当前位置: 仪器信息网 > 行业主题 > >

原位加热气氛液态薄膜表征系统

仪器信息网原位加热气氛液态薄膜表征系统专题为您提供2024年最新原位加热气氛液态薄膜表征系统价格报价、厂家品牌的相关信息, 包括原位加热气氛液态薄膜表征系统参数、型号等,不管是国产,还是进口品牌的原位加热气氛液态薄膜表征系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原位加热气氛液态薄膜表征系统相关的耗材配件、试剂标物,还有原位加热气氛液态薄膜表征系统相关的最新资讯、资料,以及原位加热气氛液态薄膜表征系统相关的解决方案。

原位加热气氛液态薄膜表征系统相关的资讯

  • 高通量组合薄膜制备及原位表征系统
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "高通量组合薄膜制备及原位表征系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title="LIBE-STM.jpg" width="350" height="321" border="0" hspace="0" vspace="0" style="width: 350px height: 321px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 应用前景尚不明确。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 发明专利:201510446068.7、201510524841.7/p/td/tr/tbody/tablepbr//p
  • 材料基因研究仪器——高通量连续组分外延薄膜制备及原位局域电子态表征系统
    p  strong仪器信息网讯/strong 材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。/pp  中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发 超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。两团队经多年合作成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/042ce1da-8ab9-46b9-8bb1-eb602327463f.jpg" title="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-align: center "组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/pp  该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:/pp  1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性 /pp  2)特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm) 3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp  该仪器研发历时4年多,设计版本多达50多个,并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/pp  组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术、阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品 此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要意义。/pp  /ppbr//p
  • 中科院物理所|新一代高通量薄膜制备及原位表征技术获进展!
    p style="text-align: justify text-indent: 2em "近日,中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队和超导国家重点实验室金魁/袁洁团队,在新一代高通量薄膜制备及原位表征技术研发获得重大进展,该成果发表于近期的《科学仪器评论》杂志上span style="color: rgb(0, 0, 0) "【Review of Scientific Instruments 91, 013904 (2020) doi: 10.1063/1.5119686】/spana href="http://www.iop.cas.cn/xwzx/kydt/202002/P020200212416644690060.pdf" target="_self"span style="color: rgb(0, 112, 192) "(文章链接)/span/a。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/e637a6c9-3502-4446-8d0c-ea9fb16b6e59.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: justify text-indent: 2em "中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发;超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。近些年来,两个团队密切合作、联合攻关,共同指导SC2组博士生何格(目前在德国做洪堡学者)、魏忠旭、冯中沛等同学strongspan style="color: rgb(0, 0, 0) "成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。/span/strong该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点:strong1)/strong采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性;strong2)/strong特殊设计的STM扫描头能够实现大范围XY移动( 10 mm)和高精度定位(定位精度优于 1 μm);strong3)/strong完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。/pp style="text-align: justify text-indent: 2em "该研发团队对系统进行了反复地设计优化和改进(研发历时4年多,设计版本多达50多个),并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。strong目前,该系统已用于研究高温超导机理问题和新型超导材料探索。/strong/pp style="text-align: justify text-indent: 2em "作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/7b2acf06-1ac6-465d-ad0a-d76ef6f1406c.jpg" title="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt="图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg"//pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图1 :组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/bb46dd89-0b72-4f5e-a7d6-dd88e1baa05c.jpg" title="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg" alt="图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b).jpg"//span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "图2:梯度厚度FeSe薄膜温度依赖电阻(a)及厚度依赖Tc (b)/span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ca707a08-a9a8-4ef2-8798-23266bfbc9df.jpg" title="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png" alt="图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图.png"//span/span/pp style="text-indent: 0em text-align: center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 14px text-align: -webkit-center "span style="font-family: 微软雅黑, verdana, sans-serif, tahoma, arial font-size: 13.3333px text-align: -webkit-center "图3:STM系统表征数据:(a) HOPG原子分辨图; (b) Au(111)原子分辨图;(c) BSCCO表面超结构;(d) BSCCO隧道谱;(e) 原位生长FeSe大尺度形貌图;(f) 原位生长FeSe原子分辨图/span/span/span/p
  • 顶刊速递,北航研究团队制备并表征高性能MXene纳米片薄膜!
    【科学背景】随着纳米科技的迅猛发展,二维纳米材料作为一类重要的新兴材料,因其独特的电子、光学和机械性能,引起了广泛的关注。其中,钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,显示出在航空航天和电子器件等领域的巨大应用潜力。然而,将MXene纳米片从单层的优异性能扩展到宏观尺度的应用中却面临着诸多挑战。目前报道的组装方法如真空过滤、刮刀涂布和空间限制蒸发等,虽然在一定程度上可以制备MXene薄膜,但仍然存在诸如取向度不高、孔隙率较大以及界面相互作用弱等问题。例如,通过真空过滤制备的MXene薄膜取向度仅为0.64,其机械性能显著低于单层MXene的理论值。有鉴于此,北京航空航天大学的程群峰教授团队在“Science”期刊上发表了题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文。一种新的制备策略——利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,被提出并成功实施。这种方法不仅通过LM纳米粒子有效减少了MXene薄膜的孔隙,还通过BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。研究结果表明,这种LBM薄膜不仅具有极高的拉伸强度,还表现出优异的电磁屏蔽效率,为MXene纳米片在宏观尺度应用中的进一步开发提供了新的思路和方法。【科学图文】 图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本文克服钛碳化物(Ti3C2Tx)MXene纳米片组装过程中的关键挑战,提出了一种创新的策略,即利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,成功制备了超强的宏观LBM薄膜。通过LM纳米粒子的引入,有效减少了薄膜的空隙,同时利用BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。这些改进不仅显著提高了MXene纳米片在薄膜中的应力传递效率,还赋予了LBM薄膜优异的电磁屏蔽性能。这一研究不仅为MXene纳米片及其他二维纳米材料在高性能材料领域的应用提供了新的设计思路和解决方案,还展示了多层次、多材料协同作用的重要性和潜力。未来的研究可以进一步探索和优化这种组装策略,以扩展其在能源存储、传感器技术和柔性电子设备等领域的应用,从而推动纳米材料设计和制备技术的发展,实现更广泛的实际应用和产业化转化。文献信息:https://www.science.org/doi/10.1126/science.ado4257
  • 4100万!南昌大学采购原位气氛加热双球差透射电镜采购项目
    一、项目基本情况:项目编号:JXGZ2024-03-1503项目名称:南昌大学采购原位气氛加热双球差透射电镜项目采购方式:竞争性磋商预算金额:41000000.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2023F001103230原位气氛加热双球差透射电镜1套41000000.00元详见公告附件合同履行期限:合同签订后24个月内本项目不接受联合体投标。二、获取采购文件:时间:2024年03月15日 至 2024年03月21日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )(磋商文件的发售期限自开始之日起不得少于5个工作日)地点:江西省公共资源交易网方式:网上报名获取采购文件,未在规定时间内下载采购文件而导致无法上传响应文件的后果由供应商自行承担。售价:0.00元三、凡对本次采购提出询问,请按以下方式联系:1.采购人信息名称:南昌大学地址:江西省南昌市红谷滩学府大道999号联系方式:0791-839692852.采购代理机构信息名称:江西国政招标咨询有限公司地址:江西省南昌市庐山南大道348号南昌市农业科学院大楼十楼联系方式:0791-881948973.项目联系方式项目联系人:刘雨雯、朱珍珍、管晓波、江福群、柳洋华、王东虎电话:0791-88194897
  • 院士领衔|透射电镜原位表征高端研讨会之26位专家报告集锦
    2021年6月19日-20日,“先进材料透射电镜原位表征高端研讨会——暨赛默飞-百实创-北工大显微结构与性能联合实验室成立仪式”在赛默飞中国客户体验中心召开,百余位先进材料透射电镜领域知名专家齐聚上海,共同见证了赛默飞-百实创-北工大显微结构与性能大数据联合实验室合作的启航,并一同探讨透射电镜原位技术在新进材料的研究中的最新进展。会议由中国科学院院士张泽担任会议主席,北京工业大学韩晓东教授担任组织委员会主席,由大会报告和四个主题专场报告组成(四专场主题依次为:透射电镜理论、技术与仪器发展;先进原位透射电镜表征;结构材料先进显微学表征;功能材料先进显微学表征)。大会报告张泽院士在题为“苛刻使役条件下材料性能与显微结构关系研究”的大会报告中强调,材料科学尤其材料显微学科研工作者,应重视建立材料微结构与宏观性能之间的对应关系,从而解决材料实际应用问题。张泽院士也着重介绍了先进结构材料在能源、环境、高端制造等领域的基础性、战略性低位,以及其在高温、高应力等苛刻使役条件下所面临的工程技术难题中的关键科学问题。并通过对航空发动机涡轮叶片等关键材料的微观尺度相结构调控、宏观结构稳定机理等科学问题的深入剖析,分享了如何完成从微观、介观到宏观的跨尺度研究,并把结构与性能之间的关系一一对应的详细研究过程与经验。同时也介绍了在材料性能与结构演变关系的研究过程中多场耦合条件的原位表征研究以及其在串联显微结构表征、材料性能乃至材料制备过程中的重要作用。张泽院士分享报告赛默飞电镜业务亚太区高级商务总监Marc Peeters在题为“Thermo Fisher Scientific: Contributions to Materials Research”的报告中,简要介绍了赛默飞的公司使命、整体概况及其在全球尤其中国的广阔商业布局与强大技术力量,并回顾了赛默飞世尔科技在微观表征设备尤其电子显微镜领域的研发、设计、制造的悠久历史与突出贡献:恒功率透镜、超级能谱、球差校正器、超亮电子枪、单色器、全新的探测系统、以及色差校正器等等技术的创造性推出与持续改进,极大帮助了科学家的材料研发、设计与制备等科研工作;近年,建立在超高稳定性系统上的全新自动化数据获取与智能化数据分析系统,亦将材料表征与分析、乃至新材料的开发工作推进到了一个全新的高度;而其完备的产品线及完整的表征工作流程,更是极大便利了科学家的材料科研工作。Marc随后也介绍了赛默飞强劲的研发、生产与技术支持实力,并展望了其在中国的远大发展前景。Marc Peeters 分享报告主题1:透射电镜理论、技术与仪器发展南京大学的王鹏教授深入浅出地介绍了基于高速相机4D-STEM大数据的叠层电子衍射成像技术(Ptychography)的技术原理及优势,并展望了该技术在突破硬件极限的超高分辨成像、与能量过滤器联用的5D-STEM、以及电子束敏感样品的低辐照高衬度成像乃至冷冻生物样品附带三维尺度信息的成像等等领域的最新应用。浙江大学的王江伟研究员则通过精巧设计的原位实验观察到了金属材料的单一理想界面的不同界面塑性变形的产生,进而讨论了其动力学机制及影响因素。武汉大学的郑赫副教授通过其最近在金属氧化物纳米材料的量子限域的可逆相变与点缺陷迁移方面的工作揭示了其微观力学的形变机理及广阔应用前景。赛默飞世尔的吴伟博士介绍了最新的Helios Hydra多气体离子源双束显微镜的低损伤透射电镜样品制备,及其搭载的多气体离子源切换与全新一代AutoTEM5带来的对各类不同材料的强大适应性与易用性。北京工业大学的张跃飞研究员与百实创科技的李志鹏博士分别介绍了扫描电镜及透射电镜上原位附件的最新技术进展、解决方案及相关应用。主题2:先进原位透射电镜表征重庆大学的黄天林教授通过原位加热实验系统地研究了层状纳米结构Al合金的结构演变,提出颗粒的粗化和集合,颗粒与位错界面/层状界面的联合可强化Y-junction迁移的钉扎作用,提高层状纳米结构的稳定性。北京工业大学的王立华研究员通过在原子尺度探索了纳米孪晶Pt材料的力学行为,回答了晶粒尺寸从Hall-Petch效应到反Hall-Petch效应区域的纳米晶的塑性变形机制等问题。北京航空航天大学的岳永海教授通过原位力学实验系统研究了纳米孪晶复合金刚石的强韧化机制,讨论了该材料变形过程中由孪晶增韧、相变增韧和叠层增韧等多重增韧机制协同作用。重庆大学的陈厚文教授在原子尺度研究了Mg合金中的界面结构,发现Mg合金中溶质原子孪晶界反常偏聚现象,提出化学成键能力是决定溶质原子孪晶界偏聚特征的重要因素。上海交通大学的刘攀教授通过原位变形研究了纳米多孔金的变形和断裂特征,发现表面原子扩散和体内位错滑移协同作用导致材料塑性室温,揭示了局域应变软化和孔洞粗化诱发整体脆断的变形机理。西北工业大学的马晓助理研究员通过原位加热的方法研究了高温金属材料的微观组织结构演变特征,揭示了高温结构材料服役过程中的精细微观组织结构的演变规律,为热处理制度制定,工程应用提供了理论指导。主题3:结构材料先进显微学表征浙江大学的余倩教授在题为“位错调控与金属结构性能关系”的报告中介绍了其通过现代电子显微学对合金材料的位错调控机理及应用的研究。她通过创造性的能谱“定量”技术解决了了高熵合金中元素周期性非均匀分布的表征问题,从而确定了合金元素错核靶向固溶引起的的超常强化的机理;进而应用该机理,通过主动调整相应元素,基于纳米尺度成分起伏,完成了合金的强韧化调控。来自上海大学的姜颖副教授通过题为“金属材料腐蚀行为的电子显微学研究”的报告详细介绍了合金材料中纳米析出相与微电偶腐蚀诱发点蚀行为以及微米尺度上的微电偶腐蚀的研究工作,并深入讲解了各种静态与原位的电子显微学表征手段在这一研究工作中的作用。南京理工大学的周浩副教授在题为“界面偏析诱导金属材料纳米化”的报告中,详细介绍了界面偏析的形成机理;分享了通过溶质偏析合金界面,进而诱导合金纳米化,从而调控其结构并改善性能,获得低成本高性能特种合金的经验。中南大学的刘春辉副教授在题为“铝合金薄壁件形性协同流变制造及其原理的原位电子显微学研究”的报告中,首先介绍了对合金材料位错诱导的强化相异质形核析出及强化等机理的研究,并利用高密度位错同时提高铝合金蠕变量和力学性能,实现回溶与高效高性能蠕变时效成形新工艺技术,解决了各类地空天运载装备的流变成形制造面临的成形与成性矛盾的问题;他随后分享了中南大学及机电工程学院电镜平台上各类原位工作的研究成果及心得。赛默飞世尔科技的牟新亮介绍了最新的高端球差透射电镜Spectra Ultra,及其中搭载的各项强大的技术,尤其是突破性高达4.45 sr立体角的Ultra-X能谱系统与颠覆性可灵活快速改变高压的Octagon电子光学系统;并展望了Spectra Ultra对现有表征手段的强化与对表征新维度的拓展,及其对材料科研工作的巨大帮助。专题4:功能材料先进显微学表征来自武汉理工大学的吴劲松教授在题为“热电材料 Cu2Se相变的原位电镜研究”的报告中介绍了其所在的纳微结构研究中心众多的来自赛默飞的高端电镜设备,阐述了通过掺杂和复合设计获得了 Cu2Se新的性能,借助高分辨电镜结合能谱及原位技术,发现了 Cu2Se第二相强化的机制,此项发现可以应用于阻止快离子导体中离子的流失进而提高热电材料的稳定性。上海交通大学的邬剑波教授在会议上做了题为“原位开启催化材料设计之可能”的报告,介绍了目前燃料电池所遇到的问题挑战及通过改变催化剂材料微观结构从而提高其性能和使用寿命的机理研究。同时邬老师介绍了他通过透射电镜液态样品杆获得的科研成果及对未来原位力学实验的展望。中科院物理所的张颖研究员在 “新型拓扑磁畴结构的探索”报告中主要介绍了通过透射电镜相关技术研究磁性材料的一些知识。中南大学的李凯副教授在“Al-Mg-Si合金纳米析出相在变形过程中的破碎与旋转”报告中阐述了铝合金变形的机理研究及通过透射电镜研究,发现被位错切过的纳米析出相发生碎片化的过程,并对未来使用原位力学杆的一些研究进行了展望。重庆大学的张斌博士做了 “SnSe层状化合物表面氧化行为的电子显微学研究”的主题报告,解释了通过高分辨透射电镜结合能谱研究明星热电材料SnSe化合物的氧化过程的必要性,及目前所获得的研究成果。华东师范大学的成岩副研究员在“原位电场下铪基铁电薄膜的原子尺度结构转变”主题报告中详细介绍了通过高分辨透射电镜结合原位样品样品杆解释铪基铁电薄膜极化的起源;来自北京理工大学的邵瑞文博士在“缺陷在功能材料中作用的原位透射电镜研究”报告中介绍了原位透射电镜在掺杂原子核位错观察中的应用,及其在实验中的一些经营和感受。本次会议主题报告主要邀请的为材料领域有突出表现的青年科学家,这些科学家是中国科技创新的希望,在国家科技强国的路上必将发挥重要的作用。
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht, S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments. Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°. 从方位角峰值的变化,能够清晰地看出PDMS在低温拉伸过程中的结构演变.图3(a)给出了PDMS在-60 ℃下单轴拉伸过程中典型的二维WAXS衍射图和相应的应力-应变曲线,可以明显看到随着应变的增大,PDMS发生了应变诱导结晶.图3(b)中则给出PDMS在拉伸过程中WAXS衍射峰(2θ≈10.42°)的方位角分布演化(从拉伸方向逆时针积分). 可以看到,随着应变的增大,在ψ=60°和120°的位置首先出现2个峰,这是β晶型(011)晶面的衍射信号. 随着应变的进一步增加,2个峰合并成赤道方向(ψ=90°)的尖峰,这是α晶型(001)晶面的衍射信号. 方位角峰的转变表明晶体随着应变的增加从β晶转变为α晶. 通过多峰拟合,可以获得峰值位置(图3(b)中的红色虚线)和相应的半高峰宽(FWHM),并将二者对应变进行作图,如图3(c)所示. 当应变较低时(ε0.68),峰值位置始终位于120°附近,FWHM约为35°. 当应变增大至1.00时,峰值位置急剧变为90°且随着应变的进一步增大而几乎保持不变. 随着峰值位置的转变和应变的增大,FWHM先增加后减小. 峰值位置和FWHM的演变均表明当ε0.68时,发生β晶到α晶的固-固相转变,并在ε≈1时完成转变. 由于2种晶型的衍射峰的2θ值重叠(如图4(b)中的1D积分曲线),除了通过方位角峰位演化判断β-α型晶体结构转化,还可分别对β晶和α晶在相应的方位角范围内进行mask积分(如图4(a)所示45°倾斜Iob和赤道方向Ieq).图4(c)以归一化形式给出了结晶度(χc),Iob和Ieq随应变增大的变化关系,通过与相应的应力-应变曲线比较,从而得到拉伸诱导的β-α相变的临界应变值.Fig. 3Stress-strain (σ-ε) curve and selectedin situ 2D WAXS patterns acquired during uniaxial tensile deformation at -60 ℃(a), the evolution of the azimuthal intensity distribution of diffraction peaks at 2 θ of about 10.42° (b), and the corresponding peak position and FWHM of the characteristic peaks (c) (Reprinted with permission from Ref.[ 6] Copyright (2018) American Chemical Society).Fig. 4(a) The mask protocols of 2D WAXS patterns for integration of samples stretched toε=0.24 andε=1.36 at -60 ℃, respectively. The red enclosed area is the oblique masked (Iob) signal of (011) plane ofβform, the blue enclosed areas is the equatorial (Ieq) masked signals of (001) plane ofαform. (b) 1D diffraction intensity profiles of 2D WAXS scattering patterns at different strains. (c) The stress (σ), crystallinity (χc) and equatorial (Ieq) and oblique (Iob) masked relative crystal content curves with the normalized coordinate (Reprinted with permission from Ref.‍[6] Copyright (2018) American Chemical Society).使用同样的数据处理方法,分别得到PDMS在低温下不同晶体结构SIC和固-固相转变的临界应变,根据临界应变在温度-应变二维空间中绘制PDMS低温拉伸过程的非平衡结构演化相图.图5是不同填料含量增强的PDMS在低温拉伸下的结构演化相图. 从相图可以看出,填料的含量(纳米SiO2)对PDMS在低温拉伸过程中α' ,β' ,α和β晶型间结构转变的影响十分复杂. 结合核磁、SAXS等多尺度表征手段可以对中间态α' 和β' 到α和β的转变可能遵循的机理进行研究,如晶体滑移或旋转,分析得到晶体内部分子链螺旋结构、晶体间排列和晶体之间的结构转变机理. 通过建立对微观结构转变规律的认识,并结合宏观力学性能数据,我们可以分析出PDMS材料低温失弹的微观结构原因.Fig. 5The non-equilibrium crystallization phase diagram for SIC of PDMS with 10 phr (a), 25 phr (b), 40 phr (c), and 55 phr(d) filler in strain-temperature (ε-T) space (Reprinted with permission from Ref.[7] Copyright (2018) American Chemical Society).2同步辐射原位研究高分子薄膜加工的多尺度结构高性能高分子薄膜的制备方法和技术是工业界和学术界需要共同攻克的难题. 高分子薄膜加工包括从熔体、溶液到薄膜的固化过程和薄膜后拉伸过程,具有多步骤、多加工参数和多尺度结构演变的特点. 成膜过程的主要研究内容是流动场诱导结晶,包括加速成核和生长、诱导新晶型以及改变晶体形貌. 在后拉伸过程中,薄膜则可能发生晶体的破坏与重构、无定形区的微相分离、纤维晶形成以及微孔的成核和扩大等结构变化. 高分子薄膜加工过程中复杂的多尺度结构演化最终决定了其服役性能. 例如:干法制备聚烯烃微孔隔膜需要通过塑化挤出、风刀骤冷和流延辊高倍拉伸后才能得到初始预制膜. 在每个步骤中,环境温度、湿度、应变、应变速率、乃至挤出机螺杆长径比和口模流道的设计等因素都会对预制膜的结构与性能产生影响.通常,高性能薄膜的制备是在远离平衡态的加工条件(如高速拉伸)下进行的. 由于现有理论和实验条件的限制,非平衡问题不能简单地通过外延平衡理论解释. 高时空分辨的同步辐射硬X射线散射表征技术可以实时跟踪高分子材料在非平衡加工过程中不同尺度的结构演化,系统研究应变速率、温度等复杂外场作用下高分子材料结构与性能的关系. 通过研制贴近实际工业生产加工条件的原位研究装置,并开展同步辐射原位实验,可建立高分子材料的非平衡加工相图,从而进一步指导实际工业生产,实现高性能高分子材料的精准加工.在这里,笔者想要再次强调的是在明晰具体的材料体系和所需的实验条件后,需针对性地设计控制样品环境的原位装置,才能充分发挥出同步辐射硬X射线散射表征技术的优势. 目前,本课题组研制的同步辐射原位研究装置可分为复杂外场单轴拉伸装置和大型原位加工装置2类,前者主要模拟复杂外场下高分子材料的单轴拉伸过程,后者可以在较小的同步辐射线站空间内模拟高分子材料的实际加工过程. 依托这些同步辐射原位研究装置,可以就流动场诱导结晶、晶体的熔融再结晶、晶体固-固相转变等现象针对性地设计原位实验,加深对高分子材料加工背后基础物理问题的理解.2.1复杂外场下单轴拉伸复杂外场通常指温度场、流动场以及溶液、气压等样品环境. 通过复杂外场单轴拉伸实验可以模拟样品在实际加工中的形变过程的微观结构演化规律. 温度场的控制是高分子材料加工和服役性能的关键,聚乙烯(PE)、聚丙烯(PP)等常用塑料的加工温度窗口远高于室温(150~250 ℃),而天然橡胶(NR)、硅橡胶等弹性体其低温环境(0~-150 ℃)的服役性能更受研究者关注. 流动场包括剪切、拉伸外场,以拉伸场为例,拉伸速率对高分子材料内部结构演化规律,例如晶体的破坏、晶体结构转变等都有显著的影响. 工业中通常使用对拉的方式对样品进行单轴拉伸,而这种拉伸方式常由于拉伸比、腔体体积等原因受到限制. 因此,单轴拉伸通常根据材料和实验需要在对拉和辊拉2种方式中择优使用.图6(a)为采用对向拉伸的恒幅宽拉伸装置,装置的最大拉伸比可以达到700% (初始长度20 mm),拉伸速率范围在0~1000 mm/min,温度区间为室温至200 ℃[11,12].图6(b)为采用辊拉方式拉伸的高速拉伸装置,装置不受最大拉伸比限制,应变速率范围为10-2~102 s -1,温度范围为-40~300 ℃[13,14]. 考虑到在原位实验中的应用,装置被设计和建造得尽可能小型化. 高速拉伸装置配合上海光源高通量线站BL19U2使用Lambda 750K探测器可实现的最高分辨率为0.5 ms. 为了同步获得高速拉伸过程中的真实应变,利用时间分辨可达0.1 ms的高速CCD相机拍摄样品的拉伸过程.Fig. 6Constant width stretching device (a) and high speed stretching device with wide-temperature range (b).使用研制的复杂外场原位单轴拉伸装置主要用来研究流动场诱导结晶[15]以及后拉伸过程晶体形变与破坏. 流动场诱导高分子结晶是功能薄膜流延加工的关键,是熔体或溶液挤出口模冷却固化的过程,对于理解功能薄膜非平衡物理和指导实际工业生产具有重要意义. 流动诱导链段构象经过中间有序态发展为晶体,目前仍缺乏更多证据说明中间态结构的普适性、中间态的晶型、以及中间态的温度和流动场依赖性等问题. 为揭示详细的多步骤中间态,通过使用高时间分辨的同步辐射WAXS和SAXS联用技术,控制拉伸温度,对聚乙烯(PE)进行熔体拉伸,构建PE在温度-应力参数空间上非平衡流动场诱导结晶和熔融相图[16](图7(a)). 相图包含熔体、非晶δ相、六方(H)晶和正交(O)晶4个相区,并证实了拉伸诱导的δ相能够作为亚稳的中间相促进结晶发生,这支持了有序中间态是流动诱导结晶中的普遍规律的观点. 除了聚乙烯流动场诱导结晶的非平衡相图,针对功能膜加工的需要,工程实验室还系统构建了聚丁烯(PB)流动场诱导结晶的非平衡相图[17],如图7(b)所示,这些工作都为当前功能薄膜从感性粗放到理性精准加工积累了基础数据[18,19].Fig. 7Stretch induced crystallization non-equilibrium phase diagram of PE melt in temperature-stress space (a) (Reprinted with permission from Ref.[16] Copyright (2016) Springer Nature) and PB melt in temperature-strain rate space (b) (Reprinted with permission from Ref.[17] Copyright (2016) Wiley-VCH Verlag).在更大尺度上,即片晶和片晶间无定形的结构转变仍需要进一步研究工作. 笔者所在课题组以由高取向片晶簇构成的硬弹性聚乙烯、聚丙烯流延膜为研究对象,在室温下进行冷拉,研究取向片晶(如图8(a)和8(b))在不同拉伸外场中的结构演化与非线性力学行为的关系. 如图8(c)和8(d)所示,研究发现片晶簇的微屈曲和片晶间无定形相发生微相分离. 以α松弛温度和接近熔点为边界将温度分为3个区域,图9给出了高取向等规聚丙烯薄膜在温度-应变二维参数空间中的微观结构演化相图. 这些微观结构的演化规律解释了温度效应对材料的宏观非线性力学行为的影响[20,21]. 显然,研究形变机理对功能薄膜在后拉伸加工过程中的温度、应变及应变速率等参数的选择具有重要的指导意义.Fig. 8The structural evolution model of highly oriented lamella by uniaxial tensile (Reprinted with permission from Ref.[20] Copyright (2018) Elsevier).Fig. 9The structural evolution diagram of the highly oriented lamella in temperature-strain space (Reprinted with permission from Ref.[21] Copyright (2018) American Chemical Society).针对新能源电池隔膜加工需要,还系统构建了聚烯烃等工业预制膜后拉伸加工中的应变-温度空间或双向拉伸空间的非平衡相图[22,23],如图10所示. 通过模拟半晶高分子薄膜后拉伸加工,跟踪拉伸过程中晶体和无定形相的演化过程,不仅有助于指导高分子材料后拉伸加工中结构与性能调控,还可以为构建锂电池隔膜加工的材料基因组积累必要的结构和力学信息数据库.Fig. 10The structural diagram of processing in temperature-strain (a) (Reprinted with permission from Ref.‍[22] Copyright (2019) John Wiley and Sons) and biaxial stretch ratio (b) (Reprinted with permission from Ref.‍[23] Copyright (2019) Elsevier) spaces for PE gel film.2.2大型加工原位装置高分子薄膜的成型方法有很多,其中比较常见的有流延,吹塑和挤出拉伸(单向和双向)3种加工工艺. 目前,我国薄膜加工生产线和配套工艺主要还是依赖进口,国内生产线制造和薄膜加工企业处于成长阶段,缺乏原创高端产品. 究其原因,主要是缺乏相关基础和应用研究的支撑. 在真实的高分子加工过程中,伴随大应变、高应变速率、高温度(压力)变化等,高分子材料的结构经历复杂的非线性、非均匀和非平衡演变,相关研究极具挑战性. 当前的大多数原位研究仍处于模型化阶段,如利用低剪切水平的剪切热台、改造的流变仪等,不能反映真实加工条件下的物理行为. 因此,需要研制大型加工原位装置以最大程度地还原实际加工环境. 大型加工原位装置的研制主要的难点在于在能实现样品的复杂形变和环境温度的控制的前提下,需将产业化的装置设备缩小至能够满足同步辐射光源线站的空间限制的要求. 非常值得一提的是,上海光源即将建成开放的USAXS工业实验站(BL10U1)的空间将大大增加(长24 m,宽8 m,高6 m),可以放置大型工业应用原位实验装置. BL10U1的建成运行将大大降低对大型原位装置的尺寸限制. 下面我们以原位双向拉伸装置和原位挤出吹塑成膜装置为例,详细介绍大型加工原位装置及相关的研究应用.双向拉伸工艺可以制备具有优良服役性能的高分子薄膜(如BOPP和BOPA薄膜),其加工是一个非常复杂的过程,涉及高分子多尺度结构(分子链、晶格、片晶和球晶等)在多加工外场参数(如应力和温度)耦合作用下的协同转变. 因此,研究双向拉伸过程的结构转化动力学和机理,可以从基础原理上指导双向拉伸薄膜的加工,提高产品性能. 为实现双轴拉伸外场作用下高分子薄膜材料的多尺度结构演化在线跟踪,笔者所在课题组研制了与同步辐射技术联用的原位双向拉伸装备(见图11). 装备能够实现多种拉伸模式,其中包括受限、非受限单向拉伸,同步、异步双向拉伸. 装置的温度、速度、拉伸倍率、拉伸方式等外场参数均可独立控制,形变线速度范围为0.1~300 mm/s,双向拉伸比可达5×4,最高温度可达250 ℃. 该装备与同步辐射硬X射线光束线站联用,可实现0.1~500 nm尺度范围内的结构检测,时间分辨率为0.5 ms. 双向拉伸装置采用计算机高速控制-采集系统,控制系统采用PLC控制面板,可以远程控制电机运转,实现同步辐射光源棚屋外的控制. 该装备配备了力学信息采集系统,可同时采集拉伸过程中水平和垂直方向的力学信息,结合多尺度结构数据,可构建加工-结构-性能的关系,揭示双向拉伸外场作用下的高分子材料结构演化机理[24].Fig. 11The schematic diagram, and physical map used with synchrotron radiation of film biaxial stretching device (Reprinted with permission from Ref.[25] Copyright (2019) American Chemical Society).天然橡胶的优异力学性能通常归因于其应变诱导结晶行为. 受限于实验条件,目前大多数的研究均集中于单轴拉伸过程中的应变诱导结晶,然而接近于实际使用条件的多轴变形下的应变诱导结晶却很少报道. 本课题组采用高通量的原位同步辐射WAXS技术,结合在线双轴拉伸装置,研究了在双轴拉伸条件下天然橡胶的应变诱导结晶行为[25]. 利用同步辐射硬X射线散射研究天然橡胶双向拉伸形变过程物理,建立天然橡胶在真正服役条件下的多维外场-结构数据库.图12所示的二维WAXS结果表明,在双轴拉伸情况下,天然橡胶的应变诱导结晶行为会得到抑制:当两垂直方向的拉伸比比值为1时,室温下试样即使拉伸至断裂也不会出现结晶. 双轴拉伸阻碍了天然橡胶的SIC. 这一发现挑战了SIC在天然橡胶中在多轴变形下的自增强机制的共识.图13针对天然橡胶在多维拉伸空间的应变诱导结晶,提出了一种理论上的应变诱导结晶模型,即将构象熵和链段取向对成核位垒的贡献解耦. 将结晶度(χc)、无定形取向参数(f)和取向无定形的含量(Oa)在双向拉伸应变空间内定量化,提出模型:ΔG*f=ΔG*0−TΔSf−(TΔSori+ΔUori),其中,ΔG*f是成核位垒,ΔG*0是静态条件的成核位垒,ΔSf是构象熵减,ΔUori是取向造成的自由能变. 将几种结构参数定量化,得到应变空间内的结晶度分布. 基于该模型,二维应变空间的结晶度与实验结果高度吻合,并有助于建立更具有普遍意义的半结晶聚合物的流动诱导结晶理论模型.Fig. 122D WAXD patterns of the NR samples at the maximum planar draw ratio (λx×λy), where (a-h) denote stretch conditions of free uniaxial stretch (FS), CS, andvy=0.1, 0.2, 0.4, 0.5, 0.6, and 0.7 mm/s, respectively.vx remains constant at 1 mm/s, whose direction is given by a two-head arrow in the center (Reprinted with permission from Ref.‍[25] Copyright (2019) American Chemical Society).Fig. 13Distributions of (a) crystallinity (χc), (b) Hermans' orientation parameter of the amorphous phase (f), (c) weight portion of the oriented amorphous phase (Oa), (d) absolute value of entropy reduction (ΔSf), and (f) theoretically fitted crystallinity (χc (P)) in λx versus λy space. Gradient directions of contours for Δ Sf,f, andχc (e) (Reprinted with permission from Ref.[ 25] Copyright (2019) American Chemical Society).高分子吹膜加工是非线性、非平衡的多尺度结构快速演化过程,并伴随拉伸场、温度场和气氛环境等复杂外场,其过程模型如图14(a). 吹膜加工过程中,熔体拉伸、吹胀和降温主要发生在熔体出口模到霜线前后的阶段,这一阶段也是决定材料吹膜加工性能和薄膜使用性能最为关键的阶段. 利用同步辐射硬X射线散射技术的优势,考虑到同步辐射实验线站的空间限制条件等因素,研制了与同步辐射联用的原位挤出吹塑成膜装置(见图14(b)),并配合升降机、红外测温、高速CCD相机等其他单元形成吹膜加工原为在线检测系统[26,27],建立了吹膜加工过程原位在线检测方法[28]. 原位挤出吹塑成膜装置将工业薄膜吹塑装备小型化,实现了整个吹膜过程原位在线结构检测,吹膜过程加工参数连续可调,能够真实模拟实际加工过程. 利用同步辐射技术实现WAXS/SAXS同步采集,可获得结晶度、晶粒尺寸、取向度、片晶长周期等结构信息及其演化动力学信息,并且可以同步获得膜泡不同位置温度场及流动场信息. 基于该系统可建立吹膜加工过程原位在线研究方法并开展不同分子结构/加工参数下聚乙烯(PE)棚膜、PBAT(poly(butyleneadipate-co-terephthalate))地膜等薄膜产品的原位在线研究. 原位挤出吹塑成膜装置是高性能高分子薄膜加工领域研究方法技术的突破,有利于深入研究高分子薄膜加工物理,有效支撑了高性能薄膜产品的研发[29~31].Fig. 14The model of film blowing process (a) and the physical map of the film blowing device used with synchrotron radiation (b).通过PE材料的同步辐射在线吹膜实验总结了吹膜加工过程结构演化规律. 通过对晶体取向度、结晶度等数据的分析,根据吹膜过程的结构演化提出了相应的模型图(图15),并将结构演化过程分为4个区域. I区(霜线位置51~61 mm):拉伸诱导熔体结晶及滑移网络的拉伸. Ⅱ区(61~65 mm):晶体交联网络的拉伸. Ⅲ区(65~92 mm)及Ⅳ区(92~160 mm):不可形变网络的填充. 以上结论表明大量的晶体形成是对不可形变网络的填充,这一过程类似于静态等温结晶[32].Fig. 15The model of evolution of structural parameters during film blowing (Reprinted with permission from Ref.‍[32] Copyright (2018) American Chemical Society).基于对于吹膜过程从高分子缠结网络-晶体交联网络-晶体网络的理解,通过设计变温吹膜实验研究了温度和外部流场对不同拓扑结构的聚乙烯吹膜的影响. 研究发现不同吹胀比(12和20)的线性和长链支化聚乙烯(MPE和LPE)对温度和流动场具有不同的响应. 通过同步辐射硬X射线散射在吹膜过程中对PE的微观结构演变的进一步分析揭示了3种不同类型的网络演化(如图16):(1) 温度诱导结晶主导过程(MPE);(2) 流动诱导结晶主导过程(LPE-20);(3) 成核和生长由温度和流动的耦合效应(LPE-12)确定. 预计目前的结果将指导薄膜吹塑的加工,并为远离平衡条件下的流动场诱导结晶研究提供新的观点[33].Fig. 16The different types of the structure and network evolutions of TIC, TIC coupled with FIC, and FIC. The scale bar of SEM images is 500 μm. (Reprinted with permission from Ref.[33] Copyright (2019) American Chemical Society).基于同步辐射硬X射线散射实验结果,可以得到从缠结网络到可变形晶体网络,再到最终不可变形晶体支架的网络演化. 这些结构演化信息能够帮助完善数学模型,进一步优化和开发新的吹膜设备和方法. 吹膜过程的原位研究为高性能高分子薄膜的高效研发提供了可能的解决方案. 原位挤出吹塑成膜装置通过改变加工参数来调节链的取向,在生产具有特定性能的聚合物薄膜方面具有很大的潜力.3总结和展望同步辐射硬X射线散射技术在高分子表征中已得到广泛的应用. 研制与同步辐射联用的原位在线研究装置是用好同步辐射硬X射线散射技术的关键. 高效地使用同步辐射硬X射线技术需要我们根据不同高分子材料的特定性能,分析样品所处的外部复杂坏境,设计富有创新性的实验,再根据样品环境“量身打造”同步辐射原位表征装置. 依托高亮度的现代同步辐射光源如上海光源,配合超快探测器的使用,实现高时间、高空间分辨的多尺度结构表征.小型的同步辐射原位在线研究装置可用来研究拉伸、剪切等简单流动场和复杂外场(温度、应变、应变速率、溶液环境等)耦合条件下的结晶、晶体网络破坏等物理问题. 大型加工原位装置通过将大型加工装置小型化至可与同步辐射光束线站联用,真实反映高分子材料在实际工业加工过程中微观结构演化规律. 本文中涉及的原位研究装置均为笔者所在课题组根据研究内容自主设计并制造,大部分零部件是非标的,需要定制. 我们诚挚欢迎有相关原位研究装置需求的读者与我们联系,以期更好地发挥这些装置的作用,共同扩展它们的应用范围. 本课题组致力于发展和集成与同步辐射联用的高分子材料性能表征技术,建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中进行搜索最优参数的能力,从理论上切实指导实际生产加工.参考文献1Li Haohu(李浩虎),Yu Xiaohan(余笑寒),He Jianhua(何建华).Modern Physics(现代物理知识),2010,22(3):14-192Li Xiaodong(李晓东),Yuan Qingxi(袁清习),Xu Wei(徐伟),Zheng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:10.1002/pcr2.100436Zhao J,Chen P,Lin Y,Chang J,Lu A,Chen W,Meng L,Wang D,Li L.Macromolecules,2018,51(21):8424-8434.doi:10.1021/acs.macromol.8b018727Zhao J,Chen P,Lin Y,Chen W,Lu A,Meng L,Wang D,Li L.Macromolecules,2020,53(2):719-730.doi:10.1021/acs.macromol.9b021418Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201810052796.3.2018-06-12.doi:10.3390/land100606319Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201820097340.4.2018-01-19.doi:10.3390/land1006063110Chen P,Zhao J,Lin Y,Chang J,Meng L,Wang D,Chen W,Chen L,Li L.Soft Matter,2019,15(4):734-743.doi:10.1039/c8sm02126k11Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201220733325.7.2013-11-06.doi:10.3390/land1006063112Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201210579459.2,2013-11-23.doi:10.3390/land1006063113Chang Jiarui (常家瑞).Structural Evolution and Mechanical Behavior of Typical Elastomer Meterials in a Wide Range of Strain Rate(典型弹性体材料在宽应变速率范围内的结构演化与力学行为).Doctoral Dissertation of University of Science and Technology of China,201914Li Liangbin(李良彬),Ju Jiangzhu(鞠见竹),Wang Zhen(王震),Ye Ke(叶克),Meng Lingpu(孟令蒲).China patent, CN.ZL201710070789.1.2017-05-31.doi:10.3390/land1006063115Wang Z,Ma Z,Li L.Macromolecules,2016,49(5):1505-1517.doi:10.1021/acs.macromol.5b0268816Wang Z,Ju J,Yang J,Ma Z,Liu D,Cui K,Yang H,Chang J,Huang N,Li L.Sci Rep,2016,6(1):1-8.doi:10.1038/srep3296817Ju J,Wang Z,Su F,Ji Y,Yang H,Chang J,Ali S,Li X,Li L.Macromol Rapid Commun,2016,37(17):1441-1445.doi:10.1002/marc.20160018518Xu Jiangli(徐佳丽),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Li Xueyu(李薛宇),Lei Caihong(雷彩红),Wang Wei(王卫),Acta Polymerica Sinica(高分子学报),2015, (4):38-44.doi:10.11777/j.issn1000-3304.2015.1430319Lin Yuanfei(林元菲).Study of the Intrinsic Deformation Mechanism ofiPP Oriented Lamellar Stacks(等规聚丙烯取向片晶的本征形变机理研究).Doctoral Dissertation of University of Science and Technology of China,2018.doi:10.31219/osf.io/k7ehx20Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Li L.Polymer,2018,148:79-92.doi:10.1016/j.polymer.2018.06.00921Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Zhang R,Li L.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025522Lv F,Wan C,Chen X,Meng L,Chen X,Wang D,Li L.J Polym Sci,Part B:Polym Phys,2019,57(12):748-757.doi:10.1002/polb.2482923Wan C,Chen X,Lv F,Chen X,Meng L,Li L.Polymer,2019,164:59-66.doi:10.1016/j.polymer.2019.01.02124Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Xu Jiali(徐佳丽),Li Xueyu(李薛宇),Zhang Rui(张瑞),Zhang Qianlei(张前磊).China patent, CN.ZL201420449291.8.2014-12-10.doi:10.3390/land1006063125Chen X,Meng L,Zhang W,Ye K,Xie C,Wang D,Chen W,Nan M,Wang S,Li L.ACS Appl Mater Inter,2019,11(50):47535-47544.doi:10.1021/acsami.9b1586526Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201720215641.8.2018-01-30.doi:10.3390/land1006063127Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201710131585.4.2017-05-31.doi:10.3390/land1006063128Zhang Qianlei(张前磊).Study on Physics of Polymer Film Stretching Processing(高分子薄膜的拉伸加工物理研究).Doctoral Dissertation of University of Science and Technology of China,2019.doi:10.30919/es8d50529Zhao H,Zhang Q,Xia Z,Yang E,Zhang M,Wang Y,Ji Y,Chen W,Wang D,Meng L,Li L.Polym Test,2020,85:106439.doi:10.1016/j.polymertesting.2020.10643930Zhao H,Li L,Zhang Q,Xia Z,Yang E,Wang Y,Chen W,Meng L,Wang D,Li L.Biomacromolecules,2019,20(10):3895-3907.doi:10.1021/acs.biomac.9b0097531Zhang Q,Chen W,Zhao H,Ji Y,Meng L,Wang D,Li L.Polymer,2020,198:122492.doi:10.1016/j.polymer.2020.12249232Zhang Q,Li L,Su F,Ji Y,Ali S,Zhao H,Meng L,Li L.Macromolecules,2018,51(11):4350-4362.doi:10.1021/acs.macromol.8b0034633Zhao H,Zhang Q,Li L,Chen W,Li L.ACS Appl Polym Mater,2019,1(6):1590-1603.doi:10.1021/acsapm.9b00391原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21111&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21111
  • 电镜表征新成就颠覆认知 全固态电池量产不是梦
    导语2020开年新气象,电镜科研新成就。困扰业界许久的锂枝晶生长机理问题取得重大突破,全固态电池距离量产迈进一大步。近日,燕山大学亚稳材料制备技术与科学国家重点实验室黄建宇教授、沈同德教授和唐永福副教授等人联合美国佐治亚理工学院朱廷教授、宾夕法尼亚大学张宿林教授,通过巧妙地设计实验过程,实时直观地记录了锂枝晶生长的微观机制,精准测定了其力学性能和力-电耦合特性。更难能可贵的是,该研究团队还提出了一种固态电池中抑制锂枝晶生长的可行性方案。锂枝晶的生长机理难题困扰业界许久,至此终于有种“拨开云雾见天日,守得云开见月明”的感觉了。论文链接:www.nature.com/articles/s41565-019-0604-x据悉,该研究成果已在权威国际期刊《自然-纳米技术》(Nature Nanotechnology)刊登发布。《自然-纳米技术》是材料与纳米科技领域的国际顶级学术期刊,2019年的影响因子高达33.407,该研究成果的突破性和重要性由此可见一斑。为什么这项研究成果能够引发业界广泛关注呢?这就不得不提到目前在电动汽车上广泛使用的液态锂离子电池,其主要结构包括正负极材料、隔膜和电解液。因内部构造原因,液态锂离子电池容易受环境温度影响,而且很容易产生不可控的锂枝晶。锂枝晶非常“锋利”,可以刺破隔膜导致电解液泄漏,导致电池内部短路,从而造成电池起火甚至汽车自燃事故,近年来为提升电池的能量密度,企业把隔膜厚度从十几毫米降低到了五六毫米,2019年特斯拉、蔚来等大牌电动汽车相继“走火”,或许也间接反映了这个问题。概括言之,在材料体系没有创新的条件下,目前商品化的液态锂离子电池的能量密度已经逼近“极限”(300Wh/kg左右),“里程焦虑”、“可能自燃”等问题重创消费市场。既然液态电解液不行,那改用机械刚性的固态电解质不就完事了么?于是乎,全固态锂离子电池(简称:全固态电池)进入了公众视野。顾名思义,全固态锂离子电池采用的是固态电解质,不含任何液态组份,结构更加安全。与液态锂离子电池相比,全固态锂离子电池的能量密度最高潜力达900Wh/kg,因此,固态电池被视作为下一代锂电池技术革命,其量产与普及将会彻底解决电动汽车发展的最大瓶颈问题,国内外车企巨头已然纷纷布局涉足,“固态热潮”一时风头无两。然而,全固态电池的研发之路也并非一马平川。全固态电池以金属锂作为负极材料,仍然绕不开“不可控锂枝晶”的这个坎儿,实验结果表明,锂枝晶生长到一定程度时,也可以穿透固态电解质,造成电池短路失效。尽管诸多研究致力于探索如何抑制锂枝晶的产生,但是以往研究主要停留在宏观尺度,对于锂枝晶生长的微观机理、力学性能、刺穿固态电解质的机制及抑制其生长的科学依据缺乏足够了解。赘述至此,相信您应该充分了解黄建宇教授、沈同德教授等人的研究成果的重要性了吧?!___AFM-ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。___据悉,该研究团队基于AFM-ETEM平台发现,在室温下,当对AFM针尖施加电压(过电位)时亚微米晶须开始生长,其生长应力高达130 MPa,远高于此前研究报道。此外,研究人员还发现锂晶须在纯机械载荷作用下的屈服强度可达244Mpa,远高于宏观金属锂的屈服强度(~1MPa)。可以说,该研究成果颠覆了研究者对锂枝晶力学性能的传统认知,为抑制全固态电池中锂枝晶生长提供了新的定量基准,为设计具有高容量长寿命的金属锂固态电池提供了科学依据,这项研究成果得到应用之后,全固态电池将有望加速实现商业化量产。很荣幸,赛默飞世尔科技旗下Thermo Scientific品牌的两大拳头电镜产品能够深度参与此项研究工作,并帮助研究团队发明了一种基于原子力显微镜—环境透射电镜(AFM-ETEM)原位电化学测试平台,建立起了一种有效的研究锂枝晶的动态原位实验表征新技术。它们是Themis™ ETEM环境气氛球差校正透射电子显微镜(左图)与Helios PFIB双束电镜(右图):Helios PFIB Themis™ ETEM Themis™ ETEM 300kV原子分辨扫描/ 透射电子显微镜可以一体化解决纳米材料在接触活性气体环境和升温的过程中的时间分辨动态特性原位研究,包括材料的结构性能关系、原子尺度的几何结构、电子结构以及化学组成。Helios PFIB系统结合了Elstar电子镜筒和Vion氙等离子体离子镜筒,既可以实现纳米分辨率和最高衬度成像,又能确保尺度样品加工的速度和精确度。基于此,赛默飞推出了一系列针对锂电池行业的多尺度二维及三维表征解决方案,主要包含多功能计算机断层扫描系统、扫描电镜、镓离子双束电镜、Xe等离子双束电镜、透射电镜等产品,涉及电芯表征、电极表征、隔膜表征等应用,希望从广度和深度两个方面,为客户在锂电池开发的各个阶段提供强力支持的产品组合,助力攻克电池研发技术难题,让全固态锂离子电池的量产与普及不再是梦,让电动汽车“充一次电跑1000公里”不再是梦!
  • 基于MEMS芯片的气相原位透射电镜(TEM)表征技术
    近日,中国科学院上海微系统与信息技术研究所研究员李昕欣团队采用基于MEMS芯片的气相原位透射电镜(TEM)表征技术,探究了Pd-Ag合金纳米颗粒催化剂在MEMS氢气传感器工况条件下的失效机制。4月13日,相关研究成果作为Supplementary Cover论文,以In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors为题,发表在Nano Letters上。 采用MEMS芯片气相原位TEM技术揭示氢气传感器失效机制的示意图随着低碳经济的快速发展,氢能作为理想的清洁能源应用于各个领域,如氢燃料电池汽车。为了确保氢气的安全使用,迫切需要开发具有高灵敏度、高选择性、高稳定性且低功耗的氢气传感器。李昕欣/许鹏程研究团队在国家重点研发计划“硅基气体敏感薄膜兼容制造及产业化平台关键技术研究”的支持下,开展了MEMS低功耗氢气传感器的研究工作。在半导体敏感材料表面修饰贵金属催化剂是提升氢气传感器性能(如灵敏度)的有效方法。然而,半导体气体传感器的工作温度高达数百摄氏度。在长期的高温工作环境下,金属催化剂的活性易衰减,引起半导体气体传感器的性能下降甚至失效,阻碍了该类传感器的实用化。传统的材料表征方法通常只能分析敏感材料失活前后微观形貌、结构及成分等的变化,缺乏在工况条件尤其是气氛条件下原位表征敏感材料的能力,难以分析半导体气体传感器的失效机制。该研究使用气相原位TEM实验,在工况条件下观测到Pd-Ag合金纳米颗粒催化剂的形貌和物相演变全过程,揭示了该合金纳米催化剂在不同工作温度下的失活机制,并据此对MEMS氢气传感器进行优化,有效推进了氢气传感器的实用化。原位TEM实验结果表明,当半导体氢气传感器在300 ℃工作时,相邻近的Pd-Ag合金纳米颗粒易发生融合、颗粒长大现象,且颗粒的结晶性提高。Pd-Ag合金纳米颗粒催化剂的粒径增大、缺陷减少,使其催化活性降低,引起氢气传感器的灵敏度出现衰减。当氢气传感器在更高温度(500 ℃)下工作时,Pd-Ag合金纳米颗粒进一步发生相偏析,Ag元素从合金相中析出,同时生成了PdO相,导致催化剂丧失了协同增强效应,使氢气传感器的灵敏度大幅下降甚至失效。原位TEM实验实时记录合金催化剂的融合过程在上述失效机制的指导下,科研团队进一步优化了Pd-Ag合金催化剂的元素组成、负载量及工作温度,并使用实验室独立研发的集成式低功耗MEMS传感芯片,研制出新一代的氢气传感器。该氢气传感器具有灵敏度高(检测下限优于1 ppm)、长期稳定性好(在300 ℃下连续工作一个月后,对100 ppm H2的响应值衰减小于1%)、功耗低(300 ℃下持续工作,功耗仅为22 mW)。该研究采用气相原位TEM技术来探讨气体传感器的失效机制,为气体传感器的理论研究与实用化提供了新的研究方式。目前,该MEMS氢气传感器已在汽车加氢站等领域试应用,相关应用工作正在积极推进。研究工作得到国家重点研发计划、国家自然科学基金及中科院仪器研制项目等的支持。论文链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c05018
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • 太酷了!这台全新多功能材料微区原位表征系统,可实现同位置,同界面的SEM和AFM综合测量
    材料的性能在芯片制造,新能源,医疗,机械,机电等诸多领域起着举足轻重的作用。随着科学技术的进步,人们发现材料学的宏观性能往往取决于材料微区的性能累积。因此,材料科学等研究领域的学者将研究重心放在了材料的微区组织和相关性能上。当研究的对象尺寸从宏观的厘米和毫米小到微米和纳米时,相关组织和性能的研究就需要特别注意不同区域组织和性能的对应关系。为了表征这种对应关系,通常需要在不同的设备间进行切换,很难实现在纳米级精准度的前提下对某一微区进行表征,各种表征和性能的测量也很难锁定需要的微区域,所获得的研究结果关联性较弱。为了解决这一问题,Quantum Design公司推出了多功能材料微区原位表征系统-FusionScope。该系统可以对材料纳米级微区域进行原位二维和三维的形貌、成分分析、力学性能、电学性能,磁学性能表征。同时,FusionScope还可以搭配加热/制冷样品台以及可倾转到80°的大倾角样品台来满足客户的不同需求,可广泛满足材料科学,纳米结构,半导体或太阳能电池、生命科学等领域的应用。设备操作软件简单易用,并且为刚接触和有经验的使用者分别提供了不同使用模式。设备后期维护简单,所占空间小,方便使用。图1. Quantum Design材料微区性能综合表征系统-FusionScope材料微区性能综合表征系统主要优势:简单易用Quantum Design自主研发的AFM和SEM成熟集成方案,自动化程度高,软件/硬件操作简单易用;不仅能满足有经验的使用者,也能让初学者快速上手;原位共享坐标测量多种AFM功能与SEM原位联用,发挥出两种常用显微镜的技术优势,实现同一时间、同一样品区域和相同条件下的原位共享坐标测量,避免样品转移过程中的污染风险,特别适合环境敏感样品;齐全的测量功能多通道样品特性成像,并无缝关联到三维形貌图像中。AFM可测量的功能包括有:三维/二维表面形貌成像,力学/机械性能测量、电学测量、磁学测量;SEM配备EDS功能;原位旋转测量利用SEM进行实时、快速、精准导航AFM针尖,从而实现AFM对感兴趣区域的精准定位与测量。无需转移样品,原位进行80° AFM与样品台同时旋转;更换样品FusionScope更换样品仅需几分钟,简单快速。FusionScope功能展示电子成像:图2. FusionScope和Hitachi Flex电子成像对比。左侧图为FusionScope获得结果,右图为Hitachi Flex扫描电镜结果不锈钢样品微区电子成像-三维成像-磁学综合表征:图3. FusionScope对不锈钢样品的微区进行电子成像,三维成像和磁学性能综合表征BaTiO3样品微区电子成像-三维成像-电学综合表征:图4. FusionScope对BaTiO3样品进行电子成像,三维形貌和电学性能的综合表征BaTiO3样品的EFM、AFM、SEM扫描视频微观力学性能表征:图5. 利用FusionScope的FIRE模式(Finite Impulse Response Excitation)对不同弹性模量的聚合物进行综合表征大尺寸样品形貌综合表征:图6. FusionScope对刀片样品进行电子成像和三维成像综合表征FusionScope对刀片尖锐部分扫描视频相关产品1、多功能材料微区原位表征系统-FusionScope
  • 需求很火热,发展正当时——原位电子显微学表征分会场侧记
    p  strong仪器信息网、中国电子显微镜学会联合报导:/strong2017年10月18日,a href="http://www.instrument.com.cn/zt/microscope" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "strong2017年全国电子显微学学术年会/strong/span/a在成都星宸皇家金煦酒店隆重召开。学术年会为期三天,吸引了近900人来自大专院校、科研院所、企业等单位的代表出席。学术年会旨在帮助大家了解电子显微学及相关仪器技术的前沿发展,促进基础研究与应用研究最新进展的交流。br//pp style="text-align: center"a href="http://www.instrument.com.cn/zt/microscope" target="_self" title=""img src="http://img1.17img.cn/17img/images/201710/insimg/24795d72-6926-4069-9704-947fbac2f49d.jpg" title="0.jpg"//a/pp  继大会报告后,八个分会场同时上演。其中的“原位电子显微学表征分会场”更是火爆异常!/pp  原位电子显微分析方法是实时观测和记录位于电镜内部的样品对于不同外部激励信号的动态响应过程的方法,该方法在继承常规电镜高空间分辨率和高能量分辨率优点的同时,在电子显微镜内部引入力、热、电、磁以及化学反应等外部激励,实现了物质在外部激励下的微结构响应行为的动态、原位实时观测。由于近来纳米科技的发展,研究者们需要在原子尺度观察材料的结构与性质,这使得原位电子显微学引起了人们极大的兴趣。原位电子显微学表征技术近年来也得到了飞速发展,其广阔发展潜力从本次分会场的“火热”可见一斑!/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/b4c3d01c-d66f-4435-a063-609118a0998a.jpg" title="1.jpg"//pp style="text-align: center "  strong原位电子显微学表征分会场/strong/pp  两天 “原位电子显微学表征分会场”共40余个报告轮番上场,参会观众也是将对这个“热门”领域的热情一直保持到了会议最后,以下为摘取的部分精彩报告,与君共享。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/8f7e3f25-55cb-47eb-a60f-94d7156f01ab.jpg" title="2.jpg"//pp style="text-align: center "  strong报告人:黄建宇 教授(燕山大学)/strong/pp style="text-align: center "strong  报告题目:Application of in-situ elelctron microscopy in nanoscience and energy research/strong/pp  将透射电镜TEM与多种扫描探针显微镜SPM技术联用,可大大扩展TEM的应用范围,能够应用于原位电性能、机械性能、光学、电化学等的分析研究。黄建宇介绍了其团队利用原位透射电镜技术在纳米科学及能源领域的若干研究进展。如锂离子电池样品放置TEM中进行分析,研究电子转移、充放电电化学变化等原位过程 通过开发锂离子电池电化学性能的原位透射电镜分析新技术,为纳米电化学表征研究提供理论基础等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/dd97637d-c00a-4fa5-8f7e-0e299fb80fcf.jpg" title="3.jpg"//pp style="text-align: center "  strong报告人:付琴琴 副教授(西安交通大学)/strong/pp style="text-align: center "strong  报告题目:原位纳米力学在管线钢微观组织性能研究中的初探/strong/pp  大位移特征的管道对管线钢有大变形的要求,其关键技术包括双相组织的获取等。报告中,为了获得双相高应变管线钢中贝氏体、铁素体单相组织的压缩盈利应变曲线,付琴琴团队利用原位纳米力学技术进行了一些列管线钢微观组织性能的研究,从对贝氏体-铁素体双相管线钢在高应变情况下的变形行为进行模拟。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/a6698f4a-9614-4bb1-b498-cf8f4ae93524.jpg" title="4.jpg"//pp style="text-align: center "  strong报告人:王江伟 教授(浙江大学电子显微镜中心)/strong/pp style="text-align: center "strong  报告题目:金属纳米线的超塑性变形及其机制/strong/pp  报告中,王江伟就FCC纳米线、BCC金属孪晶变形在微纳尺度上的变形和损伤进行了原位TEM研究,获得了一系列原创性的研究结果。系统、定量地剖析了微纳尺度下材料在各种物理、化学条件下的结构演化和损伤机理,构建材料在多尺度、多场耦合条件下的结构-性能关系,对微纳器件的设计、优化与可靠使用提供了理论指导,对材料的宏观性能提升有着至关重要的理论意义。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/f206a6e5-76da-48e6-9fbd-0892460c3391.jpg" title="5.jpg"//pp style="text-align: center "  strong报告人:单智伟 教授(西安交通大学)/strong/pp style="text-align: center "strong  报告题目:透射电镜原位定量多场耦合加热系统的开发及其在铝高温氢损伤研究中的应用/strong/pp  针对市场上原有原位电镜加热装置样品热漂移大、温度控制精度差、样品制备困难的问题,单智伟团队成功研发出了一种新型的原位电镜加热装置。该装置不仅具有热漂移率优于市场上所有同类装置的特性,而且可以方便地在高温下对从宏观样品制备的样品进行原位定量加热并实时观察样品微观结构随温度变化的全过程。利用这一独特设备,选取铝单晶作为模型材料,在环境透射电镜中研究了充氢后的微纳尺度铝柱在加热过程中界面结构演化的全过程。研究结果对研发和制备高温抗氢损伤材料具有重要的指导意义。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/a4052eeb-b4ed-4ae0-885b-d2b2743ed7a6.jpg" title="6.jpg"//pp style="text-align: center "  strong报告人:岳永海 副教授(北京航空航天大学)/strong/pp style="text-align: center "strong  报告题目:结构对材料力学行为影响机制的原位定量化研究/strong/pp  报告中,岳永海团队原位动态揭示了孪晶界滑移行为,结合分子动力学模拟给出了可能的机制。同时从院子尺度揭示了五次孪晶在铜纳米线弯曲不变形过程中的作用机制,发现了Lomer位错锁这一局部加工硬化行为。最后,用静电纺丝方法制备了一种基于亚纳米非晶纳米线的显微,原位力学测试说明材料的力学性能受材料内部超顺结构影响显著,循环实验说明亚纳米线间距的减小大大提高了范德华力的作用,材料的强度得到进一步提高。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/4ef4bcaa-7ad6-4fd1-9e5d-6e65439cdb30.jpg" title="7.jpg"//pp style="text-align: center "  strong报告人:陈江华 教授(湖南大学材料科学与工程学院)/strong/pp style="text-align: center "strong  报告题目:用先进电子显微技术解决材料中的经典科学问题/strong/pp  陈江华在报告中首先介绍了湖南大学高分辨电镜中心团队、设备情况,中心的目标是可以实现力学的、电学的和热、气体、液体状态下的原位TEM/STEM观测。目前,透射电镜像差矫正的方法主要是通过给物镜戴一个很复杂的“电子光学眼镜”,即像差矫正器来实现的,但这不是唯一可行的方法,其他方法如波函数重构软件方法等。接着介绍了铝合金材料基础科学问题与知识创新研究实例,用定量原子成像方法测定了3种主要高性能2xxx、6xxx、7xxx系列铝合金中的强化相结构,重新理清了其成核、生长和演变的基本规律和原子尺寸的机理过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/494db377-3a60-4e8f-b097-3da4f0cc2aed.jpg" title="8.jpg"//pp style="text-align: center "  strong报告人:郑赫 副教授(武汉大学)/strong/pp style="text-align: center "strong  报告题目:低维材料动态结构分析/strong/pp  近年来,由于具有新奇的物理、化学等性能,低纬结构材料受到广泛关注。基于原位透射电子显微技术,郑赫团队实时观察到氧化铜孪晶纳米线在应力作用下的力学行为。首先,外界压力使纳米线产生高应变,而当应力释放后,部分应变的回复不是瞬时的,而是一段时间内(几分钟到几十分钟)逐渐回复到零,具有典型的滞弹性应变特征。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/9ca58a00-337c-4f2b-8f54-8ba093f55156.jpg" title="9.jpg"//pp style="text-align: center "  strong报告人:陈清 教授(北京大学)/strong/pp style="text-align: center "strong  报告题目:纳米结构的原位分析/strong/pp  陈清报告中介绍到,虽然SEM相比TEM分辨率不占优势,但SEM具有样品室空间大,可操作余地大等特点,因此该团队利用自己搭建的原位SEM平台对InAs进行研究,并发现InAs的杨氏模量不随直径的减少而降低。首次发表了关于压电及压阻对InAs 0001 结构的影响,开发了InAs样品用于SEM和TEM同时表征的新方法。!--0001--!--0001--!--0001--!--0001--/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/59e6f93d-5ebc-4042-9bfb-edce90cf46c8.jpg" title="10.jpg"//pp style="text-align: center " strong 报告人:刘晰 研究员(中科合成油技术有限公司)/strong/pp style="text-align: center "strong  报告题目:原位观察化学驱动下单原位银催化活性的产生/strong/pp  刘晰团队通过利用气体分子、金属粒子及精心设计的HMO支架之间的相互作用,成功的设计了Ag链和高度密集的Ag原子活性位点。接着,利用原位TEM从原子尺度,成功揭示了Ag 粒子的独特解体过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/ea1cc01c-1516-4ed0-855b-536c3e94017f.jpg" title="11.jpg"//pp style="text-align: center "  strong报告人:高鹏 教授(北京大学)/strong/pp style="text-align: center "strong  报告题目:二维材料中的碱金属离子迁移/strong/pp  高鹏团队近来研究表明,在van der waals材料体系中,Li和Na的迁移可能导致非常的相变行为 体系中非对称反应,即两相混合及固体溶液萃取 体系中Li和Na迁移的动力学行为类似,则可基于锂离子电池设计钠离子电池 体系中Li和Na迁移的动力学行为也有差别,主要体现在迁移速率上,Li要快一点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/349747fd-a83b-4a2d-b850-417fa2a054a8.jpg" title="12.jpg"//pp style="text-align: center "  strong报告人:魏贤龙 研究员(北京大学)/strong/pp style="text-align: center "strong  报告题目:二维材料层间滑动和摩擦特性的原位研究/strong/pp  魏贤龙团队基于原位扫描电子显微镜发展了一种测量异质和单层二维下料层间摩擦系数的方法。实验证实石墨-石墨、石墨-氮化硼、石墨-二硫化钼、单层二硫化钼-单层二硫化钼之间具有超润滑特性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/9a147e16-7409-443c-973b-ca18c7bc4d18.jpg" title="13.jpg"//pp style="text-align: center "  strong报告人:罗俊 教授(天津理工大学)/strong/pp style="text-align: center "strong  报告题目:全固态锂离子电池中锂离子扩散的原位观察/strong/pp  报告中,罗俊团队研究发现,当LiFePO4固体电解质电池充电时,首先在颗粒中心形成负电场,锂离子由中心向边缘扩散,锂离子在颗粒边缘的向外扩散较困难。LiFePO4的脱锂过程中出现新的固溶相,未遵循经典的两相反应。高电压过充后在颗粒表面出现P元素富集,出现新相。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/5e523be5-bd18-4b02-9098-e10d0f2bcb1f.jpg" title="14.jpg"//pp  strong报告人:毛星原 教授(美国匹斯堡大学)/strong/ppstrong  报告题目:In situ mechanics under HRTEM with experimental " moleculardynamics" /strong/pp  毛星原教授对于推动原位透射电镜研究纳米材料变形做出了较大贡献,其领导的团队于2004年在Science发表的关于纳米金属塑性变形机制的论文,是使用实验力学方法首次发现纳米金属的变形机理。报告中,毛星原利用原位透射电镜对晶体样品进行了高密度位错原位观测,研究了小尺度晶体在电镜拉伸下的机制。如FCC晶体Ag、Pt、Au的扩散形变,纳米尺度BCC晶体W的孪晶机制等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/5741ab25-3b20-4e8a-984f-85efcb3035ff.jpg" title="15.jpg"//pp style="text-align: center "  strong报告人:孙立涛 教授(东南大学)/strong/pp style="text-align: center "strong  报告题目:材料表面的动态表征与调控/strong/pp  孙立涛首先介绍了其团队的研究概况,研究对象为10nm以下材料,研究内容为表征、调控、应用,研究方法为原位电子显微学。从原位实验到应用是一个蛮长艰难的过程,需要不断研究和积累。最后孙立涛表示目前仍有太多未知需要去探索,并提出了应用研究过程中的几个瓶颈问题,如石墨烯材料对不同溶液的选择吸附性?本征和缺陷石墨烯与液体分子的作用机理?液态环境中外来原子与石墨烯的相互作用机理?/p
  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p  5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。/pp  项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。/pp  该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。/pp  中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title="W020170531466982123675.jpg"//pp style="text-align: center "从超高真空到常压的表面光谱原位表征系统/ppbr//p
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。2、原位表征ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。3、系统组件集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。ICCS催化剂原位表征系统
  • AFSEM™ 小试牛刀——SEM中原位AFM定量表征光子学微结构表面粗糙度
    近期,老牌期刊 Sensors and Actuators A: Physical 刊载了C. Ranacher等人题为Mid-infrared absorption gas sensing using a silicon strip waveguide的文章。此研究工作的目的是发展一种能够与当代硅基电子器件方便集成的新型气体探测器,探测器的核心部分是条状硅基光波导,工作的机理是基于条状硅基波导在中红外波段的倏逝场传播特性会受到波导周围气氛的变化而发生改变这一现象。C. Ranacher等人通过有限元模拟以及时域有限差分方法,设计了合理的器件结构,并通过一系列微加工工艺获得了原型器件,后从实验上验证了这种基于条状硅基光波导的器件可以探测到浓度低至5000 ppm的二氧化碳气体,在气体探测方面具有高的可行性(如图1、图2)。 图1:硅基条型光波导结构示意图图2:气体测试平台示意图参考文章:Mid-infrared absorption gas sensing using a silicon strip waveguide值得指出的是,对于光波导来说,结构表面的粗糙程度对结构的固有损耗有大的影响,常需要结构的表面足够光滑。传统的SEM观测模式下,研究者们可以获取样品形貌的图像信息,但很难对图像信息进行量化,也就无法定量对比不同样品的粗糙度或定量分析粗糙度对器件特性的影响。本文当中,为了能够准确、快捷、方便、定量化地对光波导探测器不同部分的粗糙度进行表征,C. Ranacher等人联系到了维也纳技术大学,利用该校电镜中心拥有的扫描电镜专用原位AFM探测系统AFSEM™ (注:奥地利GETec Microscopy公司将扫描电镜专用原位AFM探测系统命名为AFSEM,并已注册专用商标AFSEM™ ),在SEM中选取了感兴趣的样品部分并进行了原位AFM形貌轮廓定量化表征,相应的结果如图3所示,其中硅表面和氮化硅表面的粗糙度均方根分别为1.26 nm和1.17 nm。有了明确的量化结果,对于不同工艺结果的对比也就有了量化的依据,从而可以作为参考,优化工艺;另一方面,对于考量由粗糙度引起的波导固有损耗问题,也有了量化的分析依据。图3:(a) Taper结构的SEM形貌图像;(b) Launchpad表面的衍射光栅结构的SEM形貌图像;(c) 原位AFM表征结果:左下图为氮化硅层的表面轮廓图像,右上图为硅基条状结构的表面轮廓图像;(d) 衍射光栅的AFM轮廓表征结果通过传统的光学显微镜、电子显微镜,研究者们可以直观地获取样品的形貌图像信息。不过,随着对样品形貌信息的定量化表征需求及三维微纳结构轮廓信息表征的需求增多,能够与传统显微手段兼容并进行原位定量化轮廓形貌表征的设备就显得愈发重要。另一方面,随着聚焦电子束(FEB,focused electron beam)、聚焦离子束(FIB,focused ion beam)技术的发展,对样品进行微区定域加工的各类工艺被越来越广泛地应用于微纳米技术领域的相关研究当中。通常,在FIB系统当中能够获得的样品微区物性信息非常有限,如果要对工艺处理之后的样品进行微区定量化的形貌表征以及力学、电学、磁学特性分析,往往需要将样品转移至其他的物性分析系统或者表征平台。然而,不少材料对空气中的氧气或水分十分敏感,往往短时间暴露在大气环境中,就会使样品的表面特性发生变化,从而无法获得样品经过FIB系统处理后的原位信息。此外,有不少学科,需要利用FIB对样品进行逐层减薄并配合AFM进行逐层的物性定量分析,在这种情况下需要反复地将样品放入FIB腔体或从FIB腔体中去除,而且还需要对微区进行定标处理,非常麻烦,并且同样存在样品转移过程当中在大气环境中的沾污及氧化问题。有鉴于此,一种能够与SEM或FIB系统快速集成、并实现AFM原位观测的模块,就显得非常有必要。GETec Microscopy公司致力于研发集成于SEM、FIB系统的原位AFM探测系统,已有超过十年的时间,并于2015年正式推出了扫描电镜专用原位AFM探测系统AFSEM™ 。AFSEM™ 基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM轮廓测试(图4、图5)。另一方面,通过选择悬臂梁的不同功能型针(图6、图7),还可以在SEM腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。对于联用系统,相信很多使用者都有过不同系统安装、调试、匹配过程繁琐的经历,或是联用效果差强人意的经历。不过,对于AFSEMTM系统,您完全不必有此方面的顾虑,通过文章下方的视频,您可以看到AFSEM™ 安装到SEM系统的过程十分简单,并且可以快速的找到感兴趣的样品区域并进行AFM的成像。图4:(左)自感应悬臂梁工作示意图;(右)AFSEMTM与SEM集成实图情况 图5:AFSEMTM在SEM中原位获取骨骼组织的定量化形貌信息 图6:自感应悬臂梁与功能型针(1) 图7:自感应悬臂梁与功能型针(2)目前Quantum Design中国子公司已将GETec扫描电镜专用原位AFM探测系统AFSEM™ 引进中国市场。AFSEM技术与SEM技术的结合,使得人们对微观和纳米新探索新发现成为可能。
  • 液态金属靶光源—安东帕SAXSpoint进入欧洲生物医学技术中心
    这期谈到生物医学,利用安东帕小角X射线散射仪(SAXS)或原子力显微镜 (AFM) 可获得复合结构表征,也可用于药物释放控制体系的聚合物薄膜结构和形貌特性等。近期,捷克查尔斯大学生物科学与生物医学科学中心近期购买了一台安东帕的SAXSpoint 2.0小角/广角X射线散射仪,配备液态金属靶,Eiger 1M探测器及自动进样器;同时,安东帕根据BIOCEV需求研发原位SAXS-UV/VIS测试模块,可实现原位测试小角和紫外/可见光光谱,仪器已安装并通过验收。BIOCEV是捷克六所科研院所的联合项目,该项目的目标是建立一个欧洲生物医学和生物技术卓越中心,SAXSpoint 2.0将在核心的项目上使用。From Website:http://www.biocev.eu液态金属靶光源具有独有的液态金属射流,以镓合金的液态束为阳极材料产生高亮度光束,具有高稳定性,是目前通量最高的实验室光源。此外,针对生物医学领域安东帕研发的自动进样器可实现192位样品自动测试,该自动进样器可实现4°C控温,可用于测试生物大分子等液体样品。在生物技术、生物工程和生物医学工程中,精密度和可追溯性最为重要。安东帕高端分析设备可用来进行材料特性分析、样品制备、合成等应用。
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 纳米薄膜材料制备技术新进展!——牛津大学也在用的薄膜沉积系统,有什么独特之处?
    一、纳米颗粒膜制备日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。集成了纳米颗粒源的MiniLab125磁控溅射系统 传统薄膜材料的研究专注于制备表面平整、质地致密、晶格缺陷少的薄膜,很多时候更是需要制备沿衬底外延生长的薄膜。然而随着研究的深入,不同的应用方向对薄膜的需求是截然不同。在表面催化、过滤等研究方向,需要超大比表面积的纳米薄膜。在这种情况下,纳米颗粒膜具有不可比拟的优势。而传统的磁控溅射在制备纯颗粒膜方面对于粒径尺寸,颗粒均匀性方面无法实现控制。气相沉积法、电弧放电法、水热合成法等在适用性、操作便捷性、与传统样品处理的兼容性等方面不友好。在此情况下,Moorfield Nanotechnology推出了与传统磁控溅射和真空设备兼容的纳米颗粒制备系统。不同条件制备的颗粒粒径分布(厂家测试数据)不同颗粒密度样品(厂家测试数据)纳米颗粒制备技术特点:▪ 纳米颗粒的大小1 nm-20 nm可调;▪ 多可达3重金属,可共沉积,可制备纯/合金颗粒;▪ 材料范围广泛,包括Au、Ag、Cu、Pt、Ir、Ni、Ti、Zr等▪ 拥有通过控制气氛制造复合纳米粒子的可能性(类似于反应溅射)▪ 的纳米颗粒层厚度控制,从亚单层到三维纳米孔▪ 纳米颗粒结构——结晶或非晶、形状可控纳米颗粒膜的应用方向:▪ 生命科学和纳米医学: 癌症治疗、药物传输、抗菌、抗病毒、生物膜▪ 石墨烯研究方向:电子器件、能源、复合材料、传感器▪ 光电研究:光伏研究、光子俘获、表面增强拉曼▪ 催化:燃料电池、光催化、电化学、水/空气净化▪ 传感器:生物传感器、光学传感器、电学传感器、电化学传感器 二、无机无铅光伏材料下一代太阳能电池的大部分研究都与铅-卤化物钙钛矿混合材料有关。然而,人们正不断努力寻找具有类似或更好特性的替代化合物,想要消除铅对环境的影响,而迄今为止,这种化合物一直难以获得。因此寻找具有适当带隙范围的无铅材料是很重要的,如果将它们结合起来,就可以利用太阳光谱的不同波长进行发电。这将是提高未来太阳能电池效率降低成本的关键。近期,牛津大学的光电与光伏器件研究组的Henry Snaith教授与Benjamin Putland博士研究了具有A2BB’X6双钙钛矿结构的新型无机无铅光伏材料。经过计算该材料具有2 eV的带隙,可用做光伏电池的层吸光材料与传统Si基光伏材料很好的结合,使光电转换效率达到30%。与有机钙钛矿材料相比,无机钙钛矿材料具有结构稳定使用寿命更长的优势。而这种新材料的制备存在一个问题,由于前驱体组分的不溶性和复杂的结晶过程容易导致非目标性的晶体生长,因此难以通过传统的水溶液法制备均匀的薄膜。Benjamin Putland博士采用真空蒸发使这些问题得以解决。使用Moorfield Nanotechnology的高质量金属\有机物热蒸发系统,通过真空蒸发三种不同的前驱体,研究人员成功沉积制备出了所需要的薄膜。真空蒸发具有较高的控制水平和可扩展性,使得材料的工业化制备成为可能。所制备的薄膜在150℃退火后,XRD图。所制备的薄膜在150℃退火后,表面SEM图 三、Moorfield 薄膜制备与加工系统简介Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立二十多年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。高精度薄膜制备与加工系统 – MiniLab旗舰系列和nanoPVD台式系列是英国Moorfield Nanotechnology公司经过多年技术积累与改进的结晶。产品的定位是配置灵活、模块化设计的PVD系统,可用于高质量的科学研究和中试生产。设备的功能和特点:▪ 蒸发设备:热蒸发(金属)、低温热蒸发(有机物)、电子束蒸发▪ 磁控溅射:直流&射频溅射、共溅射、反应溅射▪ 兼容性:可与手套箱集成、满足特殊样品制备▪ 其他功能设备:二维材料软刻蚀、样品热处理▪ 设备的控制:触屏编程式全自动控制
  • 液态金属还原氧化石墨烯在生物传感中的应用
    Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing布鲁克纳米表面仪器部 李勇君 博士自室温和近室温液态金属(LMs)出现以来,此类材料因其软流体性质、高电子和热导率特性而受到研究者们越来越多的关注。其中,镓及其共晶合金因其低毒性和低蒸汽压等特性成为了LMs家族的典型代表之一,其可用于驱动表面化学反应,设计纳米结构等应用。到目前为止,众多研究者已经在 LMs 表面探索了多种反应,以生成基于层状材料和纳米粒子等不同涂层,但其表面在暴露于氧的情况下易形成天然氧化层而快速钝化,形成损害LMs导电性的绝缘表面,从而限制了在电化学和电子系统中的应用。因此,在LMs表面建立导电层,以实现高导电界面是对于需要电子、电荷转移这类应用的一种有前景和十分重要的策略。2021年11月,澳大利亚新南威尔士大学和中国香港大学的研究人员通过共晶镓(Ga)-铟(In)液态金属(EGaIn)与氧化石墨烯(GO)的界面相互作用成功实现了衬底上、单独GO的还原(rGO),合成了基于rGO与LM的核-壳复合材料(LM-rGO)。进一步,研究者通过布鲁克公司的原子力显微镜(AFM)、 峰值力扫描电化学显微镜(PF-SECM)、纳米红外光谱(nanoIR)、X射线能谱(EDS)等技术系统、详细地表征和讨论了LM对GO的还原能力,LM-rGO界面的相互作用,LM的界面传递,以及LM-rGO的电化学性能等,证实了LM−rGO是一种有效的功能材料和电极改性剂。最后,研究者基于LM-rGO开发出来的纸基电极实现了抗生物干扰的多巴胺选择性传感,展示了该低成本技术的商业应用前景。该项研究工作最终以“Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing”为题发表在2021年11月的《ACS NANO》杂志上。原文导读:研究背景:在过去十年中,自室温和近室温液态金属(LMs)出现以来,其在治疗学、微流体学、材料合成和催化等多个研究学科中得到了广泛的应用。作为LM家族的代表,镓及其共晶合金因其低毒性和低蒸汽压而倍受关注。具体而言,Ga基LMs的可调表面特性以及柔软、动态的界面使其成为合成多种材料的理想反应介质。基于Ga的LMs的另一个独特特性与Ga的不同氧化状态有关,这使得能够在电解或电流调节中调整氧化还原介导的合成路线。在界面上,LMs通常用于两种设想的合成路线:①作为柔软的超光滑模板,然后从表面剥离目标材料,②作为反应点和稳定载体,用于生成颗粒。将所有这些优点结合在一起,基于Ga的LMs可被视为有效的功能载体,为功能化合物的保留和生成提供了多功能界面。还原氧化石墨烯 (rGO) 是常用、流行的平面材料之一,其具有高导电性和跨平面的机械强度等特点。尽管研究者们已经提出了许多用于rGO 生产的方法,但开发一种高度可控的在室温下可行,并且对试剂的需求最少的还原方法仍然具有很大的前景。凭借其超反应性界面,可提供两种自由电子和离子,LMs 可能可以提供这样的反应介质,使 GO 薄膜和各种厚度的GO膜能够在室温下实现还原。一方面,LMs的动态可再生界面可用作重复使用的还原GO试剂,从而在无需任何外部输入(特别是施加电压)的情况下将成本和废物产生降至最低。 另一方面,LMs 的非极化表面可以轻松地从其表面捕获产生的 rGO,无需额外的化学步骤及可形成LM-rGO核-壳复合结构。在本研究中,研究者探索了共晶镓-铟 (EGaIn)和 GO 薄片之间的界面相互作用,考虑了不同的方法:包括利用 LMs 块体作为反应模板来还原GO 和利用LMs微颗粒作为的小型反应位点来合成复合材料。对于这两种情况,研究者都对 LMs表面的 rGO 进行了广泛的表征,以全面了解还原 rGO的特征和组成。 最后,研究者将合成的LM-rGO 微颗粒复合物用于标准电化学电池和电化学纸基分析装置 (ePAD) 中的传导表面改性修饰剂,用于在存在其他生物干扰的情况下对多巴胺 (DA) 进行选择性生物传感和检测。结果及讨论:为了研究LM对GO的界面影响,研究者考虑了不同的实验条件,包括使用LM块体作为软介质来还原不同厚度的GO膜、单独的膜,以及利用LM微液滴作为还原剂核心来生成LM-rGO核−壳复合结构。1. 衬底上GO膜的LM还原研究图1 a, 显示了衬底(Si/SiO2)上GO放入LM中还原的方法。通AFM表征还原前后的GO单层膜发现:LM处理后,单层膜膜厚从1.2 nm减小到了0.6 nm,膜厚的减小可归因于GO还原后变形的sp3碳结构和各种含氧官能团的去除。另外,通过对另外两个GO和rGO样品的AFM图像进行厚度统计分析,研究者进一步证实了暴露于LM后GO单层的厚度减少(图2,原文补充信息Figure S2)。在石墨结构的拉曼光谱中,D带(ID)和G带(IG)的强度之比被认为是石墨烯层内缺陷的指标,拉曼光谱显示LM还原前后的ID/IG从0.89变化到1.2,同时结合ID/IG拉曼成像(图1. d、e)可以进一步确认LM相对均匀地还原了GO单层。在这种方法中,LM大部分在设计的原电池中既是导体又是电解液。换句话说,导体本身可以提供一个充满离子和反应性金属位置的环境,而不是使用外部介质来移动负责电偶反应的电荷载体。LMs的柔软性还提供了液体块体和目标基板之间的有效界面接触,使所需的金属物种易于在表面上接触。图1. (a)基于衬底的GO的LM还原方法示意图 AFM图像:(b)暴露于LM前的GO样品和(c)LM反应后获得的rGO样品 (d)衬底上的GO和(e)浸入LM后获得rGO的拉曼光谱测量,D带和G带的表面拉曼成像及相应的ID/IG成像。图2. Si/SiO2衬底上不同样品的AFM成像和厚度分析:(a-b)LM还原前的GO样品和(c-d)LM还原后的rGO样品。2. 单独GO膜的LM还原研究为了进一步探索开发的基于LM的工艺能力,研究者探索了其独立薄膜GO的LM还原潜力。图3 a,显示了制备独立GO膜的LM还原方法。拉曼光谱证实了还原的有效性(图3c)。为了研究暴露于EGaIn前后表面官能团的分布,转移的厚rGO样品(~1.6 μm, 原文Figure S3-nanoIR表征的测量膜厚度)被进一步通过纳米红外光谱(nanoIR)进行了表征。如图3d所示,纳米红外成像是一种基于AFM的高空间分辨率化学成像和光谱研究技术,其中脉冲红外激光用于产生光热诱导共振和热膨胀。光吸收引起的膨胀激发了AFM悬臂梁的共振振荡,悬臂振荡的振幅正比于相应波长的红外光谱吸收。该技术被用于在高空间分辨率下评估GO和rGO样品中表面官能团的分布。从GO的纳米红外光谱(图3f)中可以看出,羰基峰1730 cm−1(C=O)具有很高的纳米红外振幅, 纳米红外成像也显示了GO表面上相对均匀的羰基分布。另外,GO样品的纳米红外光谱在1615 cm−1处也显示出明显的峰值,对应于GO中的C=C。同样,纳米红外光谱成像也显示了C=C分布的均匀性。GO和rGO之间的主要区别在于:rGO样品纳米红外光谱中羰基峰的消失(图3e),证实了厚GO样品的成功还原。纳米红外光谱中剩余的C=C振动(1593 cm−1),源自石墨烯环,在rGO纳米红外成像中也显示出高振幅和适当的分布(图2e)。最后,表征研究结果证实基于LM还原工艺也可以用于生成独立的rGO膜。图3.(a)单独GO的LM还原方法示意图 (b)单独GO膜的照片;(c)在暴露于LM之前和之后的GO薄膜拉曼光谱 (d)纳米红外光谱原理示意图 (e)浸入LM后获得rGO的纳米红外光谱、AFM表面形貌、偏转信号和C=C分布纳米红外成像 (f)浸入LM前GO的纳米红外光谱、AFM表面形貌、偏转信号和C=O、C=C分布纳米红外成像。3. LM-rGO复合材料的制备及表征为了探究GO还原过程的适用性,并在实际功能应用中了解LM微颗粒的还原能力,研究者进一步研究了在酸性GO悬浮液中通过超声波处理制备的LM-rGO复合材料。其合成过程的示意图如图4a所示。研究者通过透射电镜(TEM)证实并研究了LM-rGO核-壳结构,如图4b所示,球形LM颗粒被稳定的石墨片壳包裹,这表明粒子和LM颗粒表面的有效相互作用。另外,研究者也通过X射线能谱(EDS)完成了Ga, In,C,O元素的分析,EDS结果进一步证实了LM颗粒表面存在碳层和rGO片层的全覆盖。图4. (a) LM-rGO复合材料合成过程示意图 (b)LM-rGO核−壳结构的TEM图像 (c) SAED分析和HR-TEM图像 (d) LM-rGO不同放大倍数和角度下的SEM图 (e) LM-rGO表面的镓、铟、碳和氧元素的EDS成像。另外,为了收集更多关于合成复合材料元素组成的信息,研究者通过X射线光电子能谱(XPS)也对GO和LM-rGO复合材料进行了详细的研究。研究者也通过传统宏观傅里叶红外光谱(FT-IR)对LM-rGO表面官能团进行了研究,表明GO含氧官能团被广泛去除。4. LM-rGO复合材料的电化学行为由于LM-rGO复合材料具有高表面积、高活性界面和导电性等特点,可将合成的材料作为电活性改性修饰剂。因此,研究者在玻璃碳电极(GCE)和丝网印刷纸电极(PEs)上进行了大量的电化学性能评价,以探索LM基改性剂与纸张技术的相容性,以及开发低成本生物传感器的可能性。在这两种情况下,研究者采用电化学行为已知的亚铁氰化钾作氧化还原探针,并从电化学阻抗谱(EIS)响应、电活性表面积的变化等方面评估了改性剂对电化学性能的影响,并利用循环伏安法、微分脉冲伏安法、方波伏安法等多种电化学技术进行了表征。结果显示:LM-rGO改性修饰后的电极优于GCE和PE裸电极,证实了改性剂LM-rGO的优良电化学特性。另一方面,研究者也通过峰值力扫描电化学显微镜(PF-SECM)在纳米尺度对LM- rGO复合材料与电解溶液的界面电导率进行了评估,并研究了其表面的局部电化学活性。在PF-SECM方法中,利用AFM探针的纳米尖端和利用样品表面与针尖之间发生的可逆氧化还原反应,可以研究电荷转移的动力学。AFM探针纳米尖端可以实现表面高空间分辨率的电化学成像。PF-SECM操作示意图如图5a (原文Figure S9),PF-SECM工作在布鲁克专利的峰值力轻敲(PFT)模式下,该模式下纳米探针在一定振幅和频率下振荡,以收集样品的形貌和导电性等信息。PF-SECM模式使用“interleave mode”,在每个振荡实例中,探针被提升到样品上方250 nm的距离。当探针从样品表面提升时记录探针尖端电流,而该探针在样品表面一定距离的电流,可用来表征样品表面电化学活性。本研究中,六胺钌氧化还原反应被用于PF-SECM成像。图5b显示了LM-rGO复合材料的形貌。图5c显示了与样品表面接触时的针尖电流,该电流既反映了样品在电解溶液中的界面局部电导率,又反映了样品表面的电化学活性。纯电化学活性数据(图5d)为AFM探针从样品表面250 nm提升高度处的探针测量电流,这证实了电荷转移可能发生在整个表面。LM-rGO微颗粒边界具有较大电化学活性,并与附近颗粒的壳相互连接。边界处电流的轻微增加是由于这些边界代表样品中的低洼区域(如山谷形状),具有高有效表面积,可再生还原剂六胺钌。PF-SECM测量结果显示LM-rGO在纳米尺度具有良好的整体电化学活性,电流可达1.7 nA。图5. PF-SECM原理和LM-rGO粒子PF-SECM分析结果:(a)PF-SECM工作原理示意图(RE、CE和WE分别对应于参比电极、对电极和工作电极);(b) LM-rGO微粒的AFM图像;当针尖位于样品表面(c)(此处的电流代表界面电导率和电化学活性)和距离样品表面250 nm高度(d)(代表样品和电解质之间界面的电化学活性)时,针尖电流成像。5. 多巴胺的选择性传感在完成了前述的详细研究后,在抗坏血酸(AA)和尿酸(UA)存在的情况下,研究者采用了多巴胺(DA,重要的神经调节剂之一)进行了LM-rGO修饰电极用于DA检测的适用性和选择性评估。LM-rGO修饰,rGO修饰 (ErGO)和裸GCE电极的电化学EIS光谱被用来显示LM- rGO复合物中每个组件的作用。如图6a所示,ErGO显示表面DA反应的Rct值仍然较高(50.7Ω)。然而,在LM-rGO中, Rct值为20.3 Ω。这一观察结果证实了LM在系统电化学性能中的作用,与ErGO相比,LM产生的混合物对电荷转移的阻力更小。为了探索LM-rGO的作用,研究者将修饰剂、裸电极和修饰电极暴露于含有DA、AA和UA混合物的溶液中,然后记录了电化学信号(DPV和CV)。图6b、c、h显示了从裸电极, LM-rGO 修饰GCE和 PE的信号。结果可以看出:对于裸电极,DA、AA和UA的氧化还原峰显示出重叠和接近。然而,在修饰后,在不同的电位窗口中可观察到每种化合物相应的分离峰,因而证实在存在其他干扰化合物的情况下,直接测定DA成为可能。另外研究者也通过FT-IR测量了DA、AA和UA与LM-rGO的特定相互作用(图5f)。LM-rGO的FT-IR光谱显示,LM-rGO在低波数区(低于900 cm-1)尤其是在667 cm-1(代表Ga−OH基团) 表现出剧烈变化。LM-rGO表面的Ga−OH还原仅在存在AA中观察到,这为选择性峰移机制提供了证据。UA向高电位的选择性转移来源于LM-rGO表面剩余负电荷基团和带负电荷的UA分子之间的电荷排斥作用。因此,这种表面相互作用因为AA和UA的峰移,从而增强了DA的选择性。为了获得最大的传感响应,研究者对修饰材料的用量进行了优化。在最佳修饰膜厚度下,研究者获取了LM-rGO修饰GCE和PE的DA定量测定校准曲线。根据图6d,i中提供的结果,该传感器可定量测量100 nM至1500μM(GCE)和400 nM至750μM(PE)范围内的DA浓度水平,GCE和PE的灵敏度分别为30和100 nM。与GCE相比,尽管PE具有更高的电活性表面积,但观察到的动态范围更窄,灵敏度更低,这是由于PEs中已知的耗尽效应和有限的扩散。在不同浓度水平的DA和其他干扰化合物(包括AA、UA和葡萄糖(GLU),高浓度1.0 mM)共存的情况下,研究者也对界面选择性也进行了评估。图6e结果显示,DA的原始信号不会受到其他干扰物的影响,目标分析物DA的测量具有良好的选择性。最后,研究者在人血清样本中进一步研究了该传感器用于DA生物传感的适用性和选择性,结果证明:研究者设计的传感器在如此复杂的生物基质中的具有良好的准确度和精确度。图6.(a)裸GCE(i),LM-rGO修饰的GCE(ii)和ErGO修饰GCE(iii)的EIS光谱(DA用作电化学探针);LM-rGO对GCE表面进行修饰前后,含有AA、DA和UA的混合物的CV(b)和DPV(c)信号;(d) LM-rGO修饰GCE的校准曲线,DA浓度从0到1500μM不等;(e)LM-rGO修饰GCE上进行的DA选择性试验,AA和UA浓度为1 mM;(f)LM-rGO,LM-rGO暴露于AA、UA和DA的FT-IR光谱;(g)ePAD的结构图像和 LM-rGO修饰前后PE表面的显微图像;(h)LM−rGO进行表面修饰前后,含有DA、UA和AA混合物的DPV测量信号;(i)LM-rGO修饰PE的校准曲线,DA浓度从0到750μM不等;分别使用Ag/AgCl和碳准参比电极测量从GCE和PE获得的电化学信号。 研究结论:在本研究中,研究者探索了室温LMs和GO薄片之间的界面相互作用。证明了LM和GO之间存在很强的电偶相互作用,这可以用于生成rGO单层膜和rGO厚膜。研究者对所制备的rGO样品进行了AFM,nanoIR, EDS和PF-SECM等详细表征,实验结果确认通过LM能均匀有效地还原GO薄片。研究者所提出的基于LM的rGO生产方法,有望实现rGO独立膜和衬底支撑单层膜的简易合成。此外,这种界面作用也被用于合成LM-rGO核−壳复合结构。研究者对LM-rGO修饰电极进行的电化学表征显示在AA和UA存在下LM-rGO修饰电极对DA具有良好的选择性,可用于生物传感。总之,本研究显示了LMs对GO薄片室温的还原能力,以及展示了构建功能性应用的可能性。类似利用LMs的界面特性的工艺,可以在未来的研究和工业应用中具有大量潜在应用前景。Bruker公司的AFM,nanoIR,PF-SECM,EDS等纳米技术手段因其高空间分辨率的形貌,纳米光谱和化学成像,纳米电化学,纳米元素分析的能力,将为各类复合材料纳米结构的界面研究提供新的多样化表征手段和研究方法。原文链接:Mahroo Baharfar, Mohannad Mayyas, Mohammad Rahbar, Francois-Marie Allioux, Jianbo Tang, Yifang Wang, Zhenbang Cao, Franco Centurion, Rouhollah Jalili, Guozhen Liu, and Kourosh Kalantar-Zadeh,Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing,ACS Nano,(2021)15 (12), 19661-19671https://pubs.acs.org/doi/10.1021/acsnano.1c06973?ref=PDF
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。  阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。  在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。  这项工作得到了国家自然科学基金委、科技部和中科院的资助。 图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm  图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图  图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 原位电子显微学技术揭示固态金属类液态行为
    在科幻大片《终结者》系列中,常常出现这样的场面:阿诺德施瓦辛格掏出霰弹枪朝液体机器人射击,巨响过后,身体和脑袋被打穿了数个大窟窿的液体机器人又慢慢恢复了原形。真是打不死的&ldquo 小强&rdquo !《终结者》的&ldquo 小强&rdquo 被打了几个大窟窿,就是不死  这真的是遥远的明日科技吗?还是就在我们身边发生的事实?  东南大学电子科学与工程学院孙立涛教授团队,与浙江大学电子显微镜中心张泽院士、麻省理工学院李巨教授和匹兹堡大学毛星源教授的团队通力合作后发现,在极小的纳米尺度下(小于10纳米),普通的固态金属在常温下受到挤压、拉伸等外力作用后,会像揉面团那样柔软,甚至像液态那样任意变形 更为奇特的是,外力撤除后,还可以恢复原形。10月12日,这项研究的论文以&ldquo Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles&rdquo 为题,发表在国际著名期刊《自然材料》上,并被评为封面文章。  据查询,目前《自然材料》官网上公布的封面只到10月份,尚不含上文的研究成果。但是,在浙江大学材料科学与工程学院主页上可以发现,中国科学家这一新技能被安排在了11月号的杂志封面上 (着急想看的可以直接拖到页末)。从外面看,金属银颗粒像液体水滴,会摇晃并随时改变形状,而它们内部则是超级稳定的晶体结构  且慢,真的是普通的金属就可以吗?这不合乎直觉。  对,你没有看错,普通金属在室温下,就可能有这种神奇的特性,但是前提是要在纳米尺度下。  38岁的孙立涛教授带领团队发展了一种原位电子显微学技术,并基于此在国际上首次观察到10纳米以下固态金属银颗粒在室温下的类液态行为。据凤凰科技报道,这些纯银粒子的直径不超过10纳米&mdash &mdash 宽度不超过人类头发的1/1000。  科研人员告诉科技日报记者,宏观的金属材料的变形机制通常遵从经典的位错滑移和孪晶变形理论。然而,到了极小的纳米尺度,金属表面原子所占的比重越来越大,其变形机制越来越受表层原子的运动影响。我们都知道,表层原子是很活跃的,纳米金属就仿佛穿了一层水膜一样的外衣,一旦受到任何外力,&ldquo 水膜&rdquo 一样的外层原子就会呼啦啦先运动起来。这时候,纳米金属就兼具了固体和液体的特性,在挤压后,表层原子迅速移动,形成了新的表面层。  这种变形机制会带来一个特别的后果,那就是当撤除挤压时,这层活跃的&ldquo 水膜&rdquo 分子又会呼啦啦往上跑,以降低表面能,直到把金属颗粒恢复原形。这样,就出现了实验中观察到的那神奇一幕,不论怎么挤压,金属颗粒最终都会恢复原形。  科研人员把这种可以恢复原形的塑性行为,叫做赝弹性。  浙江大学材料科学与工程学院主页的图片显示,室温下,银纳米颗粒受挤压时表现出了液态行为  这种奇特的纳米颗粒塑性形变,超越了传统的金属物理中位错等缺陷导致的塑性形变理论,在变形的整个过程中颗粒内部始终保持着完好的晶态结构。这一发现暗示,随着金属颗粒尺寸减小,经典的Hall-Petch规律中&ldquo 越小越强&rdquo 不再适用,会逐渐过渡到&ldquo 越小越弱&rdquo (观察者网注:目前对大部分材料的关系的理解已经很成熟,即材料的机械强度会随着体积的减少而增加。)。  这种神奇的赝弹性,会给我们带来一系列神奇的结果。例如,可以制造出无论怎么变形都可以复原的金属关节,具有记忆功能的存储器件,打不穿的金属防弹衣,甚至还包括我们前面提到的《终结者》液体金属机器人。  同时,这项工作对于如何维持下一代纳米电子器件中的互连线和电极的稳定性,以及如何实现超小尺寸的纳米加工工艺,有着重要的指导意义。因为随着现代半导体技术的发展,集成电路中金属互连线以及电极的特征尺寸正在向10纳米逼近。在这样小的尺度下,作为基础框架的金属形态是否还能像块体材料那样稳定,科学家以前并不清楚。现在新的问题是,证实了纳米金属颗粒塑性形变的现象后,如何保障在如此小尺度下电子器件物理性能的稳定性?这一问题向现代集成电路产业提出了新理论和技术的挑战。  据悉,这项工作是东南大学传统电子学科与新兴纳米领域的交叉与融合的结果,得益于学校长期对基础研究和国际学术交流合作的支持与重视。孙立涛教授课题组近年来依托原位透射电子显微学技术,已经在微纳米器件、新型二维材料、纳米金属变形机制等领域取得了一系列研究成果。  观察者网综合科技日报、浙江大学网站、中新网消息。  浙江大学材料科学与工程学院主页展示的《自然材料》11月封面
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 950万!中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪、激光共聚焦显微拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G240270057项目名称:中国科学院宁波材料技术与工程研究所特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪采购项目预算金额:550.000000 万元(人民币)最高限价(如有):525.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-原位扩展互联型X射线光电子能谱仪1是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G240270059项目名称:中国科学院宁波材料技术与工程研究所激光共聚焦显微拉曼光谱仪采购项目预算金额:400.000000 万元(人民币)最高限价(如有):328.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1特殊环境原位动态评价表征系统-真空拉曼光谱仪1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月09日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院宁波材料技术与工程研究所     地址:浙江省宁波市镇海区中官西路1219号        联系方式:范老师0574-86324529      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、王琪010-68290502/0523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290502/0523
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱,周东山,胡文兵南京大学化学化工学院配位化学国家重点实验室机构 南京210023作者简介:胡文兵,男,1966年生.南京大学化学化工学院高分子系教授、博士生导师.1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系.分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究.2004年至今,在南京大学任教.2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APSFellow).主要研究方向为采用蒙特卡洛分子模拟和FlashDSC研究高分子结晶机理及材料热导率表征 通讯作者:胡文兵,E-mail:wbhu@nju.edu.cn摘要:示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点.近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究.温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容.闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能.本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望.本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词:高分子表征/示差扫描量热法/温度调制示差扫描量热法/闪速示差扫描量热法目录1.热分析基础1.1温度和热1.2热分析(thermalanalysis)2.示差扫描量热法2.1基本原理2.2实验技巧2.2.1仪器校准2.2.2样品制备2.2.3温度程序2.2.4保护气氛2.3应用举例2.3.1比热容2.3.2热转变温度2.3.3转变焓2.3.4DSC与其他技术连用3.温度调制示差扫描量热法3.1基本原理3.2实验技巧3.2.1样品质量3.2.2温度程序3.3应用举例3.3.1可逆热容和不可逆热容3.3.2等温可逆热容3.3.3玻璃化转变4.闪速示差扫描量热法4.1基本原理4.2实验技巧4.2.1样品制备4.2.2样品质量4.2.3临界条件4.3应用举例4.3.1等温总结晶动力学4.3.2不可逆熔融转变4.3.3与其他表征技术连用4.3.4玻璃化转变4.3.5热导率5.总结与展望参考文献1.热分析基础1.1温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度.热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量.热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度.值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度.然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小.例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的.通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标.1714年,Fahrenheit将水的冰点设为32°F,沸点为212°F,建立了华氏温度.1742年,Celsius将水的冰点设为0°C,沸点为100°C,建立了摄氏温度.到1779年为止,全世界并存有19种经验温标.然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致.此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系.例如,水银在−39°C发生固化,在357°C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间.1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标.相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15K.摄氏温度与热力学温度之间的关系为即,摄氏温度的0°C对应热力学温度的273.15K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索.早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的.一直到18世纪中叶以前,热质说(theoryofcaloric)盛行.18世纪后期,人们开始通过实验证明热是粒子内部的运动.19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C(JK−1)来表征,表示物体温度升高1K所吸收的热量(单位J),而单位质量(克,g)物体升高1K所吸收的热量为比热容cm(JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数,在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy).它与内能的关系为由此得到等容热容和等压热容的关系为1.2热分析(thermalanalysis)广义上来说,所有控制温度的测量过程都可以称为热分析.1999年,国际热分析和量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)和美国材料与试验协会(AmericanSocietyforTestingandMaterials,ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术.(Agroupoftechniquesinwhichaphysicalpropertyofasubstanceismeasuredasafunctionoftemperatureortimewhilethesubstanceissubjectedtoacontrolled-temperatureprogram.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等.按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differentialthermalanalysis,DTA)、示差扫描量热法(differentialscanningcalorimetry,DSC)、热机械法(thermomechanicalanalysis,TMA)、热重分析法(thermogravimetricanalysis,TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术.它是目前应用最为广泛的一种热分析技术.随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展.其中一个主要的进展是在20世纪90年代出现的温度调制DSC(temperature-modulatedDSC,TMDSC).TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分.TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容.DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scanchip-calorimetry,FSC).FSC其商业化版本为FlashDSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2.示差扫描量热法2.1基本原理示差扫描量热法起源于19世纪中期.1887年,LeChatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线.1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA).然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8]改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关.对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流.这一发现最终导致了热流型DSC的诞生.热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源.1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率.此后,DSC技术不断发展并成为热分析领域的常规分析手段.目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heatfluxDSC)和功率补偿型示差扫描量热仪(powercompensationDSC)两类[11].热流型DSC的测试装置如图1所示.图1Figure1.Illustrationofheat-fluxDSC(Mettler-Toledoheat-fluxDSC)withtheheatingratecontrolledthroughthefurnacetemperature.TherearetwosetsofthermocouplesmeasuringtheheatflowbetweenthefurnaceandthepanforsampleandreferenceandtwocentralterminalsbringingtheaverageTsignalfromallthethermocouplesouttothecomputer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率.由热欧姆定律可知,由炉体流到试样坩埚的热流[MathProcessingError]ϕs以及由炉体流入参比坩埚的热流[MathProcessingError]ϕr分别为[12]其中,[MathProcessingError]Ts、[MathProcessingError]Tr和[MathProcessingError]Tc分别为试样温度、参比温度和炉体温度,[MathProcessingError]Rth为热阻.DSC检测信号[MathProcessingError]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[MathProcessingError]ϕ与试样和参比物之间的温差[MathProcessingError]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线.另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图2Figure2.Illustrationofpower-compensationDSCasinventedbyPerkinElmerwiththereferenceandthesampleseparatelyheatedbytwoplatinumresistancethermometersintwocalorimetersmountedinaconstanttemperatureblock.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快.为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2实验技巧2.2.1仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合.校准的内容主要包括DSC曲线上的温度值以及热流速率值.因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值.常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准.图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图3Figure3.Illustrationofthecalibrationoftemperatureandheat-flowratewiththestandardmaterialIndiumforDSCmeasurement.Thecurveischaracterizedbyitsbaselineandtheendothermicprocesswithsomecharacteristictemperaturesincludingthebeginningofmelting,Tb,theextrapolatedonsetofmelting,Tm,thepeaktemperature,Tp,andtheendofmeltingwherethebaselineisfinallyrecovered,Te.Generally,Tmisthemostreproduciblepointasanaccuratemeasureoftheequilibriumtemperaturewhichareusedforthetemperaturecalibration.Thepeakareabelowthebaselinecanbecomparedwiththeexpectedfusionheatofstandardmaterialsforthecalibrationoftheheatflowrate.2.2.2样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等.其中最常用的是铝坩埚,包括40μL标准铝坩埚和20μL轻质铝坩埚.带盖的40μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试.20μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试.称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性.此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量.一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度.然而样品质量过少会导致信号的灵敏度较低.因此,在称量样品时需要综合考虑两者的影响.通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10mg,无机样品的质量为10~50mg[12].称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量.称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方面.一是保证样品与坩埚之间具有良好的热接触,以提高信号的分辨率和测试结果的可重复性.这要求样品具有较平的底部,最好是细粉末状或者是平整的薄片.若样品底部不规则,可以用20μL的轻质铝坩埚的坩埚盖将样品压在坩埚底部,或者将样品研磨成粉末.二是注意不要污染坩埚.残留在坩埚表面的样品很有可能会污染传感器,导致一些信号假象,并且会使热传导变差.三是选样应具有代表性并保证样品的均匀性.装样完成之后盖上坩埚盖,并在盖子上钻一个大孔(1mm),或者多钻几个小孔.这样做的目的,一是形成一个自由扩散的气氛,二是防止样品在加热过程中因体积膨胀而掀翻盖子溅出坩埚,污染传感器[12].2.2.3温度程序在设计温度程序时需要选择合适的温度范围和升降温速率.在终点温度不超过样品的分解温度的前提下,扫描的温度范围应该足够宽,以保证能检测出所有目标热效应的热流信号,同时保证在热效应之前和之后的热流曲线具有较平稳的基线.升降温速率的快慢会影响测试曲线的峰形和转变温度等.较快的升温速率有利于提高测试灵敏度和效率,但会导致峰形变宽.而较慢的升温速率可提高测试的分辨率.传统DSC的升降温速率范围通常在0.1~250Kmin−1之内,使用不同的制冷机可得到不同的扫描速率范围,常用的升降温速率在10~20Kmin−1左右.设计温度程序时还需要在升降温片段的两端加上时间较短(2s)的等温片段,以保证样品在升降温扫描之前已经达到了稳态.通常需要将设计的温度程序重复试验几次,确保测试结果的可重复性[13].2.2.4保护气氛DSC测量需要往炉体内通入某一恒定流速的气体以形成特定的稳态气氛.气氛可以为惰性的、反应性的或者腐蚀性的,在不同的气氛条件下测量可获得不同的测试信息.通入惰性气体可以防止测试过程中发生水气凝结,污染物沉积,高温氧化等现象.常用的高纯度惰性气体有氮气、氦气和氩气等.氮气是最常用的保护气氛,它在约600°C以下都是惰性的,并且具有较好的热传导能力,能得到分辨率和灵敏度较好的实验结果.氩气常用于金属的高温测试.氦气的热传导性能最好,在DSC测试中常被用于提高信号时间常数以及低温区的测量.测试过程中调节减压阀,保证气体流速平稳,使实验结果具有较好的重现性.通常气体的流速为20~100mLmin−1,最常用的为50mLmin−1[14].当需要通入反应性或者腐蚀性气体时,应注意操作的规范性,减小气体对仪器的腐蚀和伤害,保证所有的安全措施都到位.在使用仪器的过程中需要开启制冷机,保证有稳定的冷源作为参考温度源,以提高信号曲线的可重复性.制冷机使用结束之后,需要进行除水操作,以免水分残留在仪器内,造成测试结果不稳定.2.3应用举例2.3.1比热容DSC一般采用三段法测量样品的比热容[15].以相同的扫描速率进行如下3次实验:(1)样品盘和参比盘上分别摆放一个空坩埚,进行空白实验,得到空白信号[MathProcessingError]φempty(T).(2)将标准物质蓝宝石放入试样盘的空坩埚中,参比盘保持原先空坩埚,测量得到参比信号[MathProcessingError]φsapphire(T).(3)将样品放入试样盘的空坩埚中,参比盘保持原先空坩埚,测量得到样品信号[MathProcessingError]φsample(T).图4是采用三段法测量比热容的热流曲线示意图.图4Figure4.HeatflowcurvesofstandardsapphireandunknownspecimenswhereDs(mW)istheverticaldisplacementbetweenthebaselineandthespecimenDSCthermalcurvesatagiventemperaturewhileDst(mW)isverticaldisplacementbetweenthebaselineandthesapphireDSCthermalcurvesatagiventemperature.由蓝宝石的比热容[MathProcessingError]cm,sapphire、样品和蓝宝石的质量[MathProcessingError]m可求出样品的比热容:更多的有关高分子标准热容数据可从ATHAS(AdvancedTHermalAnalysiS)[16]等数据库中查找.2.3.2热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点.玻璃化温度[MathProcessingError]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度.研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义.玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点.图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[MathProcessingError]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[MathProcessingError]Tb1和外推终止温度[MathProcessingError]Te1,这两点的中点即为玻璃化转变温度[MathProcessingError]Tg.图5Figure5.Theheat-flowrate(theuppercurveintheleftaxis)anditsderivative(thelowercurveintherightaxis)curvesintheglasstransitionregionwithsomecharacteristictemperaturesincludingthebeginningofglasstransitionTb,theextrapolatedonsettemperatureTb1,themidpointtemperatureTg,theinflectiontemperatureTi,theextrapolatedendtemperatureTe1andthetemperatureofreturn-to-baselineTeaslisted.TheglasstransitionisdeterminedbyTg(°C)—thepointonthethermalcurvecorrespondingtothehalfoftheheatflowdifferencebetweentheextrapolatedonsetandextrapolatedend.玻璃化转变温度与升降温速率、杂质、样品尺寸等有关.因此,测试结果应该标注测量时的升降温速率.小分子一般取熔融峰前端的延长线与基线的交点,即熔融起点作为熔点.然而高分子化合物具有较宽的片晶厚度分布,因而具有较宽的熔程,导致其熔点的测量方法与小分子化合物不同.一般取高分子熔融峰的峰顶点温度作为熔点.2.3.3转变焓DSC的一个重要用途就是测量聚合物的转变焓,包括熔融焓、结晶焓、反应焓等等.转变焓一般是通过对DSC热流曲线峰面积进行积分得到的.当转变峰曲线左右两边的基线水平时,可通过直接连接转变前后的基线进行面积积分.当聚合物的熔程较宽或者基线发生较大偏移时,简单的基线法无法较为准确地计算转变焓.此时,可根据相转变过程中吸收的熔融热的多少来确定基线的位置,也可简单地根据峰顶的位置将熔融峰分成左右两部分,两边使用各自的基线来加和计算[11].更多的定量计算可通过计算机程序[18]或者去卷积[19]计算得到.2.3.4DSC与其他技术连用随着红外光谱仪(infraredspectrometer,IR)、X射线衍射(X-raydiffraction,XRD)、色谱等常规技术的不断发展,DSC技术与常规技术的连用成为了目前高分子研究的方向之一.通过结合多种表征技术的优势,可以获得高分子样品在相转变以及反应过程中的形貌结构、组成成分、热性能、机械性能等多种信息,帮助研究者从多个角度、更深层次地理解高分子在热转变过程中的内在机理.DSC与X射线衍射、原子力显微镜(atomicforcemicroscopy,AFM)、拉曼光谱等技术的连用被广泛应用于研究高分子的相转变机理,包括晶体结构的相转变[20]、嵌段共聚物中的微相分离与结晶的相互作用[21],以及共混物中的分级结晶行为[22]等.高分子在实际加工过程中不仅要进行退火等热处理,通常还会在拉伸场和剪切场下进行取向.因此,将DSC与动态热机械分析(dynamicmechanicalanalysis,DMA)等技术连用有助于推进对高分子的聚集态结构在拉伸和取向状态下随温度变化的相关研究[23].3.温度调制示差扫描量热法3.1基本原理DSC样品的热流信号[MathProcessingError]ϕ可分为显热流[MathProcessingError]ϕsens和潜热流[MathProcessingError]ϕlat2个部分[24].其中,[MathProcessingError]mcpβ为显热流,对应于样品的比热容,它依赖于样品的升降温速率.[MathProcessingError]mΔhrdαdt为潜热流,对应于样品中的物理化学过程,如化学反应、结晶过程或蒸发过程等等,它依赖于远离平衡态的内部变量的变化,不具有很强的升降温速率依赖性.然而,潜热流所带来的样品组分变化会影响显热流所对应的比热容,传统DSC只能测定总热流随温度或时间的变化,无法有效地区分潜热流和显热流.另外,传统DSC也无法测量等温过程的比热容.为了解决上述问题,人们注意到显热流给出的是一个可逆信号,而潜热流大多反映不可逆热过程,于是在线性温度程序上叠加一个很小的调制温度,来区分可逆和不可逆热流信号,由此发明了温度调制示差扫描量热法(TMDSC).早在20世纪初,温度调制技术就被应用到了量热研究中.1910年,Corbino[25,26]发展了调制量热仪的理论,并首次采用3ω法(third-harmonicmethod)[27]测量了导电铁丝的热容.20世纪60年代,由于实验技术的进步,调制量热法取得了相当大的进展,Kraftmakher[28]、Sullivan和Seidel[29]开始提出AC量热法.1971年,Gobrecht[30]等采用DSC直接测量出无机聚合物在玻璃化转变处的频率依赖的复合热容,这可以被认为是首次TMDSC实验.直到1992年,Reading在第九届北美热分析会上正式提出温度调制示差扫描量热法[31~34],随后美国TA公司推出首个调制DSC的专利技术,称为MDSC.此后,随着计算机技术的进步,各家热分析供应商相继推出类似的温度调制程序专利技术,TMDSC成为热分析领域的标准工具并被广泛应用于聚合物分析表征研究.通过引入一个调制温度,TMDSC在较慢的线性升温速率的基础之上获得了一个瞬间的剧烈温度变化,从而得到兼具较高的灵敏度和分辨率的热流信号,能实现重叠热效应的有效分离以及准等温过程可逆热容的测量.目前最常用的TMDSC是正弦波模式温度调制,其温度程序为,其中,[MathProcessingError]T0为开始温度,[MathProcessingError]β0为基础升温速率,AT为温度振幅,[MathProcessingError]ω=2πtp为调制频率,[MathProcessingError]tp为调制温度周期.图6和图7分别展示了正弦波形TMDSC的温度程序以及实验测得的热流信号,该调制热流信号是对温度程序的正弦同步响应,其相对温度程序有相位差[MathProcessingError]φ的滞后.图6Figure6.TypicaltemperatureprofileofsinusoidalTMDSC(blueandsolidcurve)anditsunderlyingheatingratecurvewith[MathProcessingError]β0of1Kmin−1(redanddashedline).TheamplitudeofmodulationATis0.5K,theperiodofmodulation[MathProcessingError]tpis60s.(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)图7Figure7.Theheat-flowcurvemeasuredbythesinusoidaltemperature-modulatedDSC(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)对图7中热响应信号进行平均化计算得到总热流[MathProcessingError]⟨ϕ(t)⟩曲线如图8所示.总热流曲线相当于常规DSC曲线,由总热流可求出总热容.图8Figure8.Thetotalheat-flowcurveofasinusoidalTMDSCcurve.(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)进一步采用离散傅里叶变换对图7曲线去卷积分析,其中,[MathProcessingError]ϕc(t)是对加热速率无滞后的周期性热流分量,由[MathProcessingError]ϕc(t,ω)可计算可逆热流:由总热流减去可逆热流即可得到不可逆热流:另一种常见的TMDSC为锯齿形TMDSC,其温度程序为:图9展示了锯齿形DSC的温度程序图,其中,[MathProcessingError]T0=0∘C,[MathProcessingError]β0=1Kmin−1,[MathProcessingError]βmod=3Kmin−1,[MathProcessingError]tp=60s.图9Figure9.TypicaltemperatureprofileforsawtoothTMDSC(solidline)anditsdeconvolutedunderlyingheatingrate[MathProcessingError]β0of1Kmin−1andthereversingrateoftemperaturechangeof±3Kmin−1(dashedlines).T1andT2indicatethebeginningsandendsofthecycles,respectively.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)图10展示了由锯齿形TMDSC得到的线性即时响应的热流信号图.一般来说锯齿形TMDSC的升降温程序比较长,可提供足够的反应时间以保证样品在由升温转换为降温(或者由降温转换为升温)之前达到稳态.一般每个升温或降温片段都需要至少30s的仪器调整时间来达到热响应信号的稳定值,如图11所示.因此,在数值计算时,只需要取热流信号接近于上限或者下限的那部分数据,并将热流信号延长至升温或者降温片段的起始处,即可得到如图10所示的热流信号.可在锯齿形TMDSC程序中间隔插入等温程序,以检测体系是否达到稳态以及基线的平稳性.图10Figure10.Illustrationofthelinearthermalresponse(solidlines)forthetemperatureprofileofFig11.Thelightlydottedboxesandtheheavilydottedboxesseparatelyindicatetheunderlyingandthereversingresponses.Theheavylinerepresentstheheatflowrate[MathProcessingError]ϕ(t).Thepseudo-isothermallevel(Ps),thezerolevel(0)andthevalueofupperandlowerlimitsoftheheatflowrate[MathProcessingError]ϕhand[MathProcessingError]ϕcaremarked,respectively.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)图11Figure11.IllustrationofthenonlinearthermalresponseineachcyclemeasuredbysawtoothTMDSCwhereHFhandHFcseparatelyrepresenttheheatflowratemeasuredintheheatingandcoolinghalfcycles.首先对锯齿形TMDSC的响应信号进行平均化计算得到基本信号[MathProcessingError]⟨HF(t)⟩,由基本信号[MathProcessingError]⟨HF(t)⟩可以求出总的热容信号:锯齿形TMDSC的热流信号无需傅里叶转变,可直接由升降温的热流信号求出可逆热容,该结果能达到与标准DSC相同的准确度.由总热容减去可逆热容求出不可逆热容但是此处往往过高地估计了可逆热容,会导致不可逆信号成为负信号,采用常规正弦波调制时在高分子熔融峰温度范围内常常将其解读为熔融重结晶的信号,因此需要计算不平衡热容[MathProcessingError]Cp,imbalance来反映不可逆热容的真实趋势.[MathProcessingError]Cp,imbalance反映了不可逆热流在升降温中的差异,对于准确解读晶体熔融等复杂过程的不可逆热容部分有重要意义[35].3.2实验技巧3.2.1样品质量TMDSC的实验操作与常规DSC相同.TMDSC要求样品与坩埚的热传递良好,因此,样品质量和厚度越小越好.样品质量太大会导致热滞后效应加剧,响应周期延长,测量的有效频率和振幅范围减小.3.2.2温度程序正弦波模式温度调制得到的计算结果精度较高,但要求热响应信号呈线性且平稳变化,而通常实验得到的热信号会与仪器的热滞后信号耦合,影响测量的准确度.此外,正弦波模式的傅里叶变换仅仅计算了一次谐波项,导致在有些热效应中过高地估计了可逆热流.锯齿模式温度调制的数据处理过程更为简单可靠,测量结果可以达到普通DSC的精确度.锯齿模式温度调制无需进行傅里叶分析,因此可以直接在时间域中分析不可逆过程以及慢热过程,保证在测试过程中样品处于稳态,避免由于基线不稳定导致的分析误差[35].实际测试时需要根据测试要求选择不同的温度调制模式.TMDSC的参数有基础升温速率、调制频率以及调制振幅.TMDSC的基础升温速率较慢,通常在1~3Kmin−1,以保证热流信号具有较高的分辨率.而调制振幅和调制频率的设置更为复杂,需要保证在测试的热效应范围内出现4~5个振荡周期.通常温度振幅为0.5~2K,调制周期通常为30~120s.调制振幅和调制频率过高时,会超出仪器的响应周期.而当调制振幅和调制频率过低时,热流信号会受到基线漂移的影响,而且快速相转变过程中的有效调制周期数过少,信号分辨率下降.3.3应用举例3.3.1可逆热容和不可逆热容TMDSC的一个重要应用是区分可逆热容和不可逆热容信号.胡文兵等[35]采用锯齿形TMDSC研究PET在升温过程中发生的热效应,得到图12所示的比热容随温度变化的关系图.其中,黑点代表的是ATHAS数据库所提供的无定形PET在不同温度下的标准比热容数据.虚线为总比热信号,该曲线表明PET在升温过程中依次出现了玻璃化转变、冷结晶以及熔融.而实线代表了可逆比热信号,它包括了较低温度区域的玻璃化转变和较高温度区域的熔融峰.可逆比热曲线上的熔融峰与总比热曲线的熔融峰面积相近,说明计算得到的熔融可逆信号偏大.由总热流信号减去可逆热流信号,得到不可逆比热信号如图中短线-点-短线符号代表的曲线所示.除了冷结晶峰和熔融峰,不可逆比热曲线在500K左右出现了一个向下的放热峰,这似乎表明PET在高温区发生了熔融重结晶.进一步计算不平衡热容,得到图中细点组成的曲线.该曲线与不可逆热容曲线相比仅出现了向上的熔融峰,说明不可逆比热曲线上高温区的负信号并非熔融重结晶.上述结果表明,实际实验过程中的热流信号并非完全的线性和稳态,非线性热流信号与非稳态热流信号发生耦合,会导致可逆热容信号偏大,进一步将其从基线热容扣除会导致不可逆热容信号出现负值.而锯齿形TMDSC中的不平衡热容能够避免不可逆热容负值的出现,更为正确地反映不可逆热容的偏移方向.图12Figure12.Theheatcapacitycurvesofpoly(ethyleneterephthalate)(PET)measuredbysawtoothTMDSCwithtemperatureprofileofFig.11.TheheatflowdataisanalyzedwiththestandardDSCmethod:reversingheatcapacityfromEq.(26),totalheatcapacityfromEq.(25),non-reversingheatcapacityfromthedifferencebetweentotalandreversingheatcapacity,andimbalanceofheatcapacityfromEq.(28).AlsolistedaretheATHASdatabankdatafortheheatcapacityofamorphousPET.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)3.3.2等温可逆热容TMDSC的另一个重要应用是测量等温可逆热容.传统DSC只能通过测量在一定温度梯度下的热流变化来测量热容,因此,传统DSC无法测量等温过程中的热容及其变化.而TMDSC可以在基础升温速率为零的条件下,给样品施加一个调制的微小扰动速率,对样品进行准等温TMDSC实验,测量样品在等温过程中的热容及其变化.图13是Wunderlich[36]对PET进行准等温TMDSC实验得到的比热容随温度变化的示意图.图中较粗的实线代表了准等温实验测量得到的可逆比热容,较细的实线表示采用普通DSC在10Kmin−1的速率下测量得到的表观比热容,虚线表示理论计算得到的完全可逆的分子热振动比热容.3条曲线在熔融峰区域以外的比热值基本一致.而在熔融峰区域内,可逆比热值远小于表观比热值,这是因为标准DSC测量结果还包括了熔融相变潜热的释放.另一方面,熔融峰区域的可逆比热仍高于基础热振动比热,这表明PET在熔程内出现了剩余热容,这部分剩余热容与半结晶高分子中大量存在的晶区与非晶区界面有关.进一步研究发现,当升温速率较快时,剩余可逆热容会被抑制,由此推测剩余热容与晶体界面区的可逆熔融有关[37,38].图13Figure13.TheapparentheatcapacitycurvesofPETduringtheheatingprocessaftercrystallizedbycoolingfromthemeltto44%crystallinity.ThestandardDSCcurveandTMDSCcurveareseparatelywithintermediateandheavythickness.Alsoplottedarethedata-bankinformation(thinline)andthecomputedheatcapacityforthesampleof44%crystallinePET(brokenline).(ReprintedwithpermissionfromRef.[36] Copyright(2014)Elsevier)胡文兵等[39]进一步采用准等温TMDSC研究了几种链滑移能力不同的高分子在熔融温度范围内可逆热容的变化.结果表明,链滑移能力较强的PE和PEO具有较大的可逆热容,而链滑移能力不强的PCL和PET测量得到的可逆热容较小,与熔体热容相近.这种差别说明,剩余可逆热容是由发生在高分子片晶折叠端表面的可逆熔融所导致的,这种可逆熔融过程与分子链的链滑移能力密切相关.作者由此提出了图14所示的折叠端表面的可逆熔化机制.图14Figure14.Illustrationofreversiblepremeltingonthefold-endsurfaceofpolymerlamellarcrystals.Thereexistsalocalforcebalancebetweentherecoverytendencyofthestretchedloopsandthethickeningtendencyofthelamellarcrystals(seearrows).(ReprintedwithpermissionfromRef.[39] Copyright(2014)AmericanChemicalSociety).在高温区,为了满足表面环圈和纤毛的构象熵增大的需求,片晶折叠端表面的一部分链茎杆将通过滑移的方式抽出片晶,导致片晶的减薄,部分晶体发生熔融.而在低温区,过冷度较高,结晶的热力学驱动力增强,在高温区部分熔融的片晶将通过链滑移进行晶区恢复,导致片晶增厚.因此,随着温度的周期性变化,片晶折叠端表面出现可逆的熔融潜热释放,TMDSC信号上表现出超出分子热振动热容显著的剩余可逆热容.江晓明等[40]采用TMDSC比较了α和β这2种不同晶型的iPP在高温下的可逆热容,并采用MonteCarlo分子模拟研究了上述调制过程.结果如图15所示,2种晶型的iPP的可逆热容均随着调制频率的升高而降低,其中,链滑移能力较高的β晶型iPP具有更高的可逆热容,从而证明了链滑移能力在片晶折叠端表面的可逆熔融过程中的重要作用.图15Figure15.(a)Theheat-flowratecurve(theblackcurveintherightaxis)ofthedopediPPasaresponsetothetemperature-modulationprogram(theredcurveintheleftaxis)withthefrequency12.5Hz,theamplitude±1Kandthebaselineannealingtemperature398K.(b)FrequencydependencesofspecificreversingheatcapacitiesofrawanddopediPPsamplesmeasuredbysawtoothTMDSC.ThedashedlinerepresentsthestandardspecificvibrationalheatcapacityforiPPmeltat398Kthatiscitedfromtheliterature[41].(ReprintedwithpermissionfromRef.[40] Copyright(2014)Elsevier)3.3.3玻璃化转变玻璃化转变常常与焓松弛、冷结晶等热效应重叠,TMDSC可以有效地区分玻璃化转变和其他热效应,从而准确测量玻璃化转变温度.图16是采用TMDSC测量PS在353.15K等温240min后的升温热流曲线,左边的图包括了原始调制热流信号以及相应的总热流信号、可逆热流信号和不可逆热流信号.将左图的纵坐标放大可得到右图,其中玻璃化转变为可逆热流信号,而焓松弛为不可逆热流信号,TMDSC可有效分离这2种热效应[42].图16Figure16.TMDSCmeasurementwiththeunderlyingheatingrate2Kmin−1,modulationperiod80.5s,andmodulationamplitude1.0KforPSafterannealingfor240minat353.15Kinordertoseparatethereversingandnon-reversingcontributionstotheapparentheatcapacityintheglasstransitiontemperatureregion.Leftfigure:Modulatedheatflow,theslidingaverages,andtheevaluatedreversingandnon-reversingheatcapacities Rightfigure:Expandedscaledrawingsofthethreeslidingaverages.(ReprintedwithpermissionfromRef.[42] Copyright(2014)Elsevier)玻璃化转变是一个动态变化过程,其热容变化具有频率依赖性.TMDSC能在2个时间尺度上测量玻璃化转变,包括较快的调制频率和较慢的平均升降温速率.其中,调制热流信号测得的玻璃化转变温度与其热历史(最大升降温速率、退火温度等)无关,而只与调制频率有关,因此,TMDSC可以准确测量玻璃化转变过程中的热容变化的频率依赖性.例如,图17是采用TMDSC测量PLA-H(含有16.4%D型旋光异构体的左旋聚乳酸PLLA)在不同调制频率下由373K降温至283K过程中的可逆比热容曲线.TMDSC的温度程序的参数为:基础降温速率为0.1Kmin−1,温度振幅AT为0.05~0.5K,调制周期p为10~100s.在测试过程中,保持最大降温速率ATω不变,ATω=π/100,改变调制频率,ω=0.01~0.1Hz,得到不同调制频率下的玻璃化转变温度,由此可计算出PLA-H在玻璃化转变区域的活化能[43].图17Figure17.SpecificreversingheatcapacitycurvesofPLA-Hcooledfrom373Kto283KinTMDSCatdifferentmodulationfrequencies.Theunderlyingcoolingrateis0.1Kmin−1,andthemaximumcoolingrateATωremainsatπ/100withthemodulationamplituderangingfrom0.05Kto0.5Kandthemodulationperiodrangingfrom10sto100sresultinginawiderangeofmodulationfrequencyfrom0.01Hzto100Hz.(ReprintedwithpermissionfromRef.[43] Copyright(2014)AmericanChemicalSociety)4.闪速示差扫描量热法4.1基本原理20世纪60年代以来,DSC就已经成为了高分子材料研究领域尤其是高分子结晶学研究领域常用的实验研究手段.然而,传统DSC的扫描速率比较小,一般在0.01~5Ks−1数量级范围内,阻碍了高分子结晶学领域研究的深入发展.一方面,常规DSC无法抑制结晶速率较快的半结晶高分子样品在降温过程中的结晶成核以及在升温过程中的结构重组,从而限制了在较低温度区域内对高分子结晶成核行为的研究.另一方面,由于实际生产加工过程中的降温速率极高,例如吹塑和注塑的降温速率可达到100~1000Ks−1,因此常规DSC无法模拟高分子在实际生产加工过程中的结晶环境[44,45].DSC的升降温速率以及温度控制的灵敏度亟待提高.然而,较快的升温速率会导致样品内部出现较大的温度梯度,热滞后影响了热流信号的可重复性和准确性,依照DSC的热流信号公式(29),在提高扫描速率q的基础之上减小样品质量m,既可以保证热流信号的灵敏度,同时也减轻了较大质量的样品在快速扫描过程中的热滞后效应.因此,DSC开始朝着微型化、高速化发展,闪速示差扫描量热仪(FSC)由此诞生.FSC采用氮化硅芯片传感器替代传统DSC的坩埚,将样品质量由原来的毫克级别减小到了纳克级别,有效避免了样品内部的热滞后,并能通过芯片传感器进行温度的控制和热量的补偿,实现了快速的升降温扫描,大大拓展了高分子表征的时间和空间灵敏度.FSC技术得益于20世纪90年代氮化硅薄膜和微机电系统(microelectromechanicalsystems,MEMS)技术的发展.1994年,Hellman等[46]首次制备出无定形氮化硅薄膜传感器,并基于该传感器研制出附加热容约为4×10−6JK−1的交流式薄膜微量热仪.微小的附加热容能有效避免热滞后,有利于扫描速率的提升.2004年,Allen等[47,48]基于氮化硅薄膜传感器研发出升温速率可达到105Ks−1的薄膜示差扫描量热法(thinfilmdifferentialscanningcalorimetry,TDSC).然而,TDSC采用了真空环境制备准绝热条件,导致仪器散热困难,无法实现快速的降温扫描.同年,Schick等[49,50]采用商用热导器件TCG-3880(XensorIntergrations,NL)优化功率补偿型薄膜芯片量热仪,使用氮气、氦气等气氛,将非绝热环境下可控的降温速率提高到106Ks−1.2005年,唐祯安[51]研发出加热速率可达2×105Ks−1的微量热仪.近年来,周东山设计出冷热台型高速扫描量热仪,可将高速扫描量热技术与显微红外光谱、拉曼光谱、X射线衍射以及原子力显微镜等微结构光学表征技术连用[52],能够捕捉结晶性高分子及液晶小分子的亚稳态结构,更准确地表征高分子多相结构转变、共混及共聚物中结晶相空间结构、以及纳微米受限态下高分子的成核结晶动力学[53~55].随着氮化硅薄膜技术的发展,商业化的快速扫描量热仪的研发也不断取得进展.从2003年起,Xensor、Anatech、SciTe三家公司开始合作研发商业化快速扫描量热仪,并在随后开发出XI-400型陶瓷基板芯片传感器(UFS1).2010年,瑞士Mettler-Toledo公司(国内称梅特勒公司)[56]基于UFS1芯片传感器技术成功开发出第一代商业化功率补偿型快速扫描量热仪FlashDSC1.图18是FlashDSC1设备的示意图.左上角展示了FlashDSC1的仪器主机及其配备的显微镜.该显微镜由德国莱卡公司生产,放大倍数为2000,主要用于辅助样品制备和观察芯片传感器的状况.右上角是该仪器配备的XI-400型陶瓷(UFS1)芯片传感器,传感器背部有16个接触位点,可与主机芯片装载台上的接线柱相连接,实现温度控制、热量补偿和数据控制,UFS1是FlashDSC1实现快速升降温速率以及精准控温的关键性设备[57].左下角的图片展示了安装好传感器并盖上盖板的装载台.右下角展示的是在光学显微镜下的样品池或参比池,其中黑色圆形是直径为500μm的有效加热区.该仪器配备了德国HuberTC100机械制冷机,可实现在−100~450°C温度范围内的快速升降温.FlashDSC1的升温速率范围在0.5~40000Ks−1,降温速率的范围在0.1~4000Ks−1.目前瑞士梅特勒公司已推出降温速率高一个数量级、升温范围高达1000°C的第二代设备FlashDSC2+.图18Figure18.ThephotographsofFlashDSC1apparatus.Topleft:FlashDSC1 Topright:theunloadedchipsensorUFS1 Bottomleft:thesampletransfer Bottomright:themembraneofthesampleorreferencecellonsensor.(ReprintedwithpermissionfromMETTLER-TOLEDOCompany)近年来,随着商业FlashDSC设备的不断完善和发展,FSC在PCL[58,59]、iPP[60~62]以及iPB[63]等多种高分子材料的结晶、成核以及熔融动力学等表征中得到了越来越广泛的应用.与传统DSC相比,FSC的时间常数由秒降到了毫秒级别,大大缩短了实验的观测窗口,可在纳米尺度上考察分子链的运动过程,大大促进了对高分子亚稳态结构相转变动力学行为的研究.同时,FSC将样品量由原来的毫克减小到了纳克级别,将DSC技术的研究范围拓展到了微纳米高分子材料体系[64].4.2实验技巧4.2.1样品制备FSC中的样品制备过程与传统DSC有较大的区别.通常FlashDSC的样品质量为5ng到几微克.较少的样品量有利于提高样品与传感器之间的热接触,减小热滞后效应,得到更尖锐的信号峰和更准确的测量结果.然而,样品过少会导致热流信号灵敏度过低,还可能带来尺寸效应.因此,可以根据温度程序的扫描速率选择合适的样品量.当扫描速率大于1000Ks−1时,样品质量小于100ng;当扫描速率低于20Ks−1时,为了保证热流信号的灵敏度,样品质量可取几百纳克[65].实验过程中样品直接放置在FSC的传感器上.可以将芯片传感器取下来在外部进行样品制备,例如旋涂、蒸发沉积等前处理,也可以借助仪器自身配备的显微镜直接切割样品.当初始样品是薄膜、挤出粒子、粉末颗粒这类体积较大的物质时,在显微镜下用手术刀将初始样品切割成厚度小于10μm的薄片,然后将样品转移到干净的载玻片上,进一步将样品切割成面积为50μm×50μm的薄片,然后用自然带有尖端的细毛提取样品将其转移至位于芯片样品池中央的圆形加热区[65].以1Ks−1的速率对样品进行预熔,使样品与芯片表面具有良好的热接触,同时降低样品对芯片传感器的机械应力.当样品与传感器的热接触效果不好时,在不影响测试结果的前提下,可在上样之前在传感器表面涂一薄层硅油作为热接触媒介.除了提高热接触,硅油还可用于降低样品的机械应力,测试初次升温扫描的结果,防止样品在升温过程中弹出加热区,提高芯片传感器的重复利用次数等.4.2.2样品质量FSC的样品量过小,无法采用天平直接测量样品的质量,通常需要根据样品的性质进行估算.较为粗糙的方法是根据样品的尺寸和密度进行估算[66].较为准确的方法是利用样品的热性质,包括热容[67]、熔融焓[68]以及玻璃化转变台阶的热容差[69]来计算样品质量,可根据样品的特点选择不同的热性质进行质量测量.例如,依照样品在熔融状态下的热容计算样品质量的公式为其中,[MathProcessingError]Cp,FSC是采用FlashDSC1测量得到的样品在某一温度范围内的平均表观热容.[MathProcessingError]cm是样品的比热容,可通过常规DSC准确测量一定质量的样品在该温度范围内的热容,由热容与质量的比值得到该样品的比热容,也可以通过数据库查找标准比热容值.同理可得到熔融焓法计算样品的公式其中,[MathProcessingError]ΔHFSC是FlashDSC1测量得到的样品的熔融焓.[MathProcessingError]Δh为单位质量样品的熔融焓,一般采用传统DSC对具有相同结晶条件的样品进行测量得到.利用样品的玻璃化转变台阶计算样品质量的公式为其中,[MathProcessingError]ΔCp,FSC是采用FlashDSC快速降温得到的完全无定形态非晶样品的玻璃化转变台阶处的热容变化值.采用浸入液氮等外部方法制备无定形态样品,然后放入常规DSC中测量,即可得到该样品在玻璃化转变处的比热容变化值[MathProcessingError]Δcm,DSC.4.2.3临界条件FSC技术的一大优势是通过调节降温速度获得不同相态结构的化合物,包括无定形态、介晶态以及结晶态.因此,在进行温度程序设计之前需要了解制备不同相态结构样品的临界升降温速率,包括消除热历史的临界温度以及临界扫描速率的测试.消除热历史实验指的是将样品升温至足够高的温度等温一段时间以消除熔体中残留的晶体或晶核,避免记忆效应.消除热历史的温度一般在熔点和分解温度之间,温度过高会导致样品发生热降解.C66是82%(摩尔分数)PA6与18%的PA66组成的无规共聚物.采用FlashDSC1测定C66样品消除热历史所需的临界温度时,先将样品加热至不同的温度等温0.2s消除热历史,然后以−10Ks−1的速率冷却至−100°C,最后以3000Ks−1的速率升温至250°C,得到如图19所示的加热曲线.当消除热历史温度高于170°C时,熔融峰相互重叠,表明高温等温已经完全消除了样品中的热历史,得到C66样品消除热历史的临界温度为170°C.由于均聚物PA6的平衡熔点为250°C,实验中可选择270°C等温0.2s作为消除热历史的温度程序.图19Figure19.ApparentheatcapacitycurvesofC66samplesobtainedonheatingat3000Ks−1aftercooledat−10Ks−1fromastayof0.2satdifferenterasingtemperaturesrangingfrom180℃to210℃(ReprintedwithpermissionfromRef.[70] Copyright(2014)Elsevier)临界扫描速率包括临界升温速率和临界降温速率,它是结晶动力学研究的一个重要临界条件.临界降温速率指的是恰好能够抑制样品在降温过程中发生结晶的临界速率.图20是iPP样品(V30G)在消除热历史之后以不同的速率降温得到的降温过程中的热容曲线.当降温速率超过500Ks−1时,结晶峰消失,说明样品的临界降温速率为500Ks−1.图20Figure20.ApparentheatcapacitycurvesofV30Gsampleobtainedoncoolingatvariousratesaslabeled(ReprintedwithpermissionfromRef.[60] Copyright(2014)SpringerNature).临界升温速率指的是恰好能够抑制样品在升温过程中出现冷结晶的临界速率.将上述V30G样品以超过临界降温速率冷却至玻璃化转变温度以下,然后以不同速率升温至熔点以上,得到如图21所示的升温过程中的表观热容曲线.随着升温速率逐渐增大,升温曲线上的冷结晶峰和熔融峰变得越来越微弱.当升温速率达到30000Ks−1时,冷结晶峰消失,表明V30G样品的临界升温速率为30000Ks−1.图21Figure21.ApparentheatcapacitycurvesofV30Gsampleobtainedonheatingatvariousratesaslabeled(ReprintedwithpermissionfromRef.[60] Copyright(2014)SpringerNature)得到上述临界条件之后就可以进一步对高分子相转变动力学行为进行研究,包括测量样品的总结晶动力学、结晶成核动力学、晶体熔化动力学、晶体退火动力学等.4.3应用举例4.3.1等温总结晶动力学高分子结晶动力学行为是影响高分子产品的生产效率和产品性能的重要因素.高分子总结晶动力学由晶体初级成核所控制.根据经典成核理论,在高温区,高分子成核速率主要由临界成核自由能位垒所控制,而在低温区则由分子短程扩散活化能位垒所主导.由于临界成核自由能位垒随着温度的升高而升高,而扩散活化能位垒随着温度的升高而降低,因此,高分子结晶速率对结晶温度的依赖性关系曲线呈抛物线形,其最快的结晶速率在玻璃化转变温度和熔点之间.对于结晶速率较快的高分子,传统DSC的降温速率无法抑制它在高温区的结晶,从而对较低温度范围内的结晶动力学研究产生影响.因此,传统DSC的结晶动力学研究只能局限在低过冷度的高温结晶区域.而FlashDSC能抑制除了PTFE和PE以外大多数高分子在整个温度范围内的结晶,大大推进了对于低温区高分子结晶动力学行为的研究[71,72].何裕成等[73]采用FlashDSC1对热力学条件相近的尼龙6(PA6)和聚酮(PK)在全温度范围内的结晶动力学行为进行了对比,得到如图22所示的结晶动力学曲线.在低温区,PA的分子层之间较强的氢键作用及其较高的玻璃化转变温度,削弱了PA的分子链运动能力,导致其结晶速率较慢.而在高温区,PA中层状分布的氢键作用大大降低了层间的表面自由能,使得成核自由能位垒降低,大大加快了PA的结晶速率.图22Figure22.Comparisonoftemperaturedependenceofcrystallizationhalf-timesofPAandPKduringisothermalcrystallizationprocessatvariouscrystallizationtemperatures(ReprintedwithpermissionfromRef.[73] Copyright(2014)JohnWileyandSons)上述结果表明,氢键结构对聚酰胺的结晶动力学行为具有重要影响.此外,聚酰胺的氢键结构与蛋白质的二级结构β折叠十分相似,对聚酰胺的氢键结构的研究有助于理解蛋白质β折叠的微观机制[74].因此,李小恒等[75]进一步采用FlashDSC1比较了6种聚酰胺(PA46,PA66,PA610,PA612,PA1012,PA12)在整个温度范围内的等温结晶动力学行为.图23展示了不同聚酰胺样品的结晶动力学曲线.其中,PA46的高氢键密度有利于提高高温区的热力学驱动力,加快结晶速率.而PA10和PA12的低氢键密度有利于加快低温区的短程扩散,导致其较快的结晶速率.此外,聚酰胺的半结晶时间-等温温度曲线呈现双峰型分布,表明了聚酰胺的成核方式由高温区的异相成核转变为低温区的均相成核,且该转变温度随氢键密度的改变而改变.图23Figure23.Summaryoftemperaturedependenceofcrystallizationhalf-timesofPA46,PA66,PA610,PA612,PA1012andPA12duringisothermalcrystallizationprocessesatvarioustemperatures(ReprintedwithpermissionfromRef.[75] Copyright(2014)Elsevier)4.3.2不可逆熔融转变高分子片晶在熔化的过程中伴随着熔融重结晶等结构重组优化过程的竞争,也就是所谓的非零熵熔融(non-zero-entropy-producingmelting,non-ZEPmelting).当升温速率足够快时,所有的退火行为都将被抑制,此时观察到的熔融行为就反映了原始晶体自身的熔融行为,被称为零熵熔融(zero-entropy-producingmelting,ZEPmelting).采用FlashDSC对高分子样品进行快速升温可以在某种程度上抑制亚稳态晶体在熔化过程中的结构优化,表征发生在高分子晶体侧表面的不可逆熔化动力学.Toda等[76,77]研究了PET、iPP和PCL的片晶熔化动力学,首次发现了过热度Tm−Tc与升温速率R之间存在指数标度关系.进一步研究发现这种特征的标度关系可能与晶体不可逆熔化的动力学机制有关.高欢欢等[78]结合FlashDSC1和MonteCarlo分子模拟研究了由α晶型和β晶型iPP这2种化学结构相同但链滑移能力不同的高分子晶体在较宽的动态扫描速率范围内的过热度与升温速率的标度关系.结果图24所示,该指数标度关系与iPP分子链在不同尺度上的分子链滑移以及分子内成核和片晶侧表面的粗糙化生长有关.图24Figure24.(a,b)FSCmeasurementofpowerlawrelationshipsbetweenapparentsuperheatingTm,onset−Tcandheatingrateshforα-crystalsandβ-crystalsofiPPpreparedatthreecrystallizationtemperaturesTcaslabeled.(c)MoteCarlosimulationsofpowerlawrelationshipbetweenapparentsuperheatingTm,onset−TcandheatingrateshforlamellariPPcrystalswithdifferentchainmobilitycharacterizedbyEf/EcanddifferentcrystallizationtemperaturesTcaslabeled(ReprintedwithpermissionfromRef.[78] Copyright(2014)Elsevier)此外,采用FSC对聚合物进行快速升温,可避免聚合物的熔化和降解,从而得以研究高分子亚稳态结构的动力学变化过程.Monnier等[79]采用FSC以10000Ks−1的速率加热吸附在固体表面的聚合物层,在较小的时间窗口内避免了样品的降解,直接观察到聚合物熔体在固体表面的解吸附现象.实验结果表明,解吸附焓变与退火温度无关,吸附/解吸附是类似于结晶/熔融的一级热力学转变.4.3.3与其他表征技术连用前面已经介绍到FSC技术可与其他表征技术连用来表征高分子材料[52~55].FSC技术还可与X射线衍射[80],原子力显微镜[81~83]、偏光显微镜(polarizedlightopticalmicroscopy,POM)[84]等多种分析仪器实时连用,进一步获得晶体的形态及微观结构的变化信息.吕瑞华等[85]结合了FSC以及AFM研究了左旋聚乳酸(PLLA)的α' -α晶型转变机理.图25(a)是左旋聚乳酸在152°C等温退火不同时间的熔融曲线图.红色曲线代表了α' 晶,蓝色曲线为α晶.由图可知,随着退火时间的增加,左旋聚乳酸晶体中出现了连续的晶体完善与不连续的熔融重结晶过程的竞争.图25(b)和25(c)分别为初始结晶晶体和高温退火后的晶体的AFM图.相较于初始结晶晶体,退火后的球晶尺寸更大,且晶核数量减少.因此,PLLA在高温处的α' -α晶型转变机理是非连续的熔融重结晶过程.图25Figure25.(a)HeatflowcurvesofPLLAcrystalsafterannealingat152°Cforvariousperiodsfrom0sto600s (b)AFMheightimageofnascentPLLAcrystals (c)AFMheightimageofPLLAafterannealedat152°Cfor1000s(ReprintedwithpermissionfromRef.[85] Copyright(2014)Elsevier)4.3.4玻璃化转变FSC具有极宽的动态扫描速率范围,可用于制备各种不同的玻璃态结构.Schawe等[86]采用FlashDSC2+以不同降温速率将金属玻璃Au49Ag5.5Pd2.3Cu26.9Si16.3由熔体淬火至玻璃化温度以下,得到了2种不同的玻璃态结构:在中等降温速率下形成的自掺杂玻璃态结构(Self-dopedglass,SDG)以及在较高降温速率下形成的化学均质玻璃态结构(chemicallyhomogeneousglass,CHG).对这2种新型玻璃态结构的研究有助于检验现有玻璃化转变理论的普适性,优化金属玻璃的生产加工条件.FSC还可用于研究玻璃化转变在微纳米尺度上的受限效应.Monnier等[87]采用FSC以0.1~1000Ks−1的不同降温速率将聚(对叔丁基苯乙烯)(poly-(4-tert-butylstyrene),PtBS)冷却至玻璃化转变温度以下,研究样品尺寸和降温速率对玻璃态结构的影响.结果如图26所示,随着降温速率以及样品尺寸的降低,虚拟温度减小到远远低于本体的玻璃化温度,样品松弛到平衡态所需的时间也随之大大缩短.图26Figure26.Reciprocalsoftherelaxationtime(leftaxis,pentagons)andcoolingrate(rightaxis,stars)asfunctionsoftheinverseoftemperatureandfictivetemperatureforPtBssamplesatdifferentlengthscales.ThesolidlinesareVFTfitsfortherelationshipbetweenrelaxationtime(orcoolingrate)andfictivetemperature.Theconfinement-lengthdependenceoffictivetemperatureatdifferentcoolingratesispresentedintheinsetwherethedashedandsolidlinesarelinearfitsofthelength-scale-dependentfictivetemperaturemeasuredathighandlowcoolingrates,respectively.(ReprintedwithpermissionfromRef.[87] Copyright(2014)AmericanPhysicalSociety)4.3.5热导率随着5G时代的来临,电子器件对材料的散热能力要求也越来越高,准确测量材料的热导率对于工业产品质量控制有重要意义.胡文兵课题组利用FSC技术的优势发展了一种测试微米尺度厚度薄膜材料热导率的新方法[88].在薄膜样品上方和参比池上方分别放置一颗铟,然后采用FlashDSC以不同的速率加热样品,通过位于样品上方和参比池上方的铟的熔点之差反映样品上下表面的温差.根据傅里叶热传导定律可知,样品上下表面的温差与垂直于薄膜表面方向的加热速率成正比,由比例系数可求算样品的热导率.胡文兵课题组[89,90]采用该方法测量了聚乙烯薄膜样品以及系列尼龙样品的热导率,测得的热导率数值与其采用其他方法测得的文献报道值较为接近,证明了此方法的有效性.图27为采用该方法表征尼龙610样品热导率得到的熔融曲线.采用FlashDSC表征材料的热导率具有测试温度和扫描速率范围广、样品量少等优点,该方法还可以表征黏滞液体、取向材料等的导热性能,具有较广阔的应用前景.图27Figure27.(a)Top:Illustrationoftwoindiumparticlesseparatelyplacedonthetopofaregular-shapedsampleandonthesurfaceofthereferencecell.Bottom:thephotographsofthesamplecellandthereferencecell.(b)Temperatureprofileforisothermalcrystallizationandsubsequentmeltingofthesamples.(c)ApparentheatcapacitycurvesofNylon46atvariousheatingratesaslabeledandtheexothermalpeakandendothermalpeakindicateseparatelythemeltingoftheindiumonthereferencecellandonthetopofsampleNylon46.(d)MeltingpointdifferencesoftwoindiumparticlesatvariousheatingratesforthreeNylonsamples(ReprintedwithpermissionfromRef.[90] Copyright(2014)Elsevier)5.总结与展望本文综述了示差扫描量热法在高分子表征领域的主要进展,旨在帮助大家进一步理解DSC技术的实验原理和方法技巧,探索DSC技术在高分子表征领域的更多应用.自20世纪60年代以来DSC已经成为了表征材料结构和性能的一种常规研究手段,其在高分子表征领域已经获得了广泛的应用,主要包括在较宽温度范围内测量样品的转变温度和相应的转变焓以及表征玻璃化转变等热容或者潜热发生改变的物理过程,具有操作简便,成本低廉等优点.TMDSC在线性升温速率的基础上叠加了周期性变温速率,保证样品在较长的时间尺度上以一个缓慢的速率升温,同时还能获得一个极快的瞬间温度变化,使得热流信号兼具较高的灵敏度和分辨率,实现了对于微弱转变信号的检测,并能有效区分样品中可逆和不可逆过程的热流信号,甚至准等温过程热容的测量,准确阐明各种转变的本质,为传统DSC的测量结果补充了更多的有效信息.FSC采用氮化硅薄膜传感器取代传统坩埚,将试样量减小到了纳克级别,有效地降低了样品内部的热滞后效应,并实现了106Ks−1的超快扫描速率.FSC的高扫描速率能抑制高分子在升降温过程中的结构重组,大大推进了对高分子结晶、熔融等相转变过程中非平衡态结构的动力学研究.同时,FSC将时间窗口缩短到了毫秒级别,能与实际高分子加工过程中的结晶动力学窗口相匹配,有利于加深对高分子加工过程的理解.此外,FSC将样品体系缩小到微纳米尺度,具有采样损坏小的优点,促进了对纳米空间分辨率的高分子材料内部结构及其性能变化的研究.总之,DSC已经成为了高分子热分析领域的一项常规表征工具,由其发展出来的FSC技术将其温度扫描速率范围扩展到横跨7个数量级,实现了对从热力学领域的静态热量传递到动力学过程的热量流动速率的一系列表征,有力地推动了高分子基础理论以及加工应用研究的发展.目前,DSC正朝着更高的扫描速率和更小的样品尺度不断改进和发展,并与其他表征方法更为紧密地连用起来.如图28所示,分子模拟的时间尺度从纳秒级别自下向上推进,进行理论证明;FSC的时间尺度则自上而下进入到微秒级别进行实验验证,两者的时间窗口在微秒尺度上发生重叠,对应了高分子片晶生长和退火熔融过程的时间尺度.因此,FSC技术与分子模拟的结合拓宽了其在高分子微观结构表征方面的应用,使人们得以从微观和宏观2个角度研究高分子片晶生长动力学行为.同时,DSC与其他实验表征手段,如X射线衍射、流变仪、拉曼光谱、偏光显微镜等连用,可以获得在物质的性质发生变化的过程中样品的形貌结构以及机械性能等的变化信息,实现对高分子相转变过程中热力学和动力学现象的多角度深入研究.图28Figure28.Illustrationoftimescalesoffast-scanchip-calorimetrymeasurementandMonteCarlosimulationtowardstheidenticaltimewindowofpolymercrystallizationandmelting(ReprintedwithpermissionfromRef.[91] Copyright(2014)SpringerNature)参考文献[1]RuppR(丽贝卡鲁普).Water,Gas,FireandEarth-HistoryofElementDiscovery(水气火土—元素发现史话).Beijing(北京):TheCommercialPress(商务印书馆),2008.1−74[2]ICTACNomenclatureCommittee.Draft-03b.doc07.03.RecommendationsforNamesandDefinitionsinThermalAnalysisandCalorimetry.[3]ASTME473-07b,StandardTerminologyRelatingtoThermalAnalysisandRheology,ASTMInternational,WestConshohocken,PA,2007,http://www.astm.org[4]ASTME2161-01,StandardTerminologyRelatingtoPerformanceValidationinThermalAnalysis,ASTMInternational,WestConshohocken,PA,2001,http://www.astm.org[5]LeChatelierH.ZPhysChem,1887,1:296[6]LeChatelierH.BullSocFrancMineralCryst,1887,10:204−211[7]Roberts-AustenWC.ProcInstMechEng,1899,1:35−102[8]BoersmaSL.JAmerCeramSoc,1955,38:281−284doi:10.1111/j.1151-2916.1955.tb14945.x[9]O’NeillMJ.AnalChem,1964,36:1238−1245doi:10.1021/ac60213a020[10]WatsonES,O’NeillMJ,JustinJ,BrennerN.AnalChem,1964,36:1233−1237doi:10.1021/ac60213a019[11]WunderlichB.ThermalAnalysisofPolymericMaterials[M].Springer:Berlin,2005.329−355[12]LiuZhenhai(刘振海),LuLiming(陆立明),TanYuanwang(唐远望).ABriefTutorialonThermalAnalysis(热分析简明教程).Beijing(北京):SciencePress(科学出版社),2012.83−104[13]DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandtechnologyofChinaPress(中国科学技术大学出版社),2020.188−231[14]LuLiming(陆立明).BasicsofThermalAnalysisApplication(热分析应用基础).Shanghai(上海):DonghuaUniversityPress(东华大学出版社),2010.34−43[15]ASTME1269-11(2018),StandardTestMethodforDeterminingSpecificHeatCapacitybyDifferentialScanningCalorimetry,ASTMInternational,WestConshohocken,PA,2018,http://www.astm.org[16]GaurU,WunderlichB.Advancedthermalanalysisaystem(ATHAS)polymerheatcapacitydatabank.In:ComputerApplicationsinAppliedPolymerScience.NewYork:AmericanChemicalSociety,1982.355−366[17]ASTME1356-08(2014),StandardTestMethodforAssignmentoftheGlassTransitionTemperaturesbyDifferentialScanningCalorimetry,ASTMInternational,WestConshohocken,PA,2014,http://www.astm.org[18]HöneG,HemmingerWF,FlammersheimHJ.DifferentialScanningCalorimetry.Berlin:Springer,2003.126−140[19]LauSF,SuzukiH,WunderlichB.JPolymerSci:PolymerPhysEd,1984,22:379−405doi:10.1002/pol.1984.180220305[20]HuangMM,DongX,WangLL,ZhengLC,LiuGM,GaoX,LiCC,MüllerAJ,WangDJ.Macromolecules,2018,51(3):1100−1109doi:10.1021/acs.macromol.7b01779[21]WangZF,DongX,CavalloD,MüllerAJ,WangDJ.Macromolecules,2018,51(15):6037−6046doi:10.1021/acs.macromol.8b01313[22]WangZF,DongX,LiuGM,XingQ,CavalloD,JiangQH,MüllerAJ,WangDJ.Polymer,2018,138:396−406doi:10.1016/j.polymer.2018.01.078[23]DongSiyuan(董思远),ZhuPing(朱平),LiuJiguang(刘继广),WangDujing(王笃金),DongXia(董侠).ActaPolymericaSinica(高分子学报),2019,50(2):189−198doi:10.11777/j.issn1000-3304.2018.18198[24]LuLiming(陆立明).PolymerBulletin(高分子通报),2009,(3):62−74[25]CorbinoOM.PhysikZ,1910,11:413−417[26]CorbinoOM.PhysikZ,1911,12:292−295[27]BirgeNO,NagelSR.PhysRevLett,1985,54:2674−2677doi:10.1103/PhysRevLett.54.2674[28]KraftmakherYA.ZPrikladnojMechTechFiz,1962,5:176−180[29]SullivanP,SeidelG.AnnAcadSciFennicaeAVI,1966,210:58−62[30]GobrechtH,HamannK,WillersG.JPhysE:SciInstrum,1971,4:21−23doi:10.1088/0022-3735/4/1/004[31]GillPS,SauerbrunnSR,ReadingM.JThermAnal,1993,40:931−939doi:10.1007/bf02546852[32]ReadingM,ElliottD,HillVL.JThermalAnal,1993,40:949doi:10.1007/BF02546854[33]ReadingM,LugetA,WilsonR.ThermochimActa,1994,238:295−307doi:10.1016/S0040-6031(94)85215-4[34]ReadingM,HourstonDJ.ModulatedTemperatureDifferentialScanningCalorimetry:TheoreticalandPracticalApplicationsinPolymerCharacterization.Berlin:Springer,2006.1−80[35]HuWB,WunderlichB.JThermAnalCalorim,2001,66:677−697doi:10.1023/A:1013106118660[36]WunderlichB.ProgPolymSci,2003,28:383−450doi:10.1016/S0079-6700(02)00085-0[37]SchickC,WurmA,MohammedA.ThermochimActa,2003,396:119−132doi:10.1016/S0040-6031(02)00526-9[38]SchickC.AnalBioanalChem,2009,395:1589−1611doi:10.1007/s00216-009-3169-y[39]HuWB,AlbrechtT,StroblG.Macromolecules,1999,32:7548−7554doi:10.1021/ma9908649[40]JiangXM,LiZL,WangJ,GaoHH,ZhouDS,TangYW,HuWB.ThermochimActa,2015,603:79−84doi:10.1016/j.tca.2014.04.002[41]GaurU,WunderlichB.JPhysChemRefData,1981,10:1051−1064doi:10.1063/1.555650[42]BollerA,SchickC,WunderlichB.ThermochimActa,1995,266:97−111doi:10.1016/0040-6031(95)02552-9[43]PydaM,WunderlichB.Macromolecules,2005,38(25):10472−10479doi:10.1021/ma051611k[44]SchickC,MathotVBF.FastScanningCalorimetry[M].Springer:Switzerland,2016.V−VII[45]LiZhaolei(李照磊),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2016,(9):1179−1195doi:10.11777/j.issn1000-3304.2016.16058[46]DenlingerDW,AbarraEN,AllenK,RooneyPW,MesserMT,WatsonSK,HellmanF.RevSciInstrum,1994,65(4):946−958doi:10.1063/1.1144925[47]AllenLH,RamanathG,LaiSL,MaZ,LeeS,AllmanDDJ,FuchsKP.ApplPhysLett,1994,64(4):417−419doi:10.1063/1.111116[48]EfremovMYu,OlsonEA,ZhangM,SchiettekatteF,ZhangZS,AllenLH.RevSciInstrum,2004,75(1):179−191doi:10.1063/1.1633000[49]AdamovskyS,MinakovAA,SchickC.ThermochimActa,2003,403(1):55−63doi:10.1016/S0040-6031(03)00182-5[50]AdamovskyS,SchickC.ThermochimActa,2004,415(1-2):1−7doi:10.1016/j.tca.2003.07.015[51]YuJ,TangZA,ZhangFT,WeiGF,WangLD.ChinPhysLett,2005,22(9):2429−2432doi:10.1088/0256-307X/22/9/080[52]JiangJ,WeiL,ZhouD.IntegrationofFastScanningCalorimetry(FSC)withmicrostructuralanalysistechniques.In:SchickC,MathotVBF,ed.FastScanningCalorimetry,Switzerland:Springer,2016.361−379[53]ChenMZ,DuMT,JiangJ,LiDW,JiangW,ZhuravlevE,ZhouDS,SchickC,XueG.ThermochimActa,2011,526(1-2):58−64doi:10.1016/j.tca.2011.08.020[54]JiangJ,ZhuravlevE,HuangZ,WeiL,XuQ,ShanM,XueG,ZhouD,SchickC,JiangW.SoftMatter,2013,9(5):1488−1491doi:10.1039/C2SM27012A[55]WeiL,JiangJ,ShanM,ChenW,DengY,XueG,ZhouD.RevSciInstrum,2014,85(7):074901−074907doi:10.1063/1.4889882[56]vanHerwaardenaS.ProcediaEng,2010,5:464−467doi:10.1016/j.proeng.2010.09.147[57]SchickC,MathotVBF.MaterialCharacterizationbyFastScanningCalorimetry:PracticeandApplications.InFastScanningCalorimetry.Switzerland:Springer,2016.3−299[58]WangJ,LiZL,PerezRA,MüllerAJ,ZhangBY,GraysonSM,HuWB.Polymer,2015,63:34−40doi:10.1016/j.polymer.2015.02.039[59]ZhuravlevE,SchmelzerJWP,WunderlichB,SchickC.Polymer,2011,52:1983−1997doi:10.1016/j.polymer.2011.03.013[60]KalapatD,TangQY,ZhangXH,HuWB.JThermAnalCalorim,2017,128:1859−1866doi:10.1007/s10973-017-6095-9[61]SantisFD,AdamovskyS,TitomanlioG,SchickC.Macromolecules,2006,39:2562−2567doi:10.1021/ma052525n[62]SantisFD,AdamovskyS,TitomanlioG,SchickC.Macromolecules,2007,40:9026−9031doi:10.1021/ma071491b[63]StolteI,AndroschR,DiLorenzoML,SchickC.JPhysChemB,2013,117(48):15196−15203doi:10.1021/jp4093404[64]ShickC,AndroschR.Newinsightsintopolymercrystallizaitonbyfastscanningchipcalorimetry.In:FastScanningCalorimetry.Switzerland:Springer,2016.463−537[65]HeYucheng(何裕成),XieKefeng(谢科锋),WangYouhao(王优浩),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPhysico-ChimicaSinica(物理化学学报),2020,36(6):1905081−1905092doi:10.3866/PKU.WHXB201905081[66]ZhuravlevE,SchickC.ThermochimActa,2010,505(1-2):1−13doi:10.1016/j.tca.2010.03.019[67]MollovaA,AndroschR,MilevaD,GahleitnerM,FunariSS.EurPolymJ,2013,49(5):1057−1065doi:10.1016/j.eurpolymj.2013.01.015[68]IervolinoE,vanHerwaardenAW,vanHerwaardenFG,vandeKerkhofE,vanGrinsvenPPW,LeenaersACHI,MathotVBF,SarroPM.ThermochimActa,2011,522(1-2):53−59doi:10.1016/j.tca.2011.01.023[69]CebeP,PartlowBP,KaplanDL,WurmA,ZhuravlevE,SchickC.ThermochimActa,2015,615:8−14doi:10.1016/j.tca.2015.07.009[70]WangT,LiXH,LuoRQ,HeYC,MaedaS,ShenQD,HuWB.ThermochimActa,2020,690:178667−178672doi:10.1016/j.tca.2020.178667[71]HuWenbing(胡文兵).PrinciplesofPolymerCrystallization(高分子结晶学原理).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2013.114−163[72]HuWenbing(胡文兵).IntroductiontoPolymerPhysics(高分子物理导论).Beijing(北京):SciencePress(科学出版社),2011.146−173[73]HeYC,LuoRQ,LiZL,LvRH,ZhouDS,LimS,RenXN,GaoHX,HuWB.MacromolChemPhys,2018,219:1700385−1700390doi:10.1002/macp.201700385[74]HuWB.PhysRep,2018,747:1−50doi:10.1016/j.physrep.2018.04.004[75]LiXH,HeYC,DongX,RenXN,GaoHX,HuWB.Polymer,2020,189:122165−122173doi:10.1016/j.polymer.2020.122165[76]TodaA,MikosakaM,YamadaK.Polymer,2002,43:1667−1679doi:10.1016/S0032-3861(01)00733-9[77]TodaA,KojimaI,HikosakaM.Macromolecules,2008,41:120−127doi:10.1021/ma702162m[78]GaoHH,WangJ,SchickC,TodaA,ZhouDS,HuWB.Polymer,2014,55(16):4307−4312doi:10.1016/j.polymer.2014.06.048[79]MonnierX,NapolitanoS,CangialosiD.NatCommun,2020,11:4354−4360doi:10.1038/s41467-020-18216-y[80]HuangZJ,JiangJ,XueG,ZhouDS.ChineseJPolymSci,2019,37:94−100doi:10.1007/s10118-019-2177-4[81]LuoSC,WeiL,Jiang,J,ShaY,XueG,WangXL,ZhouDS.JPolymSci,PartB:PolymPhys,2017,55:1357−1364doi:10.1002/polb.24378[82]LuoSC,KuiX,XingER,WangXL,XueG,SchickC,HuWB,ZhuravlevE,ZhouDS.Macromolecules,2018,51(14):5209−5218doi:10.1021/acs.macromol.8b00692[83]LuoSC,WangTY,OchejeMU,ZhangS,XuJ,QianZY,GuXD,XueG,Rondeau-GagnéS,JiangJ,HuWB,ZhuravlevE,ZhouDS.Macromolecules,2020,53(11):4480−4489doi:10.1021/acs.macromol.9b02738[84]JiangJ,ZhuravlevE,HuWB,SchickC,ZhouDS.ChineseJPolymSci,2017,35(8):1009−1019doi:10.1007/s10118-017-1942-5[85]LvRH,HeYC,WangJP,WangJ,HuJ,ZhangJM,HuWB.Polymer,2019,174:123−129doi:10.1016/j.polymer.2019.04.061[86]SchaweJürgenEK,LöfflerJörgF.NatCommun,2019,10(1):1337−1346doi:10.1038/s41467-018-07930-3[87]MonnierX,CangialosiD.PhysRevLett,2018,121:137801−137806doi:10.1103/PhysRevLett.121.137801[88]ZhangJianjun(张建军).ActaPhysico-ChimicaSinica(物理化学学报),2020,36(6):1907048−1907049doi:10.3866/PKU.WHXB201907048[89]HeYC,LiXH,GeL,QianQY,HuWB.ThermochimActa,2019,677:21−25doi:10.1016/j.tca.2019.01.003[90]XieKF,HeYC,CaiJ,HuWB.ThermochimActa,2020,683:178445−178449doi:10.1016/j.tca.2019.178445[91]JiangXM,LiZL,GaoHH.Combiningfast-scanchipcalorimetrywithmolecularsimulationtoinvestigatepolymercrystalmelting.In:SchickC,MathotVBF,ed.FastScanningCalorimetry.Springer:Switzerland,2016.379−403
  • 微观丈量,“膜”力无限——马尔文帕纳科薄膜测量专题网络研讨会成功举办
    仪器信息网讯 2022年10月14日,由马尔文帕纳科携手仪器信息网联合主办的“微观丈量,‘膜’力无限——X 射线分析技术应用于薄膜测量专题网络研讨会”成功举办。本次活动吸引500余人报名参加,直播间气氛活跃,提问不断。马尔文帕纳科先进材料行业销售经理程伟为活动致开场词。程伟讲到,马尔文帕纳科隶属于英国思百吉集团,为微观领域材料表征技术专家,聚焦基础材料、先进材料、医药与食品三大市场,致力于释放微观世界的力量,促进宏观世界的改变。马尔文帕纳科的XRD、XRF产品可以为薄膜材料分析提供全面解决方案,帮助客户获得薄膜材料的元素构成、物相、厚度、取向、残余应力等关键信息。会议特邀高校资深应用专家及马尔文帕纳科技术专家分享精彩报告。同济大学朱京涛教授作《X射线衍射仪在纳米多层薄膜表征中的应用》主题报告,系统介绍国内外多层薄膜研究进展,并结合其团队研究实例,围绕X射线衍射仪在纳米多层薄膜表征中的应用开展探讨,采用掠入射X射线反射、X射线衍射、X射线面内散射等测试方法,表征周期、非周期、梯度多层膜,以及膜层厚度、界面宽度、薄膜均匀性、结晶特性、粗糙度等信息。从1954年飞利浦第一台用于薄膜分析的X射线衍射仪诞生以来,马尔文帕纳科X射线分析技术应用于半导体薄膜材料测量已有非常悠久的历史,目前可为世界各地的半导体制造商提供完整的物理、化学和结构分析解决方案,从薄膜厚度和晶向到组分、应力、结晶度、密度和界面形态等。马尔文帕纳科亚太区半导体销售经理钟明光详细介绍了公司X射线衍射及X射线荧光分析技术在半导体薄膜领域的整体解决方案,包括新一代X'Pert3 MRD(XL)高分辨X射线衍射仪、2830ZT波长色散X射线荧光圆晶分析仪等。多晶薄膜材料的晶型、残余应力和织构影响着薄膜的物理和力学性能,对这些参数进行测量和分析可以为薄膜沉积工艺的调整和优化提供依据。在衍射仪中构建适合薄膜分析的光路,在常规的晶型分析外,还可以对薄膜材料进行无损的残余应力和织构分析。马尔文帕纳科中国区XRD产品经理王林带来题为《多晶薄膜应力和织构分析》的报告,结合多晶薄膜分析示例,分享了马尔文帕纳科X射线衍射技术在多晶薄膜的物相、应力、织构表征方面的应用。Aeris台式衍射仪的演示短片通常,X射线衍射仪分析薄膜材料,都是在大型落地式的XRD上实现的,但马尔文帕纳科在2021年推出了新一代的Aeris台式XRD,可以通过增加掠入射功能附件,实现在占地面积更小的台式衍射仪上进行薄膜的物相和掠入射残余应力分析。报告间隙,特插播Aeris台式衍射仪演示短片,让用户更直观了解这款“一机多能”的多功能型台式X射线衍射仪。X射线荧光光谱通常被认为是一种成分分析技术,广泛应用于各类工业过程控制。追本溯源,其分析原理来自于X射线与物质的相互作用,因此该技术的应用也被延伸至各类薄层样品的表征,获取涂层和镀层中的层厚和薄层成分信息。在薄层样品的分析上,XRF具有无损分析、测量速度快、层间界面要求较低、样品尺寸灵活和适用多层分析的特点,被广泛用于半导体、金属、电子等领域。报告中,马尔文帕纳科中国区XRF产品经理熊佳星先生分享了X射线荧光技术用于涂层镀层分析的原理、方案及典型应用,并演示了实际样品的测量过程;视频中,Epsilon4台式XRF搭配专用的薄膜分析软件Stratos可以实现对涂层和镀层的快速、准确的无损分析。台式荧光仪镀层分析演示视频本次专题活动,马尔文帕纳科还为用户准备了丰富的礼品,随着第三轮抽奖活动的结束,会议进入尾声。未来仪器信息网和马尔文帕纳科也将一如既往为薄膜材料等先进材料用户提供更多更优质的服务。更多活动详情请点击下方专题。
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。  验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。  该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 高分子表征技术专题——拉曼光谱技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!拉曼光谱技术在高分子表征研究中的应用Application of Raman Spectroscopy in the Characterization of Polymers作者:袁媛,王梦梵,曲云菲,张泽军,张建明作者机构:青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029 北京航空航天大学化学学院,北京,100191作者简介:张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励.摘要拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.AbstractAs a powerful tool, Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy, scanning angle Raman spectroscopy, high-resolution Raman imaging, polarized Raman spectroscopy, and surface-enhanced Raman scattering, the application range of Raman spectroscopy has been continuously extended. In this paper, we first introduced the basic principle and the composition of the Raman equipment, and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards, we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation, the aggregation state of polymers, the calculation of the polymer crystallinity, the macromolecular chain orientation, the structural transformation under the external fields, and the identification of the chemical or physical composition in polymer blends. Last, the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.关键词拉曼光谱  结构表征  原理  应用KeywordsRaman spectroscopy  Structure characterization  Principle  Application 拉曼散射现象是由印度科学家Raman于1928首先发现并报道的,但拉曼散射信号只相当于瑞利散射百万分之一,在拉曼散射现象被发现之初由于没有足够功率的光源而并未被广泛的应用. 近半世纪以来随着激光光源以及显微技术在拉曼光谱仪中的应用,拉曼光谱迸发出了旺盛的生命力.拉曼光谱与红外光谱同属分子振动光谱,但其原理与红外光谱截然不同. 如今拉曼光谱在高分子领域中已经有广泛的应用,包括分子链构象、取向、结晶度等方面的研究等. 本文在结合拉曼基本原理及实验技巧的基础上,总结了近年来拉曼光谱在高分子表征中的最新研究进展.1基础原理1.1光的散射当光线遇到分子时,绝大部分的光子(多于99.999%)都会发生弹性散射(即瑞利散射),瑞利散射具有与入射光相同的波长. 然而,少部分的光子(少于0.001%)会发生能量(频率)偏离的非弹性散射(即拉曼散射). 光散射过程可以用量子力学进行描述,如图1所示,当一束光照射到某体系时,体系中粒子吸收光的能量而被激发,从而发生能级跃迁过程,同时辐射出散射波. 不同的跃迁方式决定了不同的散射类型,例如(拉曼)斯托克斯散射、瑞利散射、(拉曼)反斯托克斯散射(高分子样品测试中常用的拉曼散射范围)[1~7]. 在拉曼测试过程中,经常也会出现荧光信号,与拉曼散射不同,荧光过程中粒子被激发至能量更高的电子能级而非拉曼散射中的虚态. 因此短波长比长波长激光更易产生荧光效应.Fig. 1Quantum mechanics description of Rayleigh, Raman scattering and florescence.1.2拉曼散射与拉曼光谱1.2.1拉曼散射的基本原理假设一束频率为v0的光照射在一个分子上,分子中电子会被入射光的电场激发做受迫局域运动而出现极化现象,产生电偶极矩,假设入射光电场可以表示为:式中E0为光电场的振幅,则由于分子运动所产生的偶极矩可以表示为:式中α为极化率,极化率的变化是分子的核外电子云受外部电场诱导而产生的(通过平衡位置两边的)形变而导致的.如果分子的极化电场所释放出的光与入射光频率相同,则把这种散射过程称为瑞利散射. 而如果α被分子的振动所调制(modulated),则α可以展开为关于振动简正坐标q的级数:q由以下公式得出:则有:以上公式表明在当前情况下频率为(v0±vk)的(拉曼)散射会与频率为v0的瑞利散射同时出现. 某一分子振动为拉曼散射活性的前提条件为(∂α∂q)0的值不为0,也就是说分子的极化率随分子振动而改变[8,9].如图2所示,假设频率为v0电场(入射光)可以诱导分子的偶极矩P产生同频率(v0)的振动. 如果此时分子极化率具有随时间变化的极低频的振动vm,那么经过以上2种不同频率的振动调制后的散射光将包含3种不同频率的光,分别为v0(瑞利散射)、v0+vm(反斯托克斯散射)、v0-vm(斯托克斯散射). 反之如果分子的振动不能使极化率产生低频振动,则不会有调制的出现,进而不会出现拉曼散射效应[8,10].Fig. 2Schematic representing of Rayleigh and Raman scattering: (a) the incident radiation makes the induced dipole moment of the molecule oscillate at the photon frequency (v0) (b) the molecular vibration can induce the polarizability,α,to have a frequency ofvm the result as shown in (c) is an amplitude modulated dipole moment oscillation,and three components with steady amplitudes which can emit electromagnetic radiation can be achieved as:v0 (Rayleigh component), v0+vm (Raman anti-Stokes component), and v0+vm (Raman Stokes component), as shown in (d).由于诱导分子偶极矩P与电场E均为矢量,且一般情况下两者方向不同,因而连接这2个物理量的极化率α可以用一个二阶张量来表达,则P=αE可以表示为其中,x,y,z为分子在笛卡尔坐标系中的坐标. 极化率为对称的二阶张量矩阵,包含了6个独立的元素,αxx、αyy、αzz、αxy、αyz、αxz. 上式的意义为,例如沿x方向电场Ex诱导了沿y方向的偶极矩Py,则可表示为Py=αxyEx. 此式在通过偏振拉曼研究分子对称性时具有重要意义[9].1.2.2拉曼活性的判据如上所述,非弹性散射源于在平衡位置附近分子的极化率关于简正坐标q的导数不为0,这一关系为小分子的拉曼散射提供了“选择定律”的基础. 以对称双原子分子的对称伸缩振动(symmetric stretching vibration)为例,如图3(a)所示,当两原子的位置无限接近时,体系电子密度分布类似于单一原子的电子密度;而当两原子的位置无限远离时,体系电子密度分布近似于2个独立的单原子的电子密度. 因此对于双原子分子的对称振动,其极化率沿简正坐标方向成单调增长模式,因此其在平衡位置导数不为0,为拉曼活性振动. 而对于分子偶极矩,对称伸缩振动过程中其正负电荷中心并没有产生位移,所以偶极矩没有发生变化,因此为红外非活性振动. 例如氧气与氮气分子的对称伸缩振动只能使用拉曼光谱进行研究,因为在红外谱图中不会出现吸收峰.Fig. 3The derivatives of polarizability (red) and dipole moment (blue) are schematically depicted for the normal modes of a two (a) and a three (b) atomic molecule. Based on these intuitive considerations,conclusions on the IR and Raman activity of the modes can be drawn.线性三原子分子比双原子分子稍显复杂,例如二氧化碳分子. 对于其对称伸缩振动,如图3(a)所示,极化率的变化类似于双原子分子的对称伸缩振动,为拉曼光谱活性,红外光谱非活性. 对于非对称伸缩振动(antisymmetric stretching vibra-tion)以及变角振动(bending vibration) (图3(b)),极化率在平衡位置两边的变化虽不为0,但是其变化是关于平衡位置对称的. 因此极化率在平衡位置周围变化可以认为是简谐的,也就是说(∂α∂q)q0=0,因此非对称伸缩振动与变角振动均为拉曼非活性;而偶极矩在平衡位置两侧的方向是反转的,因此(∂μ∂q)q0≠0,表现为红外活性[11].2实验技巧为了得到更丰富的样品信息,我们希望拉曼光谱在准确的基础上具有尽可能高的信噪比(signal-noise ratio,SNR). 关于拉曼散射的强度IR一般有如下关系式:其中,v和I0为入射激光的频率及强度;N为参与散射过程的分子数量;(∂α∂q)2是与分子结构有关的参数.上式表明,使用短波长激光并增加激光能量密度的同时增加样品量可以增强拉曼散射信号(注:拉曼光谱位移不随入射波长的变化而改变). 但在实际的测试过程中,不同类型的样品需要根据其自身的特点选择与其匹配的波长的激光以及激光能量,不能为了增强拉曼信号就去用短波长激光去测试所有样品,很多高分子样品在短波长激光下可能没有拉曼信号或者拉曼散射被很强的荧光信号所淹没.2.1样品制备2.1.1固态样品相对于无机样品,有机高分子样品的拉曼信号相对较弱(一部分原因是由于高分子样品中存在大量的无序结构). 对于高分子粉末或膜样品,一般需要保证沿光的入射方向有一定的厚度并同时使其表面尽量平整,以便于显微镜的聚焦. 对于透明样品,可将其放置于铝箔上进行测试(因为金属一般都有增强拉曼信号的作用,用铁片作为基底同样有着很好的效果). 或者,由于拉曼接收的是散射光,太薄的透明样品极易被激光穿透从而打到基底上,因此为了得到更好的拉曼信号,制样时要尽可能增大薄膜厚度. 另外由于激光一般都是偏振的,因此对于取向样品,例如纤维,需首先确定入射光的偏振方向,之后再确定样品的(某一)取向轴与入射光偏振方向平行(或垂直),再开始测试,这样才能得到正确的结构信息.2.1.2液态样品由于拉曼可以聚焦到几十微米下检测一定深度的样品信号,无需担心盖玻片和毛细管对拉曼信号的影响,因此高分子液态样品的拉曼测试相对于红外测试比较便捷,可以直接进行测试. 一般可以使用凹面载玻片或者金属制液体样品槽承载液体样品. 测试时可先将激光聚焦于液体表面,然后将样品平台沿激光方向上抬,使激光聚焦于液体样品内部,这样可以得到较好的光谱. 如果液体易挥发,可以使用盖玻片将样品封闭于容器内或将液体封入毛细管内.2.2设备调试2.2.1拉曼装置的构成随着拉曼仪器的发展,如今在一般情况下,背散射模式,也就是入射激光与散射激光平行,已经足够应对大部分高分子样品的测试需求. 对于一些特殊情况,例如取向或单晶样品的偏振拉曼测试,需要使用到90°入射的模式,也就是入射光路方向与散射光路方向为90°,原因可以参考上节极化率的二阶张量公式.以雷尼绍(Renishaw,UK) inVia型拉曼光谱仪为例,如图4所示,拉曼装置一般包括入射激光光源、入射光路系统(包括扩束器)、显微镜及样品台系统、滤波器、衍射光栅及CCD检测器. 在实际测试过程中,我们需要选择合适的入射光波长及显微镜物镜.Fig. 4Schematic diagram of the Raman instrument.当今市场上主要的拉曼仪器根据应用的场景可分为手持型、便携型以及桌面型拉曼光谱仪. 手持型拉曼光谱仪集成性很高,小巧轻便,操作非常简单,几乎可以在各种需要的地点、时间对从原材料到成品进行鉴定分析. 便携型拉曼光谱仪集成性相对较高,并具有一定的扩展性,可作为小型移动实验室使用. 桌面型拉曼光谱仪体积较大且不可移动,如图4中示意图即为桌面型拉曼光谱仪,但这类光谱仪具有极强的扩展性,几乎可以变更从入射激光光源、入射光路、样品平台至光栅等所有组成部分,从而可以为不同样品以及不同条件的测试创造可能.2.2.2激光波长的选择激光波长与能量密度成反比,使用短波长激光可以得到较强的拉曼散射信号,例如532 nm要比785 nm激光的拉曼散射强度强. 但对于高分子样品来说使用532 nm激光产生荧光干扰的可能性也会增加. 所以在一些情况下可以选择785 nm的光源. 如前所述,样品产生的拉曼位移不会随激发光源的波长改变而改变,因此只要可以避开荧光效应可以自由选择激光波长. 需要注意,虽然拉曼位移不随激光波长而改变,但使用同一物镜下,不同波长可以到达的空间分辨率不同. 例如,物镜的数值孔径(NA)为0.9,532 nm激光的空间分辨率可达0.72 μm,而在同样条件下使用785 nm激光时,空间分辨率仅为1.1 μm.另一种情况,如果样品内的分子振动与入射激光可以产生共振效应,那么可以以此来选择入射激光波长,则可以得到较强的拉曼散射信号.2.2.3显微镜的选择通常显微镜的物镜上会标注2个参数,分别为放大倍数(5×、10×、20× 等)与数值孔径(numerical aperture,NA,是与镜头光通量有关的参数,一般为0.05~0.95). 一般放大倍数与数值孔径成正相关关系,而数值孔径决定空间分辨率,有如下公式 [12]:其中,R为最大空间分辨率. 在实际测试时需要注意激光能量会随光斑尺寸(空间分辨率)变化,更高的空间分辨率意味着激光密度会更大,此时需要注意样品可能会被激光热解. 对于高分子样品来说,一般要先从低激光功率测试开始尝试,如果此时拉曼散射信号很弱,则少量增加激光功率,但同时要注意观察样品是否被热解,如此反复尝试直到找到最适宜测试的激光强度.2.2.4Ne灯校准一般除用单晶硅对拉曼位移进行校准,另外使用内置的Ne灯也可以达到校准的效果. 一般在测试样品时与Ne灯同时使用,则所得到的拉曼谱图中同时包括样品与Ne灯的峰,由于Ne灯的拉曼峰位置已确定,因此可用于校正样品的峰位置.2.2.5测试参数设置在确定适宜样品的激光波长及显微镜倍数的前提下,为了提高信噪比,可以首先在不损伤样品的前提下尽量提高入射激光的强度,其次适当延长曝光时间(有效的提高散射信号强度),同时也可以增加循环(cycling)测试的次数(有效降低噪音的影响). 但需要注意曝光时间不宜过长,因为过长会导致检测器的饱和,例如当同时需要较强与较弱的拉曼散射峰时,较弱的散射峰由于信噪比较低而难以使用时,可以固定曝光时间并增加循环测试次数来降低最终谱图中噪音的干扰.2.3数据处理2.3.1高分子样品拉曼谱的初判在取得拉曼光谱后,首先需要对谱图的构成进行判断,因为其中可能同时包含样品以及非样品的拉曼信号. 如果可以排除样品不纯净的可能,那么非样品的拉曼信号可能来自于宇宙射线、自然光或照明光等所产生的干扰,另外如果样品透光性好,激光可能透过样品打到基底上,也可能产生部分非样品信号.宇宙射线所产生的特征峰强度高且十分尖锐,并且可能在任意波数出现. 而如果在测试时对照明光抑或显示器背光的屏蔽不彻底,则也会出现一些尖锐的谱峰,这些谱峰的位置与光的类型有关. 但同宇宙射线不同的是,这些峰不是随机出现,而是会在相同的位置重复出现.对于结晶性高分子样品来说,由于内部存在大量的晶格缺陷及非晶组分,通常即使是结晶特征峰也不会是非常尖锐的峰,这种情况类似于红外测试的结果. 一般来说,对于同一振动模式,相较于非晶峰,结晶峰的峰强较强,峰宽较窄. 对于未知的结晶性高分子样品,可以通过分别测试结晶与熔融状态下的样品来确定结晶与非晶的特征峰. 确定特征峰是进一步测试分析的基础.由于我们常规使用的拉曼散射的波束范围恰好与中红外测试波段相似(400~4000 cm-1),并且两者均为分子的基团振动光谱,所以兼具红外与拉曼活性的同一分子基团振动在两谱图中的频率相似,两者可以互为参考. 而在低波数范围(400 cm-1),也就是远红外区间(一般反应分子链主链的振动),由于空气中的水气对测试有极大的干扰,所以远红外测试需要对样品仓抽真空,这也极大地限制了远红外光谱的应用,因此在实际测试中远红外与中红外区不能同时测试. 而拉曼的测试范围可以直接覆盖远红外及中红外波束段,并且测试过程中无需进行硬件切换,这也为高分子的研究提供了极大的便利.2.3.2谱线的平滑与拟合在一些情况下,由于样品或仪器的原因,即使已经选择了最优的测试条件,所得的光谱仍可能存在信号起伏大,信噪低的情况. 此时为了便于数据分析,可以对光谱进行平滑或拟合处理. 但是由于平滑后光谱会发生微小的变化,例如肩峰可能会因此消失,所以在对样品光谱没有十足把握的情况下,进行平滑处理时要十分谨慎. 一般如果噪声水平在中整条光谱中都比较均一,可以对光谱进行平滑处理,在平滑时,尽量选用最少的数据点个数为平滑单位,不能以牺牲数据准确来换取谱线的平滑美观. 在其他情况下,例如存在非拉曼信号,则不能使用平滑处理来消除,而应改变测试条件来避免非拉曼信号的产生.当谱图中有2个或多个峰重叠时,为了便于分析数据,需要进行分峰拟合(通常使用高斯加洛伦兹函数拟合),要注意虽然拟合的目标是尽量还原原始光谱,但不能为了达到这个目标而任意增加分峰的个数而忽略了每个峰的物理意义,这样便失去了分峰的价值.总之,不论何时原始数据都是最重要的,任何数据处理方法都需要在遵从原始数据的基础上进行.3拉曼光谱应用举例2010年至今,拉曼光谱在高分子多层级结构解析中的应用主要涉及6个方面,分别是:分子链构象研究、分子聚集态研究、结晶度计算、分子链取向研究、外场作用下的结构转变研究、化学/物理组成研究. 应用到的拉曼光谱种类主要为:共振拉曼光谱(resonance Raman spectro-scopy)、扫描角度拉曼光谱(scanning angle Raman spectroscopy)、高分辨拉曼成像(high-resolution Raman imaging)、偏振拉曼光谱(polarized Raman spectroscopy)及表面增强拉曼光谱(surface-enhanced Raman scattering, SERS).3.1分子链构象研究Gao等[13]利用共振拉曼光谱识别了聚(2,5-双(3-十四烷基噻吩-2-基)噻吩[3,2-b]噻吩)(PBTTT)与电子受体[6,6]-苯基C61丁酸甲酯(PCBM)共混的体异质结太阳能电池中PBTTT的有序和无序构象. 作者提出PBTTT噻吩环C=C对称伸缩振动(νs(C=C))包括主链有序构象和无序构象2个组分的贡献:如图5所示,有序构象的特征峰位置在1489 cm-1,半峰宽约为15 cm-1;无序构象的特征峰位置在1500 cm-1,半峰宽约为25 cm-1. PBTTT不同构象的相对含量随PCBM含量、退火温度与拉曼激发能的改变而变化. 共振拉曼图像进一步证实有序的PBTTT链集中在富含PCBM的双分子晶体中. Martin 等[14]同样借助共振拉曼光谱结合光电流成像技术,考察了高分子-富勒烯共混物中依赖于构象变化的电荷沿主链的传输特性. 实验及理论计算的结果均证实当共轭高分子的主链呈现平面构象时,电荷传输率最高. 体系形貌表征的结果表明当高分子与富勒烯达到良好共混状态时,高分子主链构象更易于平面化.Fig. 5Simulated Raman spectra (a) of the BTTT-C2 monomer and structures (b) (Reprinted with permission from Ref.‍[13] Copyright (2014) American Chemical Society).原位共振拉曼表征被成功地应用于研究ps尺度上聚(3-己基噻吩)(P3HT)分子链在氯苯中的构象松弛过程[15]. 如图6(a)所示,基于激发态拉曼特征的时间依赖性及与其他高分子的拉曼光谱进行对比,作者归属了构象松弛过程中不同结构的拉曼特征峰. 通过绘制拉曼特征峰的强度变化对时间的关系曲线(见图6(b)),揭示了松弛过程中主链共轭长度的变化,据此提出了P3HT分子链在氯苯中的构象松弛动力学机理.Fig. 6(a) Valence-bond structures of the quinoidal excited state of P3HT and the time-resolved resonant-Raman spectra of P3HT in chlorobenzene photoexcited at 510 nm. (b,c) Time dependence of Raman band intensities in figure (a). Integrated intensities (b),black lines correspond to biexponential fits with constrained lifetimes of (9±1) and (220±20) ps. Relative change in feature intensities attributed to torsion-induced exciton conformational relaxation (c). (Reprinted with permission from Ref.[15] Copyright (2012) American Chemical Society).3.2分子聚集态研究Gao等[16]在对P3HT/PCBM共混薄膜分子聚集态的研究中区分了不同聚集态对P3HT主链C=C伸缩振动νs(C=C)的贡献. 对样品光谱的拟合结果(如图7(a)所示)表明,共混膜的(νs(C=C))峰来自于聚集分子链与非聚集分子链的双重贡献,前者的特征拉曼频率约为1450 cm-1,后者约为1470 cm-1. 聚集态与非聚集态峰强度的相对比值R(R = IC=Cagg/IC=Cun)在样品退火后增加(如图7(b)所示),R值与不同聚集态的相对密度相关. 如图7(c)所示,作者进一步应用共振拉曼成像来考察R值变化对共混形貌的依赖关系,通过R值对比,对退火的共混薄膜中4种聚集程度不同的P3HT分子链进行了识别与成像分析. 在此工作基础上,作者通过分析拉曼特征峰的强度变化,考察了P3HT聚集态对共混物体系中局部光电流产生效率[17]、激发态结构变化及初期振动动力学[18]的影响. 共振拉曼结合成像技术分析也被成功地应用于其他共轭聚合物结构与性能的对应关系研究中[19].Fig. 7(a, b) Raman spectra of as-cast (a, red) and annealed (b, blue) blend films excited with 488 nm light show theνs(C=C) band of P3HT represented by the shaded regions of the complete spectra shown as insets. The band is fitted with two Lorentzian functions (dashed traces), showing the relative contributions of both aggregated (IC=Cagg) and unaggregated (IC=Cun) components. (c1 and c2)IC=CaggandIC=Cuncenter frequency dispersion images for P3HT/PCBM as-cast films,and (c3) histograms of frequency components. (c4 and c5)IC=Cagg and IC=Cuncenter frequency images for P3HT/PCBM annealed films,and (c6) histograms of frequency components (Reprinted with permission from Ref.[16] Copyright (2012) American Chemical Society).拉曼光谱结合高空间分辨成像技术可用于高分子多晶型结构,例如针对聚己二酸丁烯酯(PBA)的环带球晶研究[20]. 在此工作中作者首先识别了2种晶型(α晶与β晶)及非晶结构的拉曼特征峰,选择能够反映不同聚集态相对含量的特征峰(C-peak),在此基础上通过拉曼成像考察了球晶内部多晶型晶体的分布及分子链取向. 通过对比球晶的偏光照片(图8(a))与拉曼成像照片(图8(b))可知,2种晶型的晶体在球晶中心、环带区域及外层非环带区域呈现非均匀分布,二者能够在相同的温度区间(31~33 ℃)成核和生长,然而环带区域α晶的相对含量会随结晶温度而提高. 2种晶型的拉曼成像数据结合Hermans取向函数分析(见图8(c))结果证实,环带区域的分子链沿球晶半径方向和基底平面取向,且沿环带球晶径向方向的取向呈周期性变化.Fig. 8(a) Optical micrographs of PBA31-33. (b) Raman imaging of C-peak position for the same area in (a). (c) Hermans orientation function image calculated by using the C-peak area of PBA32 measured with polarization parallel (0°) and perpendicular (90°‍) to the horizontal direction (Reprinted with permission from Ref.‍[20] Copyright (2017) American Chemical Society).拉曼成像技术作为一种强有力的表征手段,可以精确表征(分辨率最高可达0.1 μm)单片层石墨烯或氧化石墨烯在片层不同区域的氧化结构. Zhang等[21]通过拉曼成像技术对具有不同氧化结构的单片层氧化石墨烯进行了表征,通过D/G峰的比值差异分析了单片层在不同区域的氧化程度. 如图9所示,JGO纳米片与GO差异显著,后者呈现出统一的颜色(图9(a)和9(b)). 此外,从图9(c)和9(d)可以看出,在蓝色区域(低氧化区域),JGO的ID/IG比值较低(~0.72),而在红色区域(高氧化区域),ID/IG比值较高(~1.07),与GO的ID/IG比值存在显著差异(整个区域的ID/IG比值为~1.02). Badi等[22]同样借助拉曼成像技术,通过D峰与G峰的光谱解析,考察了石墨烯纳米片在聚苯胺(PANI)中的分散情况.Fig. 9(a-d) Raman mapping of a GO sheet (a) and JGO (c) using theID/IG ratio from the corresponding Raman spectra (b, d) (Reproduced with permission from Ref.[ 21] Copyright (2020) Elsevier).3.3结晶度计算包括拉曼光谱在内的波谱技术经常被用于计算高分子晶体的结晶度. Mannanov等[23]利用原位拉曼光谱直接表征了应用于太阳能电池的P3HT:‍富勒烯基受体活性层中、P3HT在50~150 ℃温区的结晶动力学,并考察了溶剂、富勒烯基受体种类与结晶温度对P3HT结晶度的影响[14]. 结晶度的计算在选择合适的结晶特征峰与非晶特征峰基础上,结合光谱分峰/拟合处理及选择合适的结晶模型实现. 例如:Agarwal等[24]利用2种光谱分析方法计算了纤维素I晶体的结晶度,一种方法称为“单变量方法(univariate method)”,借助结晶峰/非晶峰强度的比值计算;另一种方法称为“多变量方法(multivariate method)”,应用偏最小二乘回归模型(partial least squares regression model)计算. 通过与已知结晶度的参比样品对比证实,2种方法在评价结晶度处于0%~80.5%范围内的纤维素样品时结果可靠,且由单变量方法得到的结晶度数值比由WAXS表征得到的更理想. Wang等[25]应用针尖增强拉曼光谱技术结合随机生长结晶模型,估算了合成的二维聚合物单层的结晶度,据此揭示了二维聚合物单层生长的交联本质[26].3.4分子链取向由于激光本身具有偏振性,如果使用偏光片对入射激光以及散射光的偏振方向进行调制,则可以获得高分子链中分子基团的取向信息,进而解析高分子链的取向结构,这种方法称为偏振拉曼[26~28]. 例如Richard-Lacroix等[26]使用偏振拉曼手段对使用不同收丝方法所得的静电纺聚氧化乙烯(PEO)单根纤维中PEO分子链的取向情况进行了研究. 测试过程中对于每一根纤维均需测试4组不同偏振角度的入射光与散射光的组合拉曼光谱,例如假设平行纤维轴方向为Z轴,垂直于纤维轴方向为X轴(Y轴暂不考虑),那么4组拉曼光谱分别为(X(入射光偏振方向)X(散射光偏振方向))、(XZ)、(ZX)与(ZZ). 不同的偏振组合所得的拉曼光谱中峰的强度有较大差别,说明分子链有取向存在,利用这些数据再通过进一步的计算便可以得出分子链的取向分布方程(orientation distribution function). Richard-Lacroix等的研究结果表明,单根纤维中的分子链总具有较高的取向并且与收丝方法无关.近年来,新的偏振拉曼数据分析手段也在不断地涌现,例如Richard-Lacroix等[28]提出了最可几分布(most probable distribution, MPD)方法,用以更加精确地定量分析分子链取向. Papkov等[29]利用一种改进的偏振拉曼分析方法,对直径分布在140~1000 nm范围的单根聚丙烯腈电纺纳米纤维的分子链取向进行了定量研究. Svenningsson等[30]基于包绕洛伦兹函数(wrapped Lorentzian function),开发了一种新的偏振拉曼光谱分析方法,并应用于确定再生纤维素纤维的分子取向研究. 这种方法的优势在于消除了偏振拉曼测试时对偏振角度的限制,所得结果能够与广角X-射线衍射与固体核磁的数据直接比较. 测量散射光偏振度随偏光片旋转角度的变化可以提供取向分布函数形状的半定性信息,Park等[31]据此分析了聚乳酸(PLLA)薄膜内部特征振动散射强度的角度依赖性,对结构单元的取向性进行了量化.3.5外场作用下的结构转变研究借助原位拉曼表征技术,能够对诸如温度变化[32~34]、时间改变[35]、拉伸过程[36,37]等的高分子结构演变进行追踪. Jin等[32]利用变温拉曼考察了高密度聚乙烯(HDPE)多重熔融行为中的构象变化. 作者对与熔融相关的变温拉曼光谱进行了如图10(a, b)所示的二维相干光谱分析(least squares moving-window method, LSMW),通过整个熔融过程中构象变化的相似性结合与“熔融-再结晶”、“中间相预熔融”及“多层片晶熔融”模型的比对,提出了如图10(c)所示的HDPE熔融时晶相直接转变为非晶相的机理. Kasiouli等[33]研究了β-环糊精包封的聚(4,4' -二苯基乙烯基) (PDV.Li)构象随温度的变化. 特征拉曼振动的强度变化证实,包封前后PDV.Li的主链平面性没有变化. 更高温度下主链构象的改变归因于由热诱导聚集引发的相邻苯环之间的扭转角度降低.Fig. 10(a,b) Least squares moving-window (LSMW) analysis of the HDPE Raman spectra with the window size of 11 spectra (ΔT = 1 °C). (a) A contour map of the first order derivative (d I/dT) as a function of Tave of a moving window. (b) The dI/dT of six Raman peaks are plotted after numerically integrated over frequency ranges to cover the Raman peaks: 1415-1425, 1115-1136, and 1299-1325 cm -1. (c) The schematic of the multithickness lamellae model. (Reprinted with permission from Ref.[32] Copyright (2017) American Chemical Society).基于拉曼光谱的多技术联用能够实现拉伸过程中高分子结构变化的表征与分析. Lόpez-Barrόn等[36]利用原位偏振拉曼技术,考察了线性低密度聚乙烯(LLDPE)拉伸过程中的单链构象及分子链取向变化. 结果表明,反式构象随拉伸程度的增加呈线性增加,分子链的伸展分为3个阶段,即弹性伸展阶段、塑性伸展阶段与应变硬化阶段. 取向因子受分子量影响,低分子量部分取向因子小. Kida等[37]利用原位偏振拉曼光谱与原位拉伸测试联用,考察了分子量分布对单轴拉伸过程中高密度聚乙烯形貌及变形行为的影响. 结果表明,连接片晶的带分子(tie molecules)数量随分子量分布的增大而增加,而晶体结构不受分子量分布影响. 晶区分子链沿拉伸方向的取向程度及连续的反式构象链的形成均在高分子量分布的样品中得到提高.3.6化学/物理组成研究表面增强拉曼光谱是一种能够在高分子共混结构的组分研究中提供潜在选择性与垂直分辨的强大技术. Razzell-Hollis等[38]借助此光谱探索了P3HT:聚((9,9-二辛基芴)-2,7-二基-alt-[4,7-双(3-己基噻吩-5-基)-2,1,3-苯并噻唑]-2' ,2"-二基)(F8TBT)共混薄膜的界面组成与分子有序性. 作者首先分别表征了P3HT与F8TBT的光谱,识别了由于样品退火引起的、与本体/界面形貌相关的光谱变化. 随后为了确定共混薄膜的化学组成,表征了不同共混样品的光谱并对光谱进行了分峰处理,获得了代表P3HT含量的强度值α与代表F8TBT含量的强度值β,结果见图11. 光谱分析的结果表明热退火改变了共混体系的界面组成:预退火增加了低表面能P3HT的含量,而后退火增加了高表面能F8TBT的含量. 此外,表面增强拉曼光谱还成功地应用于对纳米厚度尺度上高分子薄膜表面与底面的化学组分识别[39].Fig. 11Raman (a) and SERS (b) spectra for an as-cast sample of quartz (quartz) Q/Ag/P3HT:F8TBT, fitted using RR-P3HT (as ordered fraction), RRa-P3HT (as disordered fraction) and F8TBT spectra to obtain relative contributions of P3HT (α) and F8TBT (β). Normalized Raman (c) and SERS (d) spectra for P3HT:F8TBT blends in five different sample configurations, with variation in the relative intensity of the F8TBT peak at 1356 cm-1 shown in each inset (Reprinted with permission from Ref.‍[38] Copyright (2016) American Chemical Society).共聚焦显微拉曼技术近几年被广泛地应用于高分子多组分体系的化学/物理组成研究. 化学组分识别的相关研究涉及药物输送体系中聚乳酸-羟基乙酸共聚物[40]、聚己内酯和聚环氧乙烷的复合电纺纤维[41]、聚二甲基丙烯酰胺-甲基丙烯酸二苯甲酮共聚物[42]等. 物理组分识别方面,Hu等[43]研究了左旋聚乳酸/右旋聚乳酸(PLLA/PDLA)共混物球晶的等温结晶行为. 在如图12(a)和12(b)所示的800~600 cm-1波数范围内分别选择736与754 cm-1峰作为均晶与立构复合晶的特征峰,通过对球晶内部与外部两峰强度的成像分析(见图12(c)和12(d),证实大球晶内部包含均晶与立构复合晶2种晶体,立构复合晶均匀地分散在非晶区与球晶区域.Fig. 12Peak fitting results in the 800-600 cm-1 region at the single point at the position of 1# and 2# (a) and the peak fitting spectra of PLA with different crystal forms (b) Imaging result with imaging parameter: band intensity at 754 cm -1 (c) band intensity at 736 cm -1 (d) (Reproduced with permission from Ref.[ 43] Copyright (2019) Elsevier).其他成像方式如共振拉曼光电流成像(resonance Raman-photocurrent imaging, RRPI)[44,45]、飞秒激发拉曼成像(femtosecond stimulated Raman microscopy, FSRM)[46]、针尖增强拉曼成像(tip-enhanced Raman mapping, TERM)[47]、宽带相干反斯托克斯拉曼散射(broadband coherent anti-stokes Raman scattering, CARS)显微镜[48]、反转显微拉曼光谱(inverse micro-Raman spectroscopy, IMRS)[49]、等离子体波导共振拉曼光谱(plasmon waveguide resonance Raman spectroscopy, PWRRS)[50]等也应用于高分子化学组成分析.扫描角度拉曼光谱适用于分子有序程度的研究,能够同时获取增强的拉曼信号、薄膜厚度及分子有序程度的信息,此外结合均方电场计算(MSEF)可以确定聚合物薄膜中是否产生拉曼散射[51,52]. Meyer等[51]利用此光谱(示意图见图13(a))研究了P3HT:PCBM共混物在蓝宝石、金和铟锡氧化物界面处的形貌,考察了P3HT结构有序程度对基底的依赖性. 选择性激光入射角度下薄膜在蓝宝石基底上的拉曼光谱如图13(a)所示. 扫描角度从35°增加到60°,P3HT膜的拉曼强度呈现下降趋势,而当扫描角度进一步增加时拉曼强度提高. 与之不同,共混薄膜的拉曼强度随扫描角度的增加而持续下降. MSEF计算(见图13(b))揭示了拉曼信号在z方向上的距离依赖性,用于拉曼光谱的辅助解析,预期的拉曼信号与整个聚合物厚度上的积分MSEF成正比,这与实验的拉曼光谱一致. 此外,研究表明噻吩环C=C伸缩振动峰的宽度对P3HT的分子有序程度敏感,据此作者考察了分子有序程度对基底的依赖性.Fig. 13(a) Schematic of the SA Raman interface used to collect the data shown in B and C (A). SA Raman spectra at the indicated incident angles for (B) P3HT and (C) 1:1 P3HT:PCBM deposited on a sapphire substrate. (b) Calculated MSEF as a function of distance and incident angle for the interface: 0-1000 nm sapphire/1000-1230 nm P3HT:PCBM/1230-6000 nm air (A), 0-1000 nm sapphire/1000 to 1300 nm P3HT/1300 to 6000 nm air (B). The MSEF in the sapphire layer (0-1000 nm) and the majority of the air layer (greater than 1500 nm) are omitted for clarity. The calculated plots show the expected distance dependence of the experimental Raman signal in theZ direction. (Reprinted with permission from Ref.[ 51] Copyright (2013) American Chemical Society).4拉曼光谱应用展望激光拉曼光谱虽与红外光谱同属于分子振动光谱,但其拥有诸多红外光谱不可比拟的优势,例如高的空间分辨率、高解析度、测试范围横跨远红外与近红外光谱波段并且可以直接对水体系进行测试等. 如今伴随着新型高分子材料的不断涌现与应用,诸如高分子水凝胶,高分子纳米或多层复合材料等,以及表面增强拉曼,针尖增强拉曼以及共聚焦拉曼成像等新技术的接连出现,必将会使拉曼光谱在高分子材料的研究领域中迸发出强大的活力.然而与此同时,仍有一些问题限制了拉曼光谱的应用,例如在拉曼成像中,样品表面的高空间分辨率可以实现,但是垂直于入射激光深度方向上的空间分辨率则不佳,虽有研究使用金属粒子包埋在高分子样品中,再借助表面增强拉曼技术以实现高深度方向分辨率,但是这种方法的普适性稍显不足. 另外,如今拉曼成像技术一般仍为逐点扫描(mapping)模式,而红外成像则已多采用阵列扫描(imaging)模式,这就意味着拉曼成像需要较长的时间,从而很难使用拉曼成像进行过程研究,这也严重影响了拉曼成像的应用. 现今高分子的研究中多设备同步协同测试是一个趋势,例如X射线散射、拉曼及红外光谱同步在线测试,这也对拉曼设备的小型化以及快速响应提出了更高的要求. 相信通过拉曼设备以及技术的不断升级,这些问题都会迎刃而解,彼时拉曼光谱技术将会在高分研究领域占有更加举足轻重的地位.参考文献1Zhang Shulin(张树霖).Raman Spectroscopy with Low Dimensional Nanometer Semiconductors(拉曼光谱学与低维纳米半导体).Beijing(北京):Science Press(科学出版社),2008.3-352Koenig J L.Spectroscopy of Polymers.Netherlands:Elsevier,1999.207-252.doi:10.1016/b978-044410031-3/50005-03Chalmers J,Griffiths P.Handbook of Vibrational Spectroscopy, 5 volumes set.New Jersey:John Wiley & Sons,2002.1-174Sasic S,Ozaki Y. Raman,Infrared, andNear-Infrared Chemical Imaging.New Jersey: John Wiley & Sons,2011.1-215Schrader B.Infrared and Raman Spectroscopy: Methods and Applications.New Jersey:John Wiley & Sons,2008.7-616McCreery R L.Raman Spectroscopy for Chemical Analysis.New Jersey:John Wiley & Sons,2000.15-30.doi:10.1002/04717216467Colthup N B,Daly L H,Wiberley S E.J Am Chem Soc,1965,87(5):1155-11568Wilson E B,Decius J C,Cross P C,Sundheim B R.J Electrochem Soc,1955,102(9):235C.doi:10.1149/1.24301349Tadokoro H.Structure of Crystalline Polymers.New Jersey:John Wiley & Sons,1979.179-322.doi:10.1002/macp.1979.02002197911010Larkin P.Infrared and Raman Spectroscopy.Netherlands:Elsevier,2011.7-25.doi:10.1016/b978-0-12-386984-5.10002-311Dieing T,Hollricher O,Toporski J.Confocal Raman Microscopy.Berlin:Springer,201112Gautam R,Samuel A,Sil S,Chaturvedi D,Dutta A,Ariese F,Umapathy S.Curr Sci,2015:341-356.doi:10.1140/epjti/s40485-015-0018-613Gao J,Thomas A K,Johnson R,Guo H,Grey J K.Chem Mater,2014,26(15):4395-4404.doi:10.1021/cm501252y14Martin E,Bérubé N,Provencher F,Côté M,Silva C,Doorn S,Grey J.J Mater Chem C,2015,3(23):6058-6066.doi:10.1039/c5tc00847f15Yu W,Zhou J,Bragg A E.J Phys Chem Lett,2012,3(10):1321-1328.doi:10.1021/jz300329816Gao Y,Grey J K.J Am Chem Soc,2009,131(28):9654-9662.doi:10.1021/ja900636z17Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c18Gao J,Grey J K.J Chem Phys,2013,139(4):490319Gao J,Thomas A,Yang J,Aldaz C,Yang G,Qin Y,Grey J.J Phys Chem C,2015,119(16):8980-8990.doi:10.1021/acs.jpcc.5b0216620Wang M,Vantasin S,Wang J,Sato H,Zhang J,Ozaki Y.Macromolecules,2017,50(8):3377-3387.doi:10.1021/acs.macromol.7b0013921Zhang Z , Qin J , Diao H , Huang S,Yin J,Zhang H,Duan Y,Zhang J.Carbon,2020,161:316-322.doi:10.1016/j.carbon.2020.01.07822Badi N,Khasim S,Roy A S.J Mater Sci Mater Electron,2016,27(6):6249-6257.doi:10.1007/s10854-016-4556-823Mannanov A A,Bruevich V V,Feldman E V,Trukhanov V A,Pshenichnikov M S,Paraschuk D Y.J Phys Chem C,2018,122(34):19289-19297.doi:10.1021/acs.jpcc.8b0313624Agarwal U P,Reiner R S,Ralph S A.Cellulose,2010,17(4):721-733.doi:10.1007/s10570-010-9420-z25Wang W,Shao F,Kroger M,Zenobi R,Schluter A D.J Am Chem Soc,2019,141(25):9867-9871.doi:10.1021/jacs.9b0176526Richard-Lacroix M,Pellerin C.Vib Spectrosc,2017,91:92-98.doi:10.1016/j.vibspec.2016.09.00227Richard-Lacroix M,Pellerin C.Macromolecules,2012,45(4):1946-1953.doi:10.1021/ma202749d28Richard-Lacroix M,Pellerin C.Macromolecules,2013,46(14):5561-5569.doi:10.1021/ma400955u29Papkov D,Pellerin C,Dzenis Y A.Macromolecules,2018,51(21):8746-8751.doi:10.1021/acs.macromol.8b0186930Svenningsson L,Lin Y C,Karlsson M,Martinelli A,Nordstierna L.Macromolecules,2019,52(10):3918-3924.doi:10.1021/acs.macromol.9b0052031Park M,Wong Y S,Park J,Venkatraman S,Srinivasarao M.Macromolecules,2011,44(7):2120-2131.doi:10.1021/ma101553v32Jin Y,Kotula A P,Snyder C R,Hight Walker A R,Migler K B,Lee Y J.Macromolecules,2017,50(16):6174-6183.doi:10.1021/acs.macromol.7b0105533Kasiouli S,Di Stasio F,McDonnell S O,Constantinides C P,Anderson H L,Cacialli F,Hayes S C.J Phys Chem B,2013,117(18):5737-5747.doi:10.1021/jp400732h34Winfield J M,Donley C L,Friend R H,Kim J S.J Appl Phys,2010,107(2):1073.doi:10.1063/1.327625735Magnanelli T J,Bragg A E.J Phys Chem Lett,2015,6(3):438-445.doi:10.1021/jz502605j36López-Barrón C R,Zeng Y,Schaefer J J,Eberle A P R,Lodge T P,Bates F S.Macromolecules,2017,50(9):3627-3636.doi:10.1021/acs.macromol.7b0050437Kida T,Hiejima Y,Nitta K.Macromolecules,2019,52(12):4590-4600.doi:10.1021/acs.macromol.8b0274038Razzell-Hollis J,Thiburce Q,Tsoi W C,Kim J S.ACS Appl Mater Interfaces,2016,8(45):31469-31481.doi:10.1021/acsami.6b1212439Linde S,Carella A,Shikler R.Macromolecules,2012,45(3):1476-1482.doi:10.1021/ma201867e40McManamon C,Delaney P,Kavanagh C,Wang J J,Rasappa S,Morris M A.Langmuir,2013,29(19):5905-5910.doi:10.1021/la400402a41Kotzianova A,Rebicek J,Mojzes P,Pokorny M,Palacky J,Hrbac J.PolymerVelebny V,2014,55(20):5036-5042.doi:10.1016/j.polymer.2014.08.03242Janko M,Jocher M,Boehm A,Babel L,Bump S,Biesalski M,Meckel T,Stark R W.Biomacromolecules,2015,16(7):2179-2187.doi:10.1021/acs.biomac.5b0056543Hu J,Wang J,Wang M,Ozaki Y,Sato H,Zhang J.Polymer,2019,172:1-6.doi:10.1016/j.polymer.2019.03.04944Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c45Grey J K.Acc Chem Res,2019,52(8):2221-2231.doi:10.1021/acs.accounts.9b0008846Nixdorf J,Di Florio G,Bröckers L,Borbeck C,Hermes H E,Egelhaaf S U,Gilch P.Macromolecules,2019,52(13):4997-5005.doi:10.1021/acs.macromol.9b0020547Xue L,Li W,Hoffmann G G,Goossens J G P,Loos J,de With G.Macromolecules,2011,44(8):2852-2858.doi:10.1021/ma101651r48Lee Y J,Snyder C R,Forster A M,Cicerone M T,Wu W L.ACS Macro Lett,2012,1(11):1347-1351.doi:10.1021/mz300546e49Raupp S M,Siebel D K,Kitz P G,Scharfer P,Schabel W.Macromolecules,2017,50(17):6819-6828.doi:10.1021/acs.macromol.7b0103750Meyer M,McKee K,Nguyen V H T,Smith E.J Phys Chem C,2012,116(47):24987-24992.doi:10.1021/jp308882w51Meyer M W,Larson K L,Mahadevapuram R C,Lesoine M D,Carr J A,Chaudhary S,Smith E A.ACS Appl Mater Interfaces,2013,5(17):8686-8693.doi:10.1021/am402322552James D T,Kjellander B K C,Smaal W T T,Gelinck G H,Combe C,McCulloch I,Wilson R,Burroughes J H,Bradley D D C,Kim J.ACS Nano,2011,5(12):9824-9835.doi:10.1021/nn203397m原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20251
  • 高性能台式设备喊你快上车 ——小、快、灵,薄膜制备与加工的首选
    随着材料科学的蓬勃发展,尤其是高水平的量子材料研究与应用对薄膜材料、二维材料的制备和高精度加工要求越来越高。一套完整流程的薄膜制备与加工设备购置成本通常要在几百万到上千万元。此外,大型设备操作繁复,存放空间大、日常维护成本高,给科研人员带来了很大挑战。依赖于共享方案的科研平台由于设备预约周期长,会大大减慢科研进度。为了快速、低成本的实现高质量的材料制备与加工,让科研计划进入快车道。英国Moorfield Nanotechnology公司与多所名校以及获得诺贝尔奖的课题组长期合作,推出了一系列高性能台式设备, 专门用于各种薄膜材料的高质量制备和加工。该系列产品具有体积小巧、快速制备样品、灵活配置方案等特点,一经推出即受到包括剑桥大学、帝国理工、英国物理实验室等科研单位的青睐。从多功能金属、缘材料溅射到有机物、金属热蒸发;从高质量石墨烯CVD快速制备到高质量碳纳米管CVD趋向生长;从样品、衬底的热处理到单层二维材料的软刻蚀与缺陷加工。Moorfield系列产品已经获得欧洲用户的广泛认可,产品质量与性能完全可以媲美大型设备,一些方面甚至远超大型设备。台式高性能多功能PVD薄膜制备系列—nanoPVD专为高水平学术研究研发的小型物理气相沉积设备。该系列产品包含磁控溅射、金属/有机物热蒸发系统。这些设备不仅体积小巧而且性能,能够快速实现高质量纳米薄膜、异质结的制备,通常在大型设备中才有的共溅射、反应溅射、共蒸发功能也可在该系列产品上实现。台式高性能多功能PVD薄膜制备系列—nanoPVD台式高性能CVD石墨烯/碳纳米管快速制备系列—nanoCVD系统采用低热容的样品台可在2分钟内升温至1000℃并控温,该装置采用了冷壁技术,样品生长完毕后可以快速降温,正是因为这些条件可以让用户在30分钟内即可获得高质量的石墨烯。nanoCVD具有压强自动控制系统,可以的控制石墨烯生长过程中的气氛条件。用户通过触屏进行操作,更有内置的标准石墨烯生长示例程序供用户参考。非常适合需要持续快速获取高质量石墨烯用于高质量学术研究的团队。目前,埃克塞特大学、哈德斯菲尔德大学、莱顿大学、亚森工业大学等很多全球著名的高校都是该系统的用户。台式高性能CVD石墨烯/碳纳米管快速制备系列—nanoCVD台式超二维材料等离子软刻蚀系统—nanoETCH石墨烯等二维材料的微纳加工与刻蚀需要很高的精度,而目前传统半导体刻蚀系统在面对单层材料的高精度刻蚀需求时显得力不从心。为了解决目前微纳加工中常用的刻蚀系统功率较大、难以精细控制的问题,nanoETCH系统对输出功率的分辨率可达毫瓦量,可实现二维材料超逐层刻蚀、层内缺陷制造,以及对石墨基材或衬底等的表面处理。台式超二维材料等离子软刻蚀系统—nanoETCH台式气氛\压力控制高温退火系统—ANNEALMoorfield专门为制备高质量的样品而推出的台式气氛\压力控制高温退火系统,不仅可以满足从高真空到各种气氛的退火需求,还能对气压和温度进行控制,从而为二维材料、基片等进行可控热处理提供重要保障。该系统颠覆了传统箱式、管式炉的粗放退火方式,开创了退火的新篇章。台式气氛\压力控制高温退火系统—ANNEAL多功能高磁控溅射喷金仪—nanoEMnanoEM是Moorfield Nanotechnology为SEM、TEM样品的表面导电处理以及普通样品的高质量电生长而设计的金属溅射系统。系统配备SEM样品托、TEM样品网、普通薄膜样品等多种专用样品台。虽然该系统主要为溅射金属而设计,但是该设备的性能已经达到了高质量薄膜样品的制备标准。通过选择不同的配置可以兼顾样品的表面导电处理、电制备与学术研究型薄膜样品的制备。多功能高磁控溅射喷金仪—nanoEMMoorfield高性能台式薄膜制备与加工设备以超高质量、亲民的价格快速实现您的科研方案,想获取更多详细信息吗?还等什么,现在就联系我们吧!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制