二次离子溅射中性粒子质谱仪

仪器信息网二次离子溅射中性粒子质谱仪专题为您提供2024年最新二次离子溅射中性粒子质谱仪价格报价、厂家品牌的相关信息, 包括二次离子溅射中性粒子质谱仪参数、型号等,不管是国产,还是进口品牌的二次离子溅射中性粒子质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二次离子溅射中性粒子质谱仪相关的耗材配件、试剂标物,还有二次离子溅射中性粒子质谱仪相关的最新资讯、资料,以及二次离子溅射中性粒子质谱仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二次离子溅射中性粒子质谱仪相关的厂商

  • 北京艾飞拓科技有限公司作为德国 IONTOF 公司的中国总代理,成立于2012年。主要负责飞行时间二次离子质谱仪(ToF-SIMS,新一代型号ToFSIMS M6)、低能离子散射能谱仪(LEIS,型号Qtac100)和高分辨磁力显微镜(hr-MFM,型号VLS-80)这三类产品,在中国大陆及港澳地区的销售、售后、宣传、培训、技术服务等工作。公司成员来自北京大学、中科院物理所等一流院校研究生,“以物理学、材料学、国际贸易等专业背景打造核心团队,秉承引进国际质谱领域先进技术的理念,以提高我国材料分析技术为核心目标,密切与国内多所高校、研究机构、科技公司合作,共同攻克技术难题。”IONTOF是由Alfred Benninghoven教授,Dr.Ewald Niehuis和Thomas Heller先生于1989年创立,创始人Prof.Benninghoven教授是国际静态二次离子质谱的奠基人,他们团队始终带领国际二次离子术的发展,从上世纪80年代初开始,Benninghoven教授和他的研究组就致力于飞行时间二次离子质谱的系统和应用研究。依托于明斯特大学和州纳米中心的技术和人才优势,TOF-SIMS已经发展成为无可替代的表面分析手段。TOF.SIMS 5从2003年定型到现在已经成为市场上相当成功的飞行时间二次离子质谱系统。到2016年,世界上已经有超过350套高性能的TOF.SIMS系统成功地应用在世界各地的公司和学术研究机构中。获取更多资讯,请访问艾飞拓官网:www.iontof.com.cn,或扫描下方二维码关注“IONTOF-CHINA”微信公众号。
    留言咨询
  • CAMECA SAS 铜牌12年
    400-860-5168转2751
    自1929年成立以来,CAMECA不断为国际一流科研机构提供大型材料分析仪器,并为半导体行业的精准测量需求提供解决方案。CAMECA在多个尖端微量分析技术上开拓进取,精益求精,所提供的设备包括: 二次离子质谱仪(SIMS) ,三维原子探针断层分析术(APT) ,电子探针微量分析 (EPMA) ,低能量电子激发X射线发射光谱(LEXES) CAMECA的总部邻近法国巴黎,分支机构遍及美国,德国,日本,韩国,中国,中国台湾,以及一个全球代理商网络,充分保证我们的支持服务惠及所有用户。 2007年,CAMECA加入AMETEK Inc.,成为这家全球电子和机电产品领先供应商的一部,隶属 AMETEK 材料分析部。
    留言咨询
  • 400-860-5168转3314
    ULVAC-PHI是全球领先的超高真空表面分析仪器供应商。专注于研发和生产表面分析仪器,包括光电子能谱仪(XPS)、俄歇电子能谱仪(AES)、飞行时间二次离子质谱仪(Tof-SIMS)和动态二次离子质谱仪(D-SIMS)。通过提供独特的技术解决方案,帮助客户解决各种具有挑战性的问题,从而加速新产品和新技术的发展。产品应用领域包括纳米技术、太阳能技术、微电子技术、存储介质、催化、生物材料、药品以及金属、矿物、聚合物、复合材料和涂料等基础材料。作为唯一一家能够同时提供高性能XPS、AES和SIMS全系列表面分析仪器的制造商,ULVAC-PHI在全面性和完整性的表面分析解决方案领域拥有独特的地位。爱发科费恩斯(南京)仪器有限公司成立于2023年11月,创办理念是为一流的商业产品提供顶级的创新市场营销和售后服务。作为ULVAC-PHI在中国区域的子公司,负责PHI产品在中国的销售和售后服务。主要客户包括清华大学,复旦大学,上海交通大学,南京大学,西安交通大学,厦门大学,山东大学,吉林大学,华南理工大学,中南大学等国内知名高校和科研院所。在全国各地都有销售合作伙伴,能够为您提供全方位的服务。技术专员具备多年超高真空和精密电子分析仪器的使用经验,致力于为合作伙伴提供最佳的产品和服务,以实现最大的效益。
    留言咨询

二次离子溅射中性粒子质谱仪相关的仪器

  • 电感耦合等离子体质谱仪 (简称ICP-MS),是20世纪80年代发展起来的一种新的微量(10-6)、痕量(10-9)和超痕量(10-12)元素分析技术。ICP-MS可测定元素周期表中大部分元素,且具有极低的检出限、极宽的动态线性范围、谱线简单、干扰少、精密度高、分析速度快等性能优势。ICP-MS2000系列是天瑞自主研发产品,目前有ICP-MS2000B、ICP-MS2000E两款型号。ICP-MS2000系列仪器各项性能均优于国家规范,完全满足不同行业用户应用需求,性价比高;目前该产品主要应用于环境、食品、半导体、医药及生理分析、核工业领域等。ICP-MS2000系列具有卓越的仪器性能,高效的分析效果。仪器日常运行消耗器材均自主研发,性价比高。同时我们提供优质售后服务,10分钟响应、48小时内上门服务、客服中心随时跟踪服务、保证服务质量。1.ICP-MS 2000B性能特点稳健的固态电源保证仪器可运行多种模式(如常规模式、冷等离子体模式),并且在同一方法中允许运行多种模式,节约大量分析时间及方便研究。先进的等离子体屏蔽技术,极大提高仪器的灵敏度,改善低质量元素的检出限。保证冷等离子体模式等应用,无需使用碰撞/反应气,即可使K、Na、Ca、Mg、Fe等易电离元素检出限低至ng.L-1。2.ICP-MS 2000E性能特点变频等离子体,采用推挽互补技术消除传统等离子体中存在的电势差,消除等离子体二次放电现象,并产生较低、较窄的离子能量扩散,极大提高仪器灵敏度。稳健的变频电源系统保证仪器可运行多种模式(如常规模式、碰撞反应模式、冷等离子体模式),并且在同一方法中允许运行多种模式,节约大量分析时间及方便研究。配置六极杆碰撞反应池,采用(H2+He)混合气既可以KED模式消除ArCl、CaCl对As的干扰;同时在无需切换气体等繁琐操作的情况下即可消除Ar、ArH、ArO等对K、Ca、Fe的干扰。配置250位全自动进样器,以太通信进口,定位精度小于500μm。ICP-2000系列电感耦合等离子体质谱仪同样均具有以下优异的性能及特点:等离子体位置XYZ三维由计算机控制全自动精确调节,调节幅度精确至步进0.1mm;炬管为一体式石英同心炬管,避免拆卸式矩管的繁琐操作以及可能由此导致的损坏;敞开式进样系统结构,插入式安装,自我定位,维护方便;高稳定性和精密度的带撞击球玻璃雾化室,雾化室标配半导体制冷,对雾化室制冷控温范围为-20℃-20℃,制冷迅速可在三分钟内由室温降至2℃,以适应不同基体的控温要求;接口室由采样锥、截取锥两部分组成。标准配置包含采样锥(锥孔1.1mm),和具有优秀耐盐性能的截取锥(锥孔0.75mm);另可根据用户实际需求选配高灵敏度截取锥;独特的活动接口门结构,无需泄真空即可装卸采样锥和截取锥,维护方便;配置高效率六极杆离子导向系统,在全质量范围内获得佳的离子传输效率;由计算机控制全自动离子聚焦调谐过程。真空室内的透镜采用非对称安装,方便拆装定位;离子透镜包括提取透镜和偏转透镜,采用二次离轴设计,避免中性粒子和电子进入质量分析器,降低背景;离子透镜、六级杆和四级杆均为免拆洗维护设计,极大地减少维护工作量;使用进口、超长的纯钼四级杆,为仪器提供极佳的灵敏度及分辨率;长寿命ETP双模式检测器,分成两部分分列打拿极电子倍增器,由计算机控制自动进行数/模切换;友好的人机交互界面,符合国人使用习惯的全中文软件。提供自动控制仪器及其附件的能力,完美适应Windows 2000/XP/vista/win7(32位或64位)专业操作系统;全自动分析功能(启动关闭仪器,炬位调整,等离子体参数,离子透镜参数,检测器参数等)。
    留言咨询
  • Phoenix热电离质谱仪是为以更高灵敏度和精确度检测非气态元素同位素比值而设计。高灵敏度取决于对离子透镜系统和电离灯丝区域高真空组合的精心设计。高精确度取决于高灵敏度,低噪音值,稳定的检测器系统;这些精湛的设计可以检测出纳安培级(nA, 1x10-9 A)的极微弱的离子流,甚至可检测出单离子(1.6x10-19 A)。Phoenix是极限检测能力的杰出代表之一。设计特点:-ATONA新型专利放大器动态范围达100V(专利号GB2552233)-所有商用TIMS中,Phoenix具有更大的电 磁体半径 ,确保其有更佳的离子传送、质量分辨率和稳定性-以兼具正、负子检测能力为标准-高度稳定的高电压和磁场控制可以使质量漂移值20ppm /大于40 分钟-可旋转焦平面使焦平面时刻与离子运动轨迹相垂直,确保了更佳的峰值,而无需考虑离子束倾斜进入接收器产生的二次离子影响-Phoenix X62可同步检测UO2+-具有10年质保无需更换的超长寿命法拉第杯-所有商用TIMS中,Phoenix 具有更强能力的真空泵,能以更快速度制备极端真空环境,提高仪器生产力。 -样品室采用了优质不锈钢设计并预留了一系列端口为样品预热,冷阱,进氧等。-能装载20个样品的样品盘可旋转与离子运行轨迹正交确保了样品间交叉污染可能性为零-带视窗的铰链门上可安装高温计-装配了所有上用TIMS中能力更大的离子真空泵,确保了更佳的极端真空和更佳的丰度灵敏度-更高级别的灵敏度取决于更大的离子提取缝隙和更佳聚焦系统-Daly检测器具有更大的动态离子检测范围-可选次级电子倍增器SEM-可选多接收离子计数器使用了转换倍增技术-可选安装在轴线上的迟滞过滤系统(WARP)能显著提升丰度灵敏度,安装WARP后Daly或SEM可检测出<1x10-8 237U wrt 238U-除Daly检测器和SEM检测器外,其他所有检测器均为独立的并可单独驱动。可以提供更加灵活的配置。-功能强大和操作灵活的软件系统保证数据重现性-完善的在线工作能力允许远程控制仪器操作应用领域:地球科学:同位素地球化学、同位素年代学核科学:超低丰度同位素杂质的分析、燃耗及核燃料纯度分析、U、Li等同位素标准参考物质的研制行星科学:行星年代学及化学演化过程研究
    留言咨询
  • MAXIM 二次离子溅射中性粒子质谱仪可分析二次阴、阳离子动态和中性粒子,所具备的的30°接受角可形成样品粒子平面,应用于SIMS和SNMS的光学采样。 光栅控制,增强深度分析能力 所有能量范围内,离子行程的最小扰动,及恒定离子传输 灵敏度高 / 稳定的脉冲离子计数检测器质量数范围: 300amu,500amu,1000amu 检测器: 离子计数探测器、正负离子探测器、107 cps 质量过滤器: 3F四级杆 杆直径: 9mm 最高加热: 250℃ 离子源: 电子轰击,可用于SNMS和RGA的单根灯丝
    留言咨询

二次离子溅射中性粒子质谱仪相关的资讯

  • 地质地球所发明使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法
    p  二次离子质谱(SIMS)和溅射中性粒子质谱(SNMS)是表面分析科学和材料科学中广泛应用的分析技术。使用离子溅射固体表面能够引起光子、电子、中性粒子和二次离子的发射。SIMS技术探测溅射产生二次离子,SNMS技术探测溅射产生中性粒子。由于二次离子的产率和基体相关,SIMS技术具有显著的基体效应,需要标准样品进行分析校正。中性粒子是溅射产物的主要组成部分,SNMS将中性粒子后离子化进行质谱分析,定量更加可靠。IMS1280型SIMS通常使用O2-分析金属元素,使用Cs+分析非金属元素,很难同时对金属元素和非金属元素进行分析。/pp  中国科学院地质与地球物理研究所工程师唐国强等人在以上背景下,发明了一种使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法,并于近日获得国家发明专利授权(发明名称:使用二次离子质谱仪同时分析非金属元素和金属元素的系统和方法 发明人:唐国强,赵洪 专利号:ZL 2013 1 0654614.7)。/pp  该发明使用SIMS分析二次离子,用SNMS对中性粒子分析,可以在线获得样品中更多的信息,保留了微区分析的特点,没有基体效应。其特点有:分隔的真空腔体有利于溅射中性粒子的收集和离子化 中性粒子的离子化可以使用电子轰击、热电离、激光共振等成熟的离子化技术 质量分析器可以使用小型的四极杆或者飞行时间质量分析器,基于电场的独立小型质量分析器有利于减小仪器体积和缩短分析时间。/pp  该发明将SIMS和SNMS两种技术结合起来应用在IMS1280型SIMS上,能够同时分析样品中的金属元素和非金属元素,具有很大的进步意义。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/insimg/8eb1bbcd-7c77-43e4-9eeb-d923de6e388c.jpg" title="W020151218354254671408.jpg"//pp  图1:2.一次离子 7.样品 8.真空腔 9.二次离子 21.中性粒子 22.中性粒子 23.泵 24.小型质量分析器 25.离子 26.真空腔 27.接口 28.接口 29.接口。/p
  • “二次离子质谱仪器核心技术研发”项目子课题通过验收
    2月21至22日,由国家质检总局科技司委托组成的测试专家组,对中科院大连化学物理研究所承担的“十一五”国家科技支撑计划项目课题“二次离子质谱仪器核心技术及关键部件研究与开发”中的子课题“角反射飞行时间质量分析器”进行了现场考核与测试。验收专家组组长由北京中国航天员科研训练中心刘学博研究员担任,成员包括中国科学院北京科学仪器研制中心于科岐研究员、中国计量科学研究院赵墨田研究员、大连理工大学丁洪斌教授以及辽宁师范大学李梦轲教授。中科院大连化学物理研究所  与会专家听取了项目负责人李海洋研究员的项目完成情况汇报,专家组依据国家科技支撑计划课题任务书中规定的任务和考核指标要求,参考课题组提交的测试方案以及现场的实际情况,查看了有关技术资料,并对测试大纲进行了充分讨论,确定了审核及现场测试内容。通过现场核实与实际测试,测试专家组认为,该子课题采用角反射补偿了离子能量分散,提高质量分析器的分辨率,且能保证大的接收角和较高的稳定精度,分辨率8700,稳定精度为10ppm,全面完成了任务书规定的各项任务指标,达到并优于考核要求。验收专家组一致同意该课题通过验收。  该项目的完成,进一步提升了大连化物所在二次离子质谱仪的核心技术及关键部件研发方面的综合水平。  附录:国产快速在线质谱仪、离子迁移谱仪产业化进程——访中科院大连化物所青年科学家李海洋研究员
  • 二次离子质谱仪在生物医学领域中的用途是什么?
    二次离子质谱(简称:SIMS)分化为静态二次离子质谱(S-SIMS)、动态二次离子质谱(D-SIMS)两种,通过扫描,可以得到化学成像、成分定性鉴定。二次离子质谱技术具有非常高的分辨率以及灵敏度,可对有机物进行元素的面分布,深度分布分析,所以被广泛地运用在生物医学的领域当中。SIMS是利用具有一定能量的初级离子束轰击固体材料表面,再通过质谱分析检测被初级离子束溅射出的二次离子的质荷比,从而得到样品信息。如今应用在SIMS中最广泛的质谱检测器是飞行时间质谱仪(TOF),TOF-SIMS的分辨率可以达到5-10nm,微区分辨率达到100nm2,深度分辨率达到0.1-1nm,二次离子浓度灵敏度达到ppm级别。TOF-SIMS以其各种优异的性能和特点被广泛地用于半导体行业,随着半导体硅晶片制程越来越小,SIMS逐渐成为分析半导体器件表面污染缺陷、研究元素掺杂等不可替代的手段。除此之外,SIMS的应用近年来也不断发展到生物医学、材料、化学等领域。 其中在生物医药领域,利用TOF-SIMS技术对生物细胞进行化学成像分析受到越来越多的研究人员关注,例如使用TOF-SIMS研究生物组织或生物薄膜上蛋白质等分子行为、细胞界面特性、药物作用、疾病诊断等。和MALDI-TOF-MS、ESI-MS等质谱相比,TOF-SIMS的灵敏度更高且可以进行二维或三维化学成像。 下图为分别使用SSIMS和DSIMS对冠状动脉支架中的药物进行分析的案例。其中的质谱图就是通过SSIMS得到样品表面化学信息,下方的化学成像则是通过DSIMS层层剥离,得到的不同深度下的药物分布图。

二次离子溅射中性粒子质谱仪相关的方案

二次离子溅射中性粒子质谱仪相关的资料

二次离子溅射中性粒子质谱仪相关的论坛

  • 【原创】二次离子质谱分类

    [size=5][b] [/b][/size]  采用脉冲一次离子源(LMIG, Cs, C60,Au,O2+,Ar+)等轰击样品,然后收集从样品表面激发出来的二次离子,采用质谱检测器(飞行时间、四极杆、扇形磁过滤、离子阱等),来收集这些二次离子,并且根据他们的质荷比(m/z)将它们分离,据此来判断分析材料的成分。     二次离子质谱仪分为静态- 二次离子质谱仪(S-SIMS) 和动态二次离子质谱仪(D-SIMS) ,其区分的标准就是根据入射的一次离子的剂量一般10^12atoms/cm2,成为静态二次离子质谱仪,一般采用飞行时间检测器,主要用于生物医药的有机物分析,半导体材料的污染物分析,存储材料分析,可以坚定有机的分子碎片。在分析过程中,材料表面的吸附物质及化学状态,对谱峰影响巨大。这也就是二次离子质谱中的“基体效应”。静态-二次离子质谱是一种无破坏的表面分析方法。最常见的静态- 二次离子质谱仪是飞行时间二次离子质谱仪。飞行时间二次离子质谱仪(TOF-SIMS: Time-of-Flight Secondary Ion Mass Spectrometry)利用一次脉冲离子轰击样品,通过表面激发出的二次离子的飞行时间测量其质量(m/z 100,000),以分析样品的表面组成。  动态-二次离子质谱仪,入射的一次离子的剂量一般10^15atoms/cm2,对表面形成大量的溅射作用,是一种破坏性分析,主要用于地质研究,同位素定年分析,半导体掺杂的深度分析。主要采用的一次离子源为气体等离子源(Ar/O2)或Cs离子源,一般要求样品导电性要好。

  • 二次离子质谱仪原理简介

    二次离子质谱仪原理简介二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子幵迚行质谱测定的仪器,可 以对固体或薄膜样品迚行高精度的微区原位元素和同位素分析。由于地学样品的复杂性和对 精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。该类型的商业化 仪器目前主要有法国Cameca 公司生产的 IMS1270-1300 系列和澳大利亚ASI 公司的 SHRIMP 系列。最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度 等方面指标取得了较大的提升,元素检出限达到ppm-ppb 级,空间分辨率最高可达亚微 米级,深度分辨率可达纳米级。目前,大型离子探针可分析元素周期表中除稀有气体外的几 乎全部元素及其同位素,涉及的研究领域包括地球早期历叱不古老地壳演化、造山带构造演 化、岩石圀演化不地球深部动力学、天体化学不比较行星学、全球变化不环境、超大型矿床 形成机制等。因而国内各大研究机构纷纷引迚大型离子探针(北京离子探针中心的SHRIMP II SHRIMPIIe-MC、中科院地质不地球物理研究所的 Cameca IMS-1280、Cameca IMS-1280HR 和NanoSIMS 50L、中科院广州地球化学研究所的 Cameca IMS-1280HR、 中核集团核工业北京地质研究院的 IMS-1280HR),大大提高了国内微区分析的能力。 本实验室配备了Cameca 公司生产的IMS1280 离子探针和其升级型号 IMS1280HR。 两台仪器的基本原理及设计相同,升级型号IMS1280HR 主要在磁场设计上有所改迚,具 有更高的质量分辨率和传输效率。该型仪器从功能上可分为四部分,如图一所示:一次离子 产生及聚焦光路(黄色部分)、二次离子产生及传输光路(蓝色部分)、双聚焦质谱仪(粉 色部分)和信号接收系统(紫色部分)。Cameca 离子探针可以类比为一台显微镜,离子源 相当于显微镜的光源,传输光路相当于物镜,质谱仪相当于滤镜,而接收器相当于目镜或照 相机。 图一, IMS1280/HR 型离子探针原理示意图 一次离子部分包含了两个离子源分别是可以产生O 离子的双等离子体离子源(Duo Plastron Source)和产生Cs 离子的热电离铯离子源(CsIon Source),一 般分别对应地学领域分析中的正电性元素(如 Pb、U、Th、REE、Li、Ca 等)和负电性元 等)。两个离子源由软件控制选择,所产生的离子通过高压(一般为数千伏特)加速后迚入一次离子质量过滤器(PBMF)迚行质量筛选,常用的一次离子有 16 16O2 133Cs 离子。后续的一次离子光路通过调整离子透镜Lens2,Lens3 和Lens4 电压可以获得两种照明方式:均匀照明(科勒照明或平行光照明)和高斯照明。一次离子光路原理如图二所示。 均匀照明模式使用离子透镜Lens2 将一次离子束调整为“平行光”,幵穿过位于其后 的一次束光阑(PBMF_Aperture),再通过离子透镜Lens4 将该光阑成像到样品表面。在 该模式下,离子束的直径由PBMF_Aperture 的大小决定,由于该光阑受到离子束的剥蚀 而逐渐变大,因此实际上这种模式的离子束直径是随时间丌断变化的,对空间分辨率丌太敏 感的应用可以使用该模式。实验室的常规定年就使用了这种照明模式,由于其离子束密度均 匀,在样品表面留下的剥蚀坑为椭囿形的平底坑。 图二 一次离子光路原理示意图 在高真空条件下,带有数千电子伏特(eV)的高能带电离子轰击固体样品的表面时,部分 一次离子注入到固体内部并不其路径上的样品原子发生弹性或非弹性碰撞。通过碰撞而获得能量 的内部原子又不其周围的原子再次进行碰撞并产生能量传导,这个过程称为级联碰撞。最终,部 分样品内部电子、原子或分子获得了足够的能量逃逸出样品表面,产生了溅射现象。在溅射出的 各种微粒中,有小部分发生了电离,产生了二次离子。这些二次离子被样品表面的+10KV到 -10KV的高压加速,通过离子透镜聚焦后进入双聚焦质谱仪进行质量筛选。溅射及加速示意图 请见图三。 高斯照明模式在PBMF之后使用了三个离子透镜:Lens2、Lens3和Lens4。其中Lens2 不Lens3将离子束汇聚,L4将汇聚后的离子束聚焦到样品表面,形成束流密度中心高周围低 的高斯分布。这种模式下,在样品表面产生的剥蚀坑是接近囿形的V型坑。这种模式下离子 束的直径主要受到L2不L3透镜电压的影响,而对光阑的剥蚀效应很小,因此可以长时间保 持离子束直径丌变。实验室常规的稳定同位素分析以及空间分辨高于10微米的小束斑定年 分析都采用了高斯照明模式。 丌同元素的二次离子产率相差巨大,而且每种元素在丌同基体中的产率也丌尽相同,甚 至同一元素的同位素之间在丌同的基体中也表现出丌固定的产率(基体效应)。在实际分析 时实测值不理论值会产生较大差异。因此,要使用离子探针进行高精度的元素、同位素分析, 必须使用不被测样品成分和结构一致的标准物质进行校正。而标准样品的稀缺性也成为制约 和影响离子探针分析的瓶颈。目前,本实验室目前已开发了锆石氧同位素标准物质 (Penglai)、方解石碳-氧同位素标准物质(OKA)、锆石Li同位素标准物质(M257)、锆 石年龄标准物质(Qinghu)等。 图三,离子探针溅射示意图 二次离子产生后迚入离子传输光路,该部分相当于显微镜的物镜,通过调节该“物镜” 的放大倍数,配合后续的光阑及狭缝的调整,可在质量分辨率确定的条件下对仪器的传输效 率迚行优化,保证分析精度。入口狭缝是传输光路和质谱仪的分界面。离子束通过传输光路 聚焦后,在入口狭缝处汇聚。调节入口狭缝的宽度可控制迚入质谱仪的离子束宽度,从而控 制质谱仪的质量分辨率。质量分辨率要求越高,入口狭缝所对应的宽度就越窄,二次离子信 号的强度损失也就越多。因此,在满足分析要求的前提下,尽量使用较低的质量分辨率。离 子探针分析中,样品表面溅射出的二次离子组成非常复杂,包括了单原子离子、分子离子、 多电荷离子、复杂聚合物离子等,对质量分辨率要求极高。为了兼顾离子探针的质量分辨率 和传输效率,必须采用大磁场半径的设计。该型离子探针的最低质量分辨率为~900,而最 高可用质量分辨率大于20000. 磁式质谱仪主要利用运动离子在磁场中的受力偏转实现对特定质量电荷比值的离子的 选择。磁式离子探针一般使用双聚焦磁式质谱,可以实现速度聚焦和方向聚焦,在二次离子 能量分布范围较大的情况下实现高质量分辨率和高传输效率。双聚焦质谱仪由静电分析器和 扇形磁场质量分析器组成,当二者的能量色散在焦平面上相互抵消时即实现了双聚焦。 IMS1280/HR 离子探针的静电场及磁场半径均为585mm,在质量分辨率5000 的条件下, 其传输效率90%。 离子经过质谱仪的质量色散后迚入离子接收系统。该型仪器的接收系统分为三个部分: 具有5 个接收位置,共7 个接收器的多接收系统;具有三个接收器的单接收系统和微通道 板成像系统。多接收系统能够同时接收的最大的质量差异为17%,最小质量差异为~0.4%, 是典型的同位素质谱配置。5 个接收位置可在各自轨道上沿聚焦面移动,根据被测同位素的 信号强度可选择安装法拉第杯或电子倍增器。最外侧的两个接收位置还分别额外加装了一个 法拉第杯,增加配置的灵活性,如图四所示。多接收器分析可以提高效率,并能抵消一部分 因为一次离子或仪器其他参数波动引起的分析误差,是提高分析精度的最直接手段。实验室 的高精度稳定同位素分析(氧同位素、碳同位素及硫同位素等)都是用多接收器的。目前本 实验室两台离子探针采用了丌同的接收杯配置,其中一台偏重于稳定同位素分析,在多接收 器中安装了多个法拉第杯,而另一台则偏重微量元素尤其是Pb 同位素分析,主要配置为电 子倍增器。单接收系统具有一个工作在离子计数模式下的电子倍增器和高低两个丌同量程的 法拉第杯,组成了具有10 动态接收范围的大量程接收系统。对于质量范围超过17%的分析,一般使用单接收系统,例如传统的U-Pb 定年分析,其需要测量的质量数从196-270, 使用的是单接收系统中的电子倍增器收集所有信号。 使用微通道板成像时,仪器工作在离子显微镜模式下,成像的分辨率取决于二次离子光 路的设置,而不一次离子束的直径无关。由于微通道板性能的制约,这种模式一般只用于辅 助的定性判断和仪器参数的调整,而丌用于定量分析。离子探针还有一种二次离子扫描成像 模式。类似于扫描电子显微镜的工作原理,通过同步一次离子的扫描位置和电子倍增器的接 收时间,可以将电子倍增器测量到的信号强度不其在样品上的位置对应起来,从而重构出经 过质量筛选的离子分布图像。该图像的分辨率取决于一次离子束的直径,可用于元素、同位 素二维分布分析

  • 关于四级杆二次离子质谱仪器的介绍

    由于这些仪器的质量分辨率相对有限(单位质量分辨率不能解决每超过一个峰值的质量),因此这些仪器越来越稀有。四级杆利用一个共振电场,其中只有特定质量的离子才能稳定通过震荡场。与扇形磁场仪器相类似的是,这些仪器需要在高一次离子电流下操作,且通常被认为是“动态二次离子质谱”仪器(比如用于溅射深度剖析和/或固体样品的总量分析)。  如今,尽管这些设计在SIMS界最为常见,但仍有许多令人兴奋的新设计正不断出现,它们在未来可能会发挥更重要的作用。这些新设计包括多种质谱仪中的连续离子束设计(比如用四级杆或飞行时间质谱仪作串联质谱(MS-MS)分析),以及傅里叶变换离子回旋共振(FT-ICR)仪器,其质量分辨率接近一百万或更高。

二次离子溅射中性粒子质谱仪相关的耗材

  • 离子溅射仪(日产)
    离子溅射仪是对透射电镜及扫描电镜及样品进行离子刻蚀和涂复导电层的设备,主要用于对生物、有机物及金属样品溅射一层均匀而致密的金属膜供扫描电镜观察,亦可对各种样品进行离子刻蚀以及对透射电镜支持膜作亲水处理,以获得理想的实验表面。仪器操作简单方便,是配合中小型扫描电子显微镜制样必备的仪器。型号:MSP-10
  • FIB和离子溅射仪标样
    为了能更好的对FIB和离子溅射仪的 离子枪的参数进行测试,推出了FIB 和离子溅射仪标样。
  • 非反射中性密度滤光片
    非反射中性密度滤光片• 防止对光源的不必要的反思• 光谱平坦• VIS和NIR范围可用我们的非反射中性密度滤光片设计用于均匀衰减光源,同时防止不必要的反射反射。 专有的涂层设计将反射最小化到小于2%,同时在整个设计光谱范围内保持非常高的中立性。 可用于700-1200nm 400-700nm或NIR应用的可见应用,该滤波器非常适用于限制宽带卤素,荧光和钨源以及低功率激光器的传输。非反光中性密度滤芯套件每个试剂盒包括10个滤光片,光密度值为0.3,0.5,0.6,0.9,1.0,1.3,1.5,2.0,2.5和3.0。 该套件是确定精确的系统光密度要求的理想选择。自定义密度可用于OEM应用。Common Specifications表面质量:60-40基底:B270订购信息:直径 (mm)光密度 OD厚度 (mm)透射率 (%)产品号12.50.31.5±0.150#63-396250.31.5±0.150#63-40612.50.31.5±0.150#63-376250.31.5±0.150#63-38612.50.51.5±0.132#63-397250.51.5±0.132#63-40712.50.51.5±0.132#63-377250.51.5±0.132#63-38712.50.61.5±0.125#63-398250.61.5±0.125#63-40812.50.61.5±0.125#63-378250.61.5±0.125#63-38812.50.91.5±0.112.5#63-399250.91.5±0.112.5#63-40912.50.91.5±0.112.5#63-379250.91.5±0.112.5#63-38912.511.5±0.110#63-4002511.5±0.110#63-41012.511.5±0.110#63-3802511.5±0.110#63-39012.51.31.5±0.15#63-401251.31.5±0.15#63-41112.51.31.5±0.15#63-381251.31.5±0.15#63-39112.51.51.5±0.13.2#63-402251.51.5±0.13.2#63-41212.51.51.5±0.13.2#63-382251.51.5±0.13.2#63-39212.521.5±0.11#63-4032521.5±0.11#63-41312.521.5±0.11#63-3832521.5±0.11#63-39312.52.51.5±0.10.3#63-404252.51.5±0.10.3#63-41412.52.51.5±0.10.3#63-384252.51.5±0.10.3#63-39412.531.5±0.10.1#63-4052531.5±0.10.1#63-41512.531.5±0.10.1#63-3852531.5±0.10.1#63-395附件标题产品号NIR, 12.5mm Dia, Non-Reflective ND Filter Kit#64-473NIR, 25mm Dia, Non-Reflective ND Filter Kit#64-474VIS, 12.5mm Dia, Non-Reflective ND Filter Kit#64-351VIS, 25mm Dia, Non-Reflective ND Filter Kit#64-352
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制