性、可大规模生产的有机太阳能电池必将很快问世,有机太阳能电池的商业化前景可期。[/font][font=&]参考文献:[/font][font=&][1] D. Kearns, M. Calvin, J Chem Phys 1958, 29, 950-951.[/font][font=&][2] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183-185.[/font][font=&][3] N. S.Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474 [/font][font=&][4] G. Yu, K.Pakbaz, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 3422-3424.[/font][font=&][5] G. Yu, J. Gao,J. C. Hummelen, F. Wudl, A. J. Heeger, Science1995, 270, 1789.[/font][font=&][6] C. H.Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupré, M. Leclerc, M. D.McGehee, Adv Energy Mater 2011, 1, 491-494.[/font][font=&][7] Y. Cui,H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C.He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 1908205.[/font][font=&][8] 张剑,杨秀程,冯晓东.有机太阳能电池结构研究进展[J].电子元件与材料, 2012, 31(11):75-78.[/font][font=&][9] 黄辉.有机太阳能电池的发展、应用及展望[J].工程研究-跨学科视野中的工程, 2017, 9(06): 547-557.[/font][font=&][10] 袁峰,周丹,谌烈,徐海涛,陈义旺.有机太阳能电池空穴传输材料的研究进展[J].功能高分子学报, 2018, 31(06): 530-539.[/font][align=right][color=#808080]来源:化学通讯微信公众号,闵阳/撰稿[/color][/align]

  • 黑磷-提升太阳能电池效率的新思路

    研制高效的低成本的太阳能电池是全球共同面临的巨大挑战。染料敏化太阳能电池因其具有成本低廉、工艺简单、可小型化、环境友好等优点,展现出广阔的产业化前景。而实现太阳能电池高转化效率的首要途径是尽可能提高太阳光的利用率,这就要求电池电极能最大限度地捕捉太阳发出的各种光线,并实现高效的光电转换。新材料的研发为提升太阳能电池的效率提供了新思路。黑磷,作为一种具有二维层状结构的直接带隙半导体材料,展现出优异的光电性能,被广泛视为新的“超级材料”,在半导体工业、光电器件、光学探测、传感器、光热治疗等多个领域展现出巨大的潜在应用价值。近期研究发现,大小仅为几个纳米的黑磷量子点还具有很高的近红外消光系数,可实现近红外光的高效吸收。近期,中国科学院深圳先进技术研究院喻学锋研究员与中南大学杨英副教授以及肖思副教授等合作,创新性地将黑磷量子点应用于构筑染料敏化太阳能电池的光阴极。团队利用黑磷量子点的近红外强吸收和高光电转换能力,将黑磷量子点沉积于多孔导电聚苯胺薄膜表面,制备出可红外光响应的光阴极,与光阳极形成互补的光吸收,将器件的光吸收范围扩展至可见-红外波段,从而组装成可双面进光的准固态染料敏化太阳能电池。电池性能测试结果表明,沉积黑磷量子点后光阴极实现了对低能红外光子的充分利用,并有效增加了器件的光生载流子浓度,从而将太阳能电池的光电转换效率提高了20%。该研究成果表明黑磷在太阳能电池、光伏器件等领域的巨大应用潜力。相关论文发表在AdvancedMaterials(DOI: 10.1002/adma.201602382),并被选为当期封面故事。巨纳集团低维材料在线商城91cailiao.cn,专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料(包括狄拉克材料),一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硒化钼MoSe2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA.....积极为广大科研院所提供更加优异的低维材料,推动新型材料的研究。

太阳能电池载流子迁移率测试仪相关的耗材

  • 太阳能电池夹具(Jig)
    - C-Si太阳能电池测试.- Bus-Bar接触.- 太阳能电池I-V测试.- 太阳能电池EL成像.联系方式:025-84615783
  • 太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是用途:清洗别名:花篮、承载篮用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
  • PTFE太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是 用途:清洗 别名:花篮、承载篮 用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。 9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制