等离子体增强化学气相沉积设备

仪器信息网等离子体增强化学气相沉积设备专题为您提供2024年最新等离子体增强化学气相沉积设备价格报价、厂家品牌的相关信息, 包括等离子体增强化学气相沉积设备参数、型号等,不管是国产,还是进口品牌的等离子体增强化学气相沉积设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体增强化学气相沉积设备相关的耗材配件、试剂标物,还有等离子体增强化学气相沉积设备相关的最新资讯、资料,以及等离子体增强化学气相沉积设备相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

等离子体增强化学气相沉积设备相关的厂商

  • OPS Plasma专注于等离子表面处理,集设备开发与设备制造、工艺开发与方案解决为一体,为各行业提供高效、节能、环保的等离子表面处理方案,包括等离子清洗、等离子活化、等离子改性、等离子接枝与聚合、等离子刻蚀、等离子沉积等。 OPS Plasma的创始人在德Fraunhofer Institute期间积累了丰富的设计开发经验,研发团队拥有10年以上的等离子系统设计经验、5年以上的等离子设备制造经验,是国内最大的等离子应用技术方案解决专家,不仅能为客户提供优质的等离子处理设备,还能为客户提供整套的解决方案和工艺指导。 OPS Plasma的制造团队多年从事等离子设备制造,成功开发出多款设备。设备采用具有独立知识产权的电极系统和进气系统,保证电场和气场的均匀分布,并完美地解决了真空动密封、真空冷却等一系列问题。 OPS Plasma的等离子设备广泛地应用在光学电子、太阳能、半导体、生物医疗、纳米材料、及通用工业领域,销往各大知名院校、科研机构和企业。在全国范围内超过100台实验设备和工业设备的良好运行,充分证明了OPS Plasma等离子系统的优越品质。 OPS Plasma致力于用国际的品质、国内的价格和优质的服务为全球各行业客户提供等离子处理设备和解决方案,成为全球行业领先的等离子应用技术方案解决专家。
    留言咨询
  • 400-860-5168转3241
    载德半导体技术有限公司是专业的半导体及微电子领域仪器设备供应商,载德所代理的仪器设备广泛用于高校、研究所、半导体高新企业。载德半导体技术有限公司目前代理的主要产品包括: - 霍尔效应测试仪(Hall Effect Measurement System); - 快速退火炉(RTP); - 回流焊炉,真空烧结炉(Reflow Solder System); - 探针台(Probe Station),低温探针台(Cryogenic Probe Station); - 贴片机(Die Bonder),划片机(Scriber),球焊机/锲焊机(Wire Bonder); - 原子层沉积系统(ALD),等离子增强原子层沉积设备(PEALD); - 磁控溅射镀膜机(Sputter),电子束蒸发镀膜机(E-beam Evaporator),热蒸发镀膜机(Thermal Evaporator),脉冲激光沉积系统(PLD) - 低压化学气相沉积系统(LPCVD),等离子增强化学气相沉积系统(PECVD),快速热化学气相沉积系统(RTCVD); - 反应离子刻蚀机(RIE),ICP刻蚀机,等离子体刻蚀机; - 加热台、热板、烤胶台 (Hot Chuck / Hot Plate); - 扫描开尔文探针系统(Kelvin Probe),光反射膜厚仪(Reflectometer); 等等...
    留言咨询
  • 公司名称(现用名):北京维意真空技术应用有限责任公司公司名称(曾用名):北京科立方真空技术应用有限公司覆盖区域:北京、天津、河北 北京维意真空技术应用有限责任公司,原名北京科立方真空技术应用有限公司,创立于2013年,位于中国首都北京密云经济技术开发区,主体经营分为真空配件销售、真空设备定制、浅蓝纳米科技三个部分,是北京从事真空产品设计、制造、销售、维修、保养于一体的专业性的公司,公司拥有一支专业、优秀的产品技术工程师和维修技术工程师,具有丰富的行业经验,同时还与北京工业大学联合研发等离子体增强化学气相沉积系统,与北京交通大学联合研发原子层沉积系统,满足高校、研究所的教学、科研使用,同时减少相关进口设备的市场占有率,并力争创造外汇,打出中国创造的名牌! 我们的客户遍布北京各高校和研究院所、部分军工单位和电力试验所、各级的材料、物理、化学、纳米等研究领域尖端的实验室,期待您就是我们的下一位客户、朋友! 您的满意微笑是我们一直努力追求的经营目标!技术创新、业务专业、服务诚信是我们一直遵循的经营理念!我们热诚欢迎国内外先进的仪器制造商及科学工作者与我们联系开展各层面的合作,打造成一流的真空系统产品、等离子体增强化学气相沉积系统和原子层沉积系统供应商。
    留言咨询

等离子体增强化学气相沉积设备相关的仪器

  • 8英寸等离子体增强化学气相沉积(PECVD)设备1. 产品概述Shale® A系列等离子体增强化学气相沉积设备(PECVD)是一款先进的薄膜沉积设备,旨在满足半导体制造和相关领域对于高质量薄膜沉积的需求。该设备采用了平行电容板电场放电技术,有效地产生等离子体,这种等离子体环境使得各种薄膜材料的沉积过程更加高效和精准。在操作温度方面,Shale® A系列设备能够在400°C及以下的条件下,实现较为致密且均匀性极佳的薄膜沉积。这一特性使其成为沉积多种材料的理想选择,包括氧化硅、TEOS(四乙氧基硅烷)、BPSG(掺铝的硅玻璃),以及氮化硅、氮氧化硅、非晶硅、非晶碳和非晶碳化硅等多种高性能薄膜材料。此外,Shale® A系列设备在设计和制造过程中,充分考虑了国际市场的标准,采用了符合SEMI(美国半导体设备与材料国际协会)标准的通用零部件,确保设备在全球范围内的兼容性和可用性。同时,该设备经过了一系列严格的稳定性和可靠性测试,验证其能够在实际生产中保持优异的性能表现,从而为用户提供了一个可信赖的沉积解决方案。这使得Shale® A系列PECVD设备不仅适用于高技术要求的半导体行业,还能够确保在各种应用场景中的稳定运行。2. 系统特性可提供基于硅烷(SiH4)体系的薄膜沉积方案,还可选正硅酸乙酯(TEOS)体系的沉积方案可提供双频设备,使氮化硅(SiNx)的应力可调,范围从压应力-1.6GPa到张应力+0.7GPa可提供n/p型掺杂,满足磷硅玻璃(PSG)和硼磷硅玻璃(BPSG)等掺杂氧化硅工艺的需求8/6英寸兼容
    留言咨询
  • 1. 产品概述:高真空等离子体增强化学气相薄膜沉积(PECVD)系统是一种先进的材料制备技术,广泛应用于物理学、化学、材料科学等多个领域。该系统通过在高真空环境下利用射频、微波等能量源将反应气体激发成等离子体状态,进而在基片表面发生化学反应,沉积出所需的薄膜材料。这种技术具有沉积温度低、沉积速率快、薄膜质量高等优点,能够制备出多种功能性薄膜,如氧化硅、氮化硅、碳化硅、多晶硅等。2 设备用途/原理:半导体工业:用于制备集成电路中的钝化层、介电层等关键薄膜,提高器件的可靠性和性能。光伏产业:在太阳能电池制造中,PECVD系统被广泛应用于制备透明导电氧化物(TCO)薄膜、减反射膜等,以提高光电转换效率。平板显示:在液晶显示器(LCD)和有机发光二极管(OLED)等平板显示器件的制造中,PECVD系统用于制备薄膜晶体管(TFT)的栅极绝缘层、钝化层等关键薄膜。微电子与纳米技术:在微纳电子器件、纳米传感器等领域,PECVD系统能够制备出具有优异性能的薄膜材料,如抗腐蚀层、绝缘层等。3. 设备特点1 高真空环境:PECVD系统通常配备有高真空泵组,以确保反应室内的真空度达到较高水平,从而减少杂质对薄膜质量的影响。 2 等离子体增强:通过射频或微波等能量源将反应气体激发成等离子体,使气体分子高度活化,降低反应温度,提高沉积速率和薄膜质量。 3 精确控制:系统配备有精密的控制系统,可以对反应气体的流量、压力、温度以及射频功率等参数进行精确控制,从而实现对薄膜厚度、成分和结构的精确调控。 4 多功能性:PECVD系统具有广泛的应用范围,可以制备出多种不同成分和结构的薄膜材料,满足不同领域的需求。真空室结构:1个中央传输室:蝶形结构;3个沉积室:方形结构; 1个进样室:方形结构真空室尺寸:中央传输室:Φ1000×280mm ; 沉积室:260×260×280mm ;进样室:300×300×300mm限真空度:中央传输室:6.67E-4 Pa;沉积室:6.67E-6 Pa ;进样室:6.67 Pa沉积源:设计待定样品尺寸,温度:114X114X3mm, 加热温度350度,机械手传递样品占地面积(长x宽x高):约13米x9米x2.3米(设计待定)电控描述:全自动控制工艺:在80X80mm范围内硅膜的厚度均匀性优于±5%特色参数:共有8路工作气体
    留言咨询
  • 1. 产品概述:高真空等离子体增强化学气相薄膜沉积(PECVD)系统是一种先进的材料制备技术,广泛应用于物理学、化学、材料科学等多个领域。该系统通过在高真空环境下利用射频、微波等能量源将反应气体激发成等离子体状态,进而在基片表面发生化学反应,沉积出所需的薄膜材料。这种技术具有沉积温度低、沉积速率快、薄膜质量高等优点,能够制备出多种功能性薄膜,如氧化硅、氮化硅、碳化硅、多晶硅等。2 设备用途/原理:半导体工业:用于制备集成电路中的钝化层、介电层等关键薄膜,提高器件的可靠性和性能。光伏产业:在太阳能电池制造中,PECVD系统被广泛应用于制备透明导电氧化物(TCO)薄膜、减反射膜等,以提高光电转换效率。平板显示:在液晶显示器(LCD)和有机发光二极管(OLED)等平板显示器件的制造中,PECVD系统用于制备薄膜晶体管(TFT)的栅极绝缘层、钝化层等关键薄膜。微电子与纳米技术:在微纳电子器件、纳米传感器等领域,PECVD系统能够制备出具有优异性能的薄膜材料,如抗腐蚀层、绝缘层等。3. 设备特点 1 高真空环境:PECVD系统通常配备有高真空泵组,以确保反应室内的真空度达到较高水平,从而减少杂质对薄膜质量的影响。 2 等离子体增强:通过射频或微波等能量源将反应气体激发成等离子体,使气体分子高度活化,降低反应温度,提高沉积速率和薄膜质量。 3 精确控制:系统配备有精密的控制系统,可以对反应气体的流量、压力、温度以及射频功率等参数进行精确控制,从而实现对薄膜厚度、成分和结构的精确调控。 4 多功能性:PECVD系统具有广泛的应用范围,可以制备出多种不同成分和结构的薄膜材料,满足不同领域的需求。4 设备参数真空室结构:方形侧开门真空室尺寸:设计待定限真空度:≤6.0E-5Pa沉积源:设计待定样品尺寸,温度:设计待定占地面积(长x宽x高):约6米×3米x2米(设计待定)电控描述:全自动工艺:片内膜厚均匀性:≤±5%
    留言咨询

等离子体增强化学气相沉积设备相关的资讯

  • 663万!华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目
    项目编号:0773-2240SHHW0019项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目预算金额:663.0789000 万元(人民币)最高限价(如有):663.0789000 万元(人民币)采购需求:项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目包件1:反应离子束刻蚀系统;数量及单位:1台;简要技术参数:3、等离子体源3.1、射频发生器:最大功率300瓦,13.56MHz,带自动匹配单元;★3.2、ICP源发生器:最大功率3000瓦,2.0MHz,带自动匹配单元;包件2:感应耦合等离子体增强化学气相沉积系统;数量及单位:1台;简要技术参数:★1、SiO2的标准沉积速率:≥40 nm/min;高速沉积速率:≥500 nm/min2、SiO2薄膜沉积厚度:≥6um。其余详见本项目招标文件。合同履行期限:自合同签订之日起250天内;本项目( 不接受 )联合体投标。
  • 基于多天线耦合技术的微波等离子体化学气相沉积系统,完美实现大尺寸金刚石制备
    化学气相沉积是使几种气体在高温下发生热化学反应而生成固体的方法,等离子体化学气相沉积是通过能量激励将工作物质激发到等离子体态从而引发化学反应生成固体方法。因为等离子体具有高能量密度、高活性离子浓度、故而可以引发在常规化学反应中不能或难以实现的物理变化和化学变化,且具有沉积温度低、能耗低、无污染等优点,因此等离子体化学气相沉积法得到了广泛的应用。微波等离子体也具有等离子体洁净、杂质浓度低的优点,因而微波等离子体化学气相沉积法(MPCVD)成为制备高质量金刚石的优先方法,也是目前有发展前景的高质量金刚石(单晶及多晶)沉积方法之一。MPCVD设备反应腔示意图金刚石具有优异的力学、电学、光学、热学、声学性能,在众多领域具有广泛的用途。而这些用途的实现在很大程度上依赖于高取向和单晶金刚石以及大面积透明金刚石膜。由于金刚石生长过程中普遍存在缺陷以及难以获取大面积范围内均匀温度场等参数,导致金刚石的取向发生改变,使高取向和单晶金刚石以及大面积透明金刚石膜的获得十分困难。因此,目前金刚石研究面临的大挑战和困难是如何制备优质单晶、多晶金刚石样品。 德国iplas公司基于 CYRANNUS 多天线耦合技术,解决了传统的单天线等离子技术的局限。CYRANNUS技术采用腔外多天线设置,确保等离子团稳定生成于腔内中心位置,减少杂质来源,提高晶体纯度(制备的金刚石单晶纯度可达VVS别以上)。MPCVD系统可合成饰钻石 同时稳定的微波发生器也易于控制,可以在10mbar到室压范围内激发高稳定度的等离子团,大限度的减少了因气流、气压、气体成分、电压等因素波动引起的等离子体状态的变化,从而确保单晶生长的持续性,为合成大尺寸单晶金刚石及薄膜提供了有力保证。 MPCVD系统可合成优质大尺寸金刚石薄膜 MPCVD同样适用于平面基体,或曲面颗粒的其它硬质材料如Al2O3,c-BN的薄膜沉积和晶体合成。德国iplas公司凭借几十年在等离子技术领域的积累,可以为用户提供高度定制的设备,满足用户不同的应用需要。相关产品链接 微波等离子化学气相沉积系统 http://www.instrument.com.cn/netshow/SH100980/C184528.htm
  • 牛津最新等离子技术App可用于等离子体刻蚀和沉积
    牛津仪器等离子技术最近更新的App包括一个明确和互动的元素周期表、详细的等离子体、离子束和原子层沉积工艺信息。它允许iPhone和iPad用户查阅工艺化学的相关信息,可以通过简单的周期表界面实现任何材料的刻蚀和沉积。  这个周期表App可以免费下载,将吸引大量的工业和学术界的用户。同时,它也是一个优秀的教学设备,可以展示单个元素属性和电子构型。

等离子体增强化学气相沉积设备相关的方案

等离子体增强化学气相沉积设备相关的资料

等离子体增强化学气相沉积设备相关的试剂

等离子体增强化学气相沉积设备相关的论坛

  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    [size=14px][color=#cc0000]摘要:目前微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000] [/color][color=#cc0000]1. 问题的提出[/color][/size][size=14px]  在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,微波发生器产生的微波用波导管传输至反应器,并向反应器中通入不同气体构成的混合气体,高强度微波能激发分解基片上方的含碳气体形成活性含碳基团和原子态氢,并形成等离子体,从而在基片上沉积得到金刚石薄膜。等离子体激发形成于谐振器内,谐振器真空压力的调节对金刚石的合成质量至关重要,现有技术中,真空管路上通常设置可以自动调节阀芯大小的比例阀对谐振腔真空压力进行自动控制,目前国内外比较成熟的技术是比例阀采用美国MKS公司的248系列控制阀和相应的配套驱动器1249B和控制器250E等。但在实际应用中,如美国FD3M公司发明专利“真空压力控制装置和微博等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积装置”(专利号CN 108517556)中所描述的那样,使用MSK公司产品主要存在以下几方面的问题:[/size][size=14px]  (1)不包括真空计的话,仅真空压力控制至少需要一个248系列控制阀、一个配套的驱动器1249B和一个真空压力控制器250E,所构成的闭环控制装置整体价格比较昂贵。[/size][size=14px]  (2)248系列控制阀是一种典型的比例阀,这种比例阀动态控制精度难以满足真空压力控制要求,如设定值为20、30、50、100和150Torr不同工艺真空压力时,实际控制压力分别为24、33、53、102和152Torr,控制波动范围为1.3~20%。[/size][size=14px]  另外,通过我们的使用经验和分析,在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中采用MKS公司产品还存在以下问题:[/size][size=14px]  (1)美国MKS公司248系列控制阀,以及148J和154B系列控制阀,因为其阀芯开度较小,使用中相应的气体流量也较小,所以MKS公司将这些控制阀分类为上游流量控制阀。在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,一般是控制阀安装在工作腔室和真空泵之间的真空管路中,也就是所谓的下游控制模式,而MKS公司的下游流量控制阀的最小孔径为50mm以上,对MPCVD系统而言这显然孔径太大,同时这些下游流量控制阀价格更加昂贵。因此,选用小孔径小流量的248系列控制阀作为下游控制模式中 的控制阀实属无奈之举。[/size][size=14px]  (2)如果将美国MKS公司248系列上游控制阀用到MPCVD系统真空压力的下游控制,所带来的另一个问题是工艺过程中所产生的杂质对控制阀的污染,而采用可拆卸可清洗的下游控制阀则可很好的解决此问题,这也是MKS公司下游控制阀的主要功能之一。[/size][size=14px]  针对上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制中存在的问题,上海依阳实业有限公司开发了新型低价的下游真空压力控制装置,通过大量验证试验和实际使用,证明可成功实现真空压力下游控制方式的国产化替代。[/size][size=18px][color=#cc0000]2. MPCVD系统中的真空压力下游控制模式[/color][/size][size=14px]  针对微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统,系统真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,291]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041531385213_1293_3384_3.png!w690x291.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2-1 MPCVD系统真空压力下游控制模式示意图[/color][/align][size=14px]  上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积设备的工作原理和过程为:首先对真空腔抽真空,并向真空腔内通入工艺混合气体,然后通过微波源产生微波,微波经过转换后进行谐振真空腔,最终形成相应形状的等离子体,从而形成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度。为了进行工作气压的调节,在真空泵和真空腔之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=18px][color=#cc0000]3. 下游控制模式的特点[/color][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作。[/size][size=14px]  (2)下游控制模式主要用于精确控制真空腔体的下游实际出气速率,与真空泵连接的出气口径一般较大,相应的真空管路也较粗,因此下游控制阀的口径一般也相应较大,由此可满足不同大口径抽气速率的要求。[/size][size=14px]  (3)在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (4)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=18px][color=#cc0000]4. 下游控制用真空压力控制装置[/color][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度PID控制器。[/size][size=16px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×105~1.3×10-6/活套法兰6×105~1.3×10-6。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10-6。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532016015_1144_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=16px][color=#cc0000]4.2. 真空压力PID控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力PID控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][color=#cc0000][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532370653_8698_3384_3.jpg!w500x500.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/align][size=18px][color=#cc0000]5. 控制效果[/color][/size][size=14px]  为了考核所研制的控制阀和控制器的集成控制效果,如图5-1所示,在一真空系统上进行了安装和考核试验。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041533305822_2863_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 真空压力下游控制模式试验考核[/color][/align][size=14px]  在考核试验中,先开启真空泵和控制阀对样品腔抽真空,并按照设定流量向真空腔充入相应的工作气体,真空度分别用薄膜电容式真空计和皮拉尼真空计分别测量,并对真空腔内的真空压力进行恒定控制。在整个过程中真空腔内的真空度按照多个设定值进行控制,如71、200、300、450和600Torr,整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,413]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534037381_7474_3384_3.png!w690x413.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 考核试验过程中的不同真空度控制结果[/color][/align][size=14px]  为了更好的观察考核试验结果,将图5-2中真空度71Torr处的控制结果放大显示,如图5-3所示。从图5-3所示结果可以看出,在71Torr真空压力恒定控制过程中,真空压力的波动最大不超过±1Torr,波动率约为±1.4%。同样,也可以由此计算其他设定值下的真空压力控制的波动率,证明都远小于±1.4%,由此证明控制精度要比MKS公司产品高出一个数量级,可见国产化替代产品具有更高的准确性。[/size][align=center][size=14px][color=#cc0000][img=,690,418]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534134372_7696_3384_3.png!w690x418.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 考核试验中设定值为71Torr时的控制结果[/color][/align][size=14px]  另外,还将国产化替代产品安装到微波等离体子热处理设备上进行实际应用考核。在热处理过程中,先开启真空泵和控制阀对样品真空腔抽真空,并通惰性气体对样品真空腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在几千度以上,在整个过程中样品腔内的真空压力始终控制在设定值几百Torr上。整个变温前后阶段整个过程中的真空压力变化如图5-4所示。[/size][align=center][size=14px][color=#cc0000][img=,690,420]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534238555_747_3384_3.png!w690x420.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-4 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图54中的温度突变处放大显示,如图5-5所示。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534344190_6882_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-5所示结果可以看出,在几百Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=18px][color=#cc0000]6. 总结[/color][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,证明了国产化产品完全可以替代美国MKS公司相应的真空压力控制产品,并比国外产品具有更高的控制精度和价格优势。[/size][size=14px][/size][size=14px][/size][hr/]

  • 【资料】-微波等离子体及其应用

    【资料】-微波等离子体及其应用

    关键词: 化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 微波等离子体CVD法 微波等离子体热处理仪 金刚石薄膜 微波烧结 新材料 纳米催化剂 一、微波等离子体简介等离子体的研究是探索并揭示物质“第四态” ——等离子体状态下的性质特点和运行规律的一门学科。它是包含足够多的正负电荷数目近于相等的带电粒子的非凝聚系统。等离子体的研究主要分为高温等离子体和低温等离子体。高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子 (原子)离解、电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积技术原理是利用低温等离子体(非平衡等离子体)作能量源,工件置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体)使工件升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在工件表面形成固态薄膜。它包括了化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积的一般技术,又有辉光放电的强化作用。 金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1. 在药瓶内镀上金刚石薄膜,可以避免药品在瓶内起反应,延长药品的保 全寿命; 2. 可作为计算机硬盘的保护层。目前的计算机硬盘,磁头在不用时要移到硬盘旁边的位置上,如果硬盘包有金刚石薄膜,则磁头可以始终放在硬盘上,这样就提高了效率; 3. 在切割工具上镀上金刚石薄膜,可以使工具在很长时间内保持锋利; 4. 用于制造带有极薄金刚石谐振器的扬声器; 5. 涂于计算机集成电路块,能抗辐射损坏,而一般硅集成块却易受辐射损坏。它能将工作时产生的热迅速散发掉,使集成块能排列得更紧凑些; 6. 用于分析X射线光谱的仪器,透过X射线的性能较别的材料好。 金刚石膜沉积必须要有两个条件: 1. 含碳气源的活化; 2. 在沉积气氛中存在足够数量的原子氢。 由于粒子间的碰撞,产生剧烈的气体电离,使反应气体受到活化。同时发生阴极溅射效应,为沉积薄膜提供了清洁的活性高的表面。因而整个沉积过程与仅有热激活的过程有显著不同。这两方面的作用,在提高涂层结合力,降低沉积温度,加快反应速度诸方面都创造了有利条件。 微波等离子体金刚石膜系统应由微波功率源,大功率波导元件、微波应用器及传感与控制四部分组成。应用器是针对应用试验的类型而设计,其微波功率密度按需要而设定,并按试验需要兼容各种功能,具有较强的专用性质。微波功率源、大功率波导元件及传感和控制三种类型的部件,是通用的部件,可按需要而选定。反应器必须可以抽成真空;且可置于高压。因此微波传输必须和反应器隔离开来。反应器中可以通入其他气体。下面是一个反应器图。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221201_18795_1613333_3.jpg[/img]半导体生产工艺中已经采用微波等离子体技术,进行刻蚀、溅射、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积、氧化硅片;还可用于金属、合金、非金属的表面处理;用于等离子体光谱分析,可检测十几种元素。 二、微波等离子体源 目前国内微波离子体源的研究工作,大部分在2450MHZ这个频段上进行,部分还可能采用915MHZ频段。这两个频段均采用连续波磁控管,并做成连续波功率微波源。但实际情况均具有较大的波纹因素,说得确切一些是三相全波整流或单相全波整流的波形被磁控管锐化了波纹状态。家用微波炉的电路结构实际上是可控的单相半波倍压整流电路,其波纹因素更大。 这种工作状态受电网波动的影响,平均功率不断变化,具有很大的不稳定性,造成功率密度的不确定。在微波等离子体金刚石膜制作系统要求很严格的情况下,会造成实验结果重复性不满意。因此需要稳定且纹波系数小的微波源是系统成功关键。 另外,近来微波等离子体的研究首先发现这些问题,电源的不稳定性会造成等离子体参数的变化。但用毫秒级的脉冲调制连续波磁控管,在许多实验中取得了良好的实验效果。理论分析调制通断时间的选定可以获得改善效果。 1. 物料介电损耗的正温度系数锐化了不均匀的加热效果,造成局部点的热失控现象。必要的周期停顿,利用热平衡的过程,可以缓解这些不均匀因素,抑制热失控现象的建立。 2. 避免了微波辅助催化反应过程中若干不需要副反应的累积。周期性的停顿可以避免这些副反应累积增强,停顿就是副反应的衰落,再从新开始,这样就避免了副反应的过度增长。 三、微波等离子体的应用 微波等离子体的应用技术主要用来制造特种性能优良的新材料、研制新的化学物质,加工、改造和精制材料及其表面,具有极其广泛的工业应用——从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源等。等离子体技术已开辟的和潜在的应用领域包括:半导体集成电路及其他微电子设备的制造;工具、模具及工程金属的硬化;药品的生物相溶性,包装材料的制备;表面上防蚀及其他薄层的沉积;特殊陶瓷(包括超导材料);新的化学物质及材料的制造;金属的提炼;聚合物薄膜的印刷和制备;有害废物的处理;焊接;磁记录材料和光学波导材料;精细加工;照明及显示;电子电路及等离子体二极管开关;等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)。 微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制备纳米催化剂的研究等。 微波等离子体的应用前景广阔。来源于汇研微波

等离子体增强化学气相沉积设备相关的耗材

  • Eachwave 专业提供镀膜服务 磁控溅射镀膜 气相沉积镀膜 电子束蒸发镀膜 其他光谱配件
    上海屹持光电技术有限公司专业提供各种镀膜服务:典型实例 1,磁控溅射合金膜2,ICPPECVD 制备高厚低应力氧化硅薄膜3,沉积细胞定位电极4,磁控溅射的 制备的 Au/TiO2 连续 主要设备:1,磁控溅射镀膜系统2,磁控溅射镀膜机3,磁控溅射真空镀膜机4,电子束蒸发镀膜仪5,高密度等离子体增强化学气相沉积设备
  • 等离子体镜/解决方案
    交叉偏振波滤波器(XPW系统)所属类别: ? 专用实验设备 ? 强场激光/等离子体器件与设备 所属品牌:法国SourceLAB公司 产品简介 时域对比度滤波器/交叉偏振波滤波器(XPW) ——可扩展高效激光时域对比滤波器 SourceLAB时域对比滤波器(cross-polarized wave generation –XPW:交叉偏振波产生系统)1000以上的瞬态激光对比增强能力,同时兼具飞秒脉冲后压缩特性,是产生高对比度飞秒脉冲的理想选择。 SL-XPW-1000激光时域对比滤波器系统(cross-polarized wave generation –XPW:交叉偏振波产生系统),初始为Laboratoire d’Optique Appliquée开发,可随时用于mJ以上超短脉冲对比增强的时域滤波。SL-XPW-1000激光时域对比滤波器系统,也可用于除数因子2或更大的飞秒后压缩,可能产生few-cycle脉冲。 关键词:飞秒脉冲对比增强,等离子体镜,飞秒后脉冲压缩,XPW,时域滤波 SL-XPW-1000激光时域对比滤波器系统(cross-polarized wave generation –XPW:交叉偏振波产生系统),初始为Laboratoire d’Optique Appliquée开发,可随时用于mJ以上超短脉冲对比增强的时域滤波。SL-XPW-1000激光时域对比滤波器系统(XPW),也可用于除数因子2或更大的飞秒后压缩,可能产生few-cycle脉冲。这一滤波器是基于正交极化波的产生(XPW)。 产品特点:高效率单晶装置中空光纤滤波卓越的空间轮廓对比增强103光谱质量增强扩展产生更短脉冲兼容载波包络相位易准直和鲁棒性 应用领域:飞秒脉冲对比增强(three orders)飞秒脉冲后压缩(two-fold)高对比度few-cycle脉冲发生 应用文献: Efficient cross polarized wave generation for compact, energy-scalable, ultrashort laser source.pdfEnergy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation.pdfFront-End Light Source for aWaveform-Controlled High-Contrast Few-Cycle Laser System for High-Repetition Rate Relativistic Optics.pdfHigh-fidelity front-end for high-power, high temporal quality few-cycle lasers.pdf 指标参数:PerformancesContrast enhancement103 or higherEnergy transmission15 % or moreMaximum input energy – Contact us if your applications require more5 mJ or oreStrehl ratio0.9MiscellaneousDimensions (L x W x H) – Custom designs available on request200 x 25 x 20 (cm x cm x cm)MassApprox. 4 kg (ex. vacuum pump)Micrometric translation stagesRange25.4 mmHigh-quality, high-straightness single-mode hollow-core fibreLength40 – 50 cmInner diameterWavelength dependentXPW crystal[011]-cristallographic orientation, high-quality polishing, BaF2 crystalThickness2 – 3 mmAR-coated FS vacuum windowsThickness500 μmDry vacuum pumpPumping speed6 m3/hUltimate vacuum 10-1 mbar SourceLab公司交叉偏振波滤波器(XPW) Jullien-apb-102-4-769-2011.pdfRamirez-oe-19-93-98-2011.pdfRicci-applsci-03-00314-2013.pdfRicci-rsi-84-043106-2013.pdf 相关产品 高重频太瓦激光器(500Hz TW Laser) 等离子体喷气靶(等离子体密度可达10^21) 高灵敏度等离子体分析仪 等离子体气体靶室 等离子体固体靶
  • 等离子体主动热探头
    等离子体主动热探头是耐高温的等离子探头,用于高温等离子体过程中流入到目标表面的能量,也可作为离子流探头使用。由于等离子体主动热探头的灵敏度非常高,特别适合用于工业生产过程或研究中的有效质量控制。有一个特殊的版本,该版本有一个更多可选的可调参数,可以用来解决等离子体工艺的研发。等离子体主动热探头特点在生产高品质涂层或研究材料属性过程中,对等离子体工艺的表征,控制和监测是至关重要的。最重要的一个参数是通到基底的实际能量流入和总能量流入—主动热探头是测量这个决定性的量数的唯一工具。增殖的粒子影响基底的表面工艺和反应。这种能量与其他如热辐射能或化学能合成总流入能量。主动热探头连续定向测量流入的能量,保持层和表面性质很好的相关性。等离子体主动热探头产品概述适用于真空 耐温高达450°C 能量流入可多达(2±0,001)W/cm2 可衡量 可变长度和几何图形 包括系统控制和评估的软件包 提供安装服务和流程优化咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制