原位加热气氛液态薄膜表征系统

仪器信息网原位加热气氛液态薄膜表征系统专题为您提供2024年最新原位加热气氛液态薄膜表征系统价格报价、厂家品牌的相关信息, 包括原位加热气氛液态薄膜表征系统参数、型号等,不管是国产,还是进口品牌的原位加热气氛液态薄膜表征系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原位加热气氛液态薄膜表征系统相关的耗材配件、试剂标物,还有原位加热气氛液态薄膜表征系统相关的最新资讯、资料,以及原位加热气氛液态薄膜表征系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

原位加热气氛液态薄膜表征系统相关的厂商

  • 400-860-5168转4548
    超新芯(CHIPNOVA)是早期原位芯片技术开发研究者,拥有MEMS芯片制造和原位电镜方面的资深团队,10余年来技术不断迭代升级,在电镜中实现了液、气体微环境引入及光、电、力、热等外场控制与高时空分辨显微研究。相关系统在材料、能源、环境、化学、生物等领域广泛应用,促进了人类对微观世界的探索,推动了相关领域的科技进步。除了继续深耕原位电子显微等高端科研领域,做世界一流的科研产品供应商;超新芯(CHIPNOVA)也正将相关技术延伸应用于智慧物联、大健康等民用领域,产品涵盖提供智慧牧场方案的智能项圈、监测实时血糖状况的CGM,为国人提供高品质的技术与服务。
    留言咨询
  • 合肥原位科技有限公司成立于2019年,是一家以原位表征技术、超快速升温技术及催化剂性能评价技术为核心的国家高新技术企业,公司位于合肥综合性国家科学中心核心区,同时,在北京和深圳设有销售及技术支持中心。。  公司现有原位表征系统解决方案(含测试)、催化剂评价装置、焦耳加热装置三大主营产品体系及一个电池测试平台,同时为客户提供通用仪器代理及实验室搭建服务。公司原位实验室配备红外光谱仪、离子溅射仪等多种实验设备;公司电池测试平台可制作扣式、软包、半固态及固态等多种锂电池(钠电池、锌电池),集电池正负极研发、电池制备、电池(原位)表征等功能为一体;公司生产车间有卧式加工中心、立式加工中心、数控车床等多套精密加工设备,可为客户提供高效及优质的生产加工服务。  公司将及时了解用户需求,紧密追踪行业发展方向,坚持以用户需求为导向,持续创新,努力构建更加完善的研发、生产、销售和售后服务体系,为用户提供优质的服务。公司致力于成为世界一流的科学仪器及专用设备制造商,争取在前沿科学探索及产业化应用等方向为用户持续创造价值。
    留言咨询
  • 400-631-8366
    服务科学,世界领先--赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.com。 联系方式:电话:800-810-5118, 400-650-5118(支持手机)售前咨询电子邮箱:sales.china@thermofisher.com售后服务电子邮箱:cru.cn@thermofisher.com 扫一扫,关注 “赛默飞世尔”官方微信 关于材料表征部门材料表征部门提供的仪器可以分析和测量粘度、弹性、可加工型,以及塑料、食品、化妆品、医疗和涂料行业里与温度相关的机械变化,还有各种液体或固体的测量。主要产品包括:HAAKE哈克品牌转矩流变仪,HAAKE哈克品牌旋转流变仪,拉伸流变仪,各式挤出设备以及不同型号的粘度计。欲了解更多信息,请登录 www.thermoscientific.cn/products/rheometers.html 材料表征邮箱:info.mc.china@thermo.com
    留言咨询

原位加热气氛液态薄膜表征系统相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • TriboLab CMP 利用其前身产品 (Bruker CP-4) 超过 20 年的 CMP 领域专业知识,为业界领先的 TriboLab 平台带来了一套完整的功能。基于本套设备产生的高精度和高可重复性使得在整个 CMP 流程中能够进行高效的鉴别、检查和连续功能测试。TriboLab CMP 是市场上唯一能够提供广泛的抛光压力 (0.05-50 psi)、速度(1 至 500 rpm)、摩擦、声发射和表面温度测量的工艺开发工具,可准确、完整地描述 CMP 工艺和耗材。用于 CMP 的小型研发规模专业系统布鲁克的TriboLab CMP工艺和材料表征系统是专为晶圆抛光工艺而设计,是具有可靠、灵活和高效的台式设备。重现全尺寸晶圆抛光工艺条件,无需在生产设备上停机提供无与伦比的测量可重复性和细节检测允许在小样品上进行测试,比全晶圆测试节省大量成本板载诊断系统可以更好地了解抛光过程比市场上任何其他系统提供更多的瞬态抛光过程的参数从接触抛光盘开始直至整个测试过程都能收集数据通过更完整、更详细的数据实现早期流程开发决策具有灵活的样品类型、尺寸和安装配置抛光任何平面材料,几乎能使用任何修正盘,任何抛光液,和任何抛光垫轻松使用 100 mm 以下的小尺寸晶圆可同时安装多个样品,测试更灵活
    留言咨询
  • 闪烁体是一类吸收高能粒子或射线后能够发光(探测器灵敏波段)的材料,可分为有机和无机两大类,按其形态又可分为固体、液体和气体三种。 当闪烁体受到高能粒子或射线照射后能够发生能级跃迁,且产生的紫外可见光强度可被光电探测器探测到。当X射线与闪烁体作用时,一个X射线光子,可以产生多个光子,与紫外可见光不同,因为X射线的能量足以使物体电离,使电子脱离能级的束缚。能量越高的X射线光子,通过产生俄歇电子,康普顿散射等产生更多的电离电子(二次电子),二次电子热能化退至激发能级,通过荧光或磷光的方式发光。因此闪烁体对辐射具有能量分辨率。在医学上,闪烁体是核医学影像设备的核心部件,通过它可以快速诊断出人体各器官的病变大小和位置。闪烁体在行李安检、集装箱检查、大型工业设备无损探伤、石油测井、放射性探测、环境监测等领域也都发挥着不可替代的作用。闪烁体还是制造各类对撞机中电磁量能器的重要材料,它可捕捉核反应后产生的各种粒子的信息,是人类探索微观世界及宇宙演变的重要工具。稳态瞬态荧光-闪烁体综合性能表征系统可综合测试稳态瞬态光致发光以及X射线辐射发光。X射线辐射样品仓安装可控屏蔽快门,在辐射光源最大功率下关闭快门时,样品位置辐射剂量小于10uSv/h,辐射防护满足国标GBZ115-2023《低能射线装置放射防护标准》的要求。 该系统可根据用户需要搭建以下功能● 稳态荧光/瞬态荧光● 稳态X射线荧光/瞬态X射线荧光● X射线荧光成像● 显微荧光/显微荧光寿命成像● 温度相关光谱 X射线荧光成像瞬态X射线荧光寿命测试技术参数X射线荧光成像TYP 39分辨率卡的X射线图像。测试1mm厚的YAG(Ce)时,分辨率可以达到20pl/mm以上。
    留言咨询

原位加热气氛液态薄膜表征系统相关的资讯

  • 高通量组合薄膜制备及原位表征系统
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "高通量组合薄膜制备及原位表征系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title="LIBE-STM.jpg" width="350" height="321" border="0" hspace="0" vspace="0" style="width: 350px height: 321px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 应用前景尚不明确。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 发明专利:201510446068.7、201510524841.7/p/td/tr/tbody/tablepbr//p
  • 材料基因研究仪器——高通量连续组分外延薄膜制备及原位局域电子态表征系统
    p  strong仪器信息网讯/strong 材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。/pp  中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发 超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。两团队经多年合作成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/042ce1da-8ab9-46b9-8bb1-eb602327463f.jpg" title="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-align: center "组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/pp  该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:/pp  1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性 /pp  2)特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm) 3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp  该仪器研发历时4年多,设计版本多达50多个,并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/pp  组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术、阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品 此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要意义。/pp  /ppbr//p
  • 中科院物理所|新一代高通量薄膜制备及原位表征技术获进展!
    p style="text-align: justify text-indent: 2em "近日,中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队和超导国家重点实验室金魁/袁洁团队,在新一代高通量薄膜制备及原位表征技术研发获得重大进展,该成果发表于近期的《科学仪器评论》杂志上span style="color: rgb(0, 0, 0) "【Review of Scientific Instruments 91, 013904 (2020) doi: 10.1063/1.5119686】/spana href="http://www.iop.cas.cn/xwzx/kydt/202002/P020200212416644690060.pdf" target="_self"span style="color: rgb(0, 112, 192) "(文章链接)/span/a。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/e637a6c9-3502-4446-8d0c-ea9fb16b6e59.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: justify text-indent: 2em "中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡学者)、魏忠旭、冯中沛等同学strongspan style="color: rgb(0, 0, 0) "成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。/span/strong该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:strong1)/strong采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性;strong2)/strong特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm);strong3)/strong完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp style="text-align: justify text-indent: 2em "该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。strong目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/strong/pp style="text-align: justify text-indent: 2em "作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/7b2acf06-1ac6-465d-ad0a-d76ef6f1406c.jpg" title="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/bb46dd89-0b72-4f5e-a7d6-dd88e1baa05c.jpg" title="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" alt="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg"//span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b)/span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ca707a08-a9a8-4ef2-8798-23266bfbc9df.jpg" title="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" alt="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png"//span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 13.3333px text-align: -webkit-center "图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图/span/span/span/p

原位加热气氛液态薄膜表征系统相关的方案

原位加热气氛液态薄膜表征系统相关的资料

原位加热气氛液态薄膜表征系统相关的试剂

原位加热气氛液态薄膜表征系统相关的论坛

  • 【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【专家讲座】:薄膜材料的纳米力学行为表征【讲座时间】:2016年03月30日 14:00【主讲人】:宋双喜 毕业于上海交通大学材料学,2005年进入田纳西大学诺克斯维尔分校深造,2009年获得材料学博士并进入Hysitron公司担任Application Scientist,2013年受聘上海交通大学特别副研究员,2014年获得上海市浦江人才计划。研究领域包括材料力学行为,金属玻璃等,以第一作者发表SCI论文10篇,总引用400多次。【会议简介】纳米压痕技术的诞生与薄膜材料的发展密不可分。上世纪80年代,随着薄膜技术的不断发展以及在半导体领域的广泛应用,厚度在微米级甚至纳米级的薄膜有着大量的市场需求,而这些薄膜的微观力学行为表征备受关注。传统的力学性能测试方法已无法满足微米、纳米尺度薄膜材料的表征,因此纳米压痕技术的出现弥补了这一领域的空白,之后的二十多年有关纳米压痕理论及利用纳米压痕来进行纳米力学行为表征的相关研究呈指数增长,相关技术也相继应用于各种新兴工业领域。而不断出现的纳米力学表征新技术,与人类不断推进探究材料微观性能的极限,两者相辅相成,成为当今科研前沿领域的一种新模式。本次Hysitron公司举办的网络研讨会主要针对薄膜材料领域介绍相关的纳米力学行为表征方法如薄膜材料的基底效应、残余应力、硬度与弹性模量表征、含时塑性表征、粘附力表征及其他先进纳米力学行为表征及其主要应用范例。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月30日 13:304、报名参会:http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/18895、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668519_2507958_3.jpg

  • 无定形氧化硅纳米薄膜XRD表征求助

    求教,目前需要表征氧化硅薄膜,无法从基底上独立出来,我们通常把薄膜做在单晶硅片上。厚度可以控制在纳米-几个微米之间。我们需要做这种无定形氧化硅结构的pdf(对分布函数)分析,请问有没有什么推荐的XRD表征方法呢?掠入射XRD可能比较适合我们的薄膜体系,但是向老师咨询了一下,掠入射角度范围太小了,无法用来做pdf分析。[img]https://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img]

原位加热气氛液态薄膜表征系统相关的耗材

  • 石墨烯材料及其他新型低维材料检测表征服务
    泰州石墨烯研究检测平台是泰州市政府与泰州巨纳新能源有限公司共同成立的国内 石墨烯性能测试与结构表征的综合性研究及检测机构。平台目前建有近千平方米的检测洁净室,拥有高分辨拉曼光谱仪、原子力显微镜、三维共聚焦显微镜、电子束曝光系统、近场光学显微镜等国际先进的新材料性能检测及结构表征设备。平台致力于在石墨烯等高新碳材料以及新型低维材料(如各类二维材料、量子点)等领域提供全面专业的检测及表征服务。泰州石墨烯研究检测平台相关检测服务:微区形貌表征:表面洁净度、平整性、层数或厚度判定、均匀性分析等原子结构表征:原子缺陷、层间堆垛方式、电子能带结构等光学性能表征:紫外到红外波段透射、反射、吸收性能等成分检测及分析:元素含量与比率、官能团分析等电学、力学、热学、电化学性能表征等各种定制研究检测服务(如二维材料的光电响应测试)等 检测项目检测内容描述二维材料光电响应测试二维材料的光电响应测试定制化分析实验方案协助制定、数据分析整体解决方案原子力显微镜(AFM)检测石墨烯层数/厚度,尺寸,AFM图像光学显微分析石墨烯层数/厚度,尺寸,对比度分析,光学显微图片荧光显微分析发光样品显微图片3D显微分析石墨烯均匀性,表面起伏度,表面残余物检测拉曼(Raman)光谱分析(单谱) 石墨烯洁净度,层数,掺杂浓度,缺陷含量等拉曼(Raman)光谱分析 (单谱+成像)石墨烯洁净度,层数,掺杂浓度,缺陷含量等扫描电子显微镜(SEM)检测样品微观形貌(分辨率10nm)超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息生物型透射电镜获取显微形貌,适合对分辨率不高但是衬度要求高的高分子、生物型样品透射电子显微镜(TEM)检测获取显微形貌截面离子束抛光用离子束抛光,去除表面应力层,适合复杂样品的EBSD的采集,以及截面样品的SEM观察离子束平面研磨高分辨透射电子显微镜(TEM)检测样品高分辨形貌(分辨率1nm),衍射图(结晶度,晶格取向等)低真空场超高分辨场发射扫描电镜检测获取显微形貌、元素组成及分布信息 变温光学显微镜获取样品的显微形貌,具有明场、暗场、偏光、微分干涉等模式电子背散射衍射—STEM检测获取微观取向信息,可用于晶粒度、晶界、织构、应力等分析X射线光电子能谱(XPS)表面元素含量及化学价态(氧含量分析,成键态),结晶性能等紫外可见吸收光谱分析200-3300nm薄膜、溶液的透射率,吸收率等红外光谱分析(FTIR)红外波段透射(350-7800cm-1),有机物官能团分析等X射线荧光光谱分析元素的定量和半定量分析直读光谱分析获取样品的成分灰分测试获取样品的灰分能谱仪分析获取样品的元素成分和分布,微区域元素的定性和半定量分析等离子体发射光谱元素分析分析样品中无机元素的准确成分及定量辉光放电质谱分析H以外的所有元素,包括常用分析方法难以测定的C,N,O,P,S等轻元素超低检测限,大多数元素的检测限为0.1~0.001ug/G碳硫元素分析C 和 S 的比例元素分析C H O N S 的比例元素分析同位素质谱元素分析:C、N、S 百分含量 同位素质谱:13C、15N含量离子色谱-阴离子阴离子含量分析电感耦合等离子体质谱痕迹量元素测定电子探针 元素定性分析、定量分析X射线衍射分析结晶度、晶粒大小、层间距等显微红外分析微区样品红外光谱采集液相色谱分析样品有机物质的含量圆二色光谱分析液相色谱质谱联用分析 样品有机物质的含量及具体成分气相色谱易挥发的有机物质的含量气相色谱-质谱联用易挥发的有机物质的具体成分核磁共振分析氢谱、碳谱石墨烯薄膜热传导性能测试石墨烯热导率热重分析测试材料的质量随温度的变化,可用于分析构成的比例热差分析测定样品在程序控制温度下产生的热效应,可分析融点、成分构成、热性能、相转变、结晶动力学等信息同步热分析测量样品的热流、转变温度和重量变化三种信息力学性能测试 (氧化石墨烯纸/薄膜等)拉伸应力、拉伸强度、扯断强度、剪切剥离力、杨氏模量等电阻测试(薄膜样品)薄膜面电阻等比表面积测试(BET)测试样品比表面积椭圆偏振分析平板材料或者薄膜的折射率、反射率、膜厚、吸收系数测定电学性能测试(Transport)迁移率,掺杂浓度等纳米粒度分析纳米粒径的分布微米粒度分析微米粒度的分布PH值测试测量PH值
  • 氮化硅薄膜窗-X射线用
    X射线透射显微成像/能谱(同步辐射)用氮化硅薄膜窗口 产品概述: X-射线薄膜窗能够实现软X-射线(如真空紫外线)的最大透射率。主要用于同步辐射X射线透射显微成像时承载样品。 X-射线越软(能量越低),穿透能力越差,所需氮化硅薄膜窗越薄。特别在&ldquo 离轴&rdquo 状态工作(即薄膜与光束成一定角度)时,也需要较薄的薄膜窗口,便于X射线更好地穿透。 氮化硅薄膜窗口是利用现代MEMS技术制备而成,由于此种氮化硅窗口选用低应力氮化硅(0-250MP)薄膜,因此比计量式和ST氮化硅薄膜更坚固耐用。提供的氮化硅薄膜窗口非常适合应用于透射成像和透射能谱等广泛的科学研究领域,例如,X-射线(上海光源透射成像/能谱线站)、TEM、SEM、IR、UV等。 现在提供X-射线显微成像/能谱(同步辐射)用氮化硅薄膜窗系列产品,规格如下: 外框尺寸 (4种标准规格): &bull 5 mm x 5 mm (窗口尺寸:1.0 mm 或和 1.5 mm 方形) &bull 7.5 mm x 7.5 mm (窗口尺寸:2.0 mm 或 2.5 mm) &bull 10 mm x 10 mm (窗口尺寸:3.0 mm 或 5 mm 方形) 边框厚度: 200µ m、381µ m、525µ m。 Si3N4薄膜厚度:50、100、150和200nm 我们也可以为用户定制产品(30-500nm),但要100片起订。 本产品为一次性产品,不建议用户重复使用,本产品不能进行超声清洗,适合化学清洗、辉光放电和等离子体清洗。 技术指标: 透光度: 对于X射线用窗口,500nm厚的氮化硅薄膜有很好的X光穿透效果,对于软X射线(例如碳边吸收谱),100-200nm厚的氮化硅薄膜窗口是用户首选。 真空适用性: 真空适用性数据如下:   薄膜厚度 窗口面积 压力差 &ge 50 nm &le 1.0 x 1.0 mm 1 atm &ge 100 nm &le 1.5 x 1.5 mm 1 atm &ge 200 nm &le 2.5 x 2.5 mm 1 atm 表面平整度: 氮化硅薄膜窗口产品的表面平整性很稳定(粗糙度小于1nm),对于X射线应用没有任何影响。 温度特性: 氮化硅薄膜窗口产品是耐高温产品,能够承受1000度高温,非常适合在其表面利用CVD方法生长各种纳米材料。 化学特性: 氮化硅薄膜窗口是惰性衬底。 应用简介和优点: 1、 同步辐射X射线(紫外或极紫外)透射成像或透射能谱应用中是不可或缺的样品承载体。 2、 耐高温、惰性衬底,适应各种聚合物、纳米材料、半导体材料、光学晶体材料和功能薄膜材料的制备环境,利于制备理想的用于X射线表征用的自组装单层薄膜或薄膜(薄膜直接沉积在窗口上)。 3、 生物和湿细胞样本的理想承载体。特别是在等离子体处理后,窗口具有很好的亲水性。 4、 耐高温、惰性衬底,也可以用于化学反应和退火效应的原位表征。 5、 适合做为胶体、气凝胶、有机材料和纳米颗粒等的表征实验承载体。 同步辐射X射线应用参考文献:PRL
  • 透射电镜(TEM)用氮化硅薄膜窗口
    透射电镜(TEM)用氮化硅薄膜窗口 产品概述: 与X射线用氮化硅窗口类似,透射电镜(TEM)用氮化硅薄膜窗口也使用低应力氮化硅薄膜基底。但整体尺度更小,适合TEM装样的要求。窗口有单窗口和多窗口阵列等不同规格。同时NTI也定制多孔氮化硅薄膜窗口。 现在可以提供透射电镜(TEM)用氮化硅薄膜窗系列产品,规格如下: 外框尺寸: &bull 3 mm x 3 mm (窗口尺寸:0.5 mm,薄膜厚度:30 nm) &bull 3 mm x 3 mm (窗口尺寸:1.0 mm,薄膜厚度:50 nm) 边框厚度: 200µ m、381µ m。 Si3N4薄膜厚度: 50nm、100nm 可以为用户定制产品(30-200nm),但要100片起订。 本产品为一次性产品,不建议用户重复使用,本产品不能进行超声清洗,适合化学清洗、辉光放电和等离子体清洗。 技术指标: 表面平整度: 我们认为薄膜与其下的硅片同样平整, TEM用氮化硅薄膜窗口的表面粗糙度为:0.6-2nm。完全适用于TEM表征。 亲水性: 该窗格呈疏水性,如果样品取自水悬浮液,悬浮微粒则不能均匀地分布在薄膜上。用等离子蚀刻机对薄膜进行亲水处理,可暂时获得亲水效果。虽然没有对其使用寿命进行过测试,但预期可以获得与同样处理的镀碳TEM网格相当的寿命。我们可以生产此种蚀刻窗格,但无法保证其使用寿命。如果实验室有蚀刻工具也可对其进行相应的处理提高其亲水性能。 温度特性: 氮化硅薄膜窗口产品是耐高温产品,能够承受1000度高温,非常适合在其表面利用CVD方法生长各种纳米材料。 化学特性: 氮化硅薄膜窗口是惰性衬底。 应用简介和优点: 1、 适合TEM、SEM、AFM、XPS、EDX等的对同一区域的交叉配对表征。 2、 大窗口尺寸,适合TEM大角度转动观察。 3、 无碳、无杂质的清洁TEM观测平台。 4、 背景氮化硅无定形、无特征。 5、 耐高温、惰性衬底,适应各种聚合物、纳米材料、半导体材料、光学晶体材料和功能薄膜材料的制备环境,(薄膜直接沉积在窗口上)。 6、 生物和湿细胞样本的理想承载体。特别是在等离子体处理后,窗口具有很好的亲水性。。 7、 耐高温、惰性衬底,也可以用于化学反应和退火效应的原位表征。 8、 适合做为胶体、气凝胶、有机材料和纳米颗粒等的表征实验承载体。 详细请咨询:021-35359028/ admin@instsun.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制