超快时间分辨荧光仪

仪器信息网超快时间分辨荧光仪专题为您提供2024年最新超快时间分辨荧光仪价格报价、厂家品牌的相关信息, 包括超快时间分辨荧光仪参数、型号等,不管是国产,还是进口品牌的超快时间分辨荧光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快时间分辨荧光仪相关的耗材配件、试剂标物,还有超快时间分辨荧光仪相关的最新资讯、资料,以及超快时间分辨荧光仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超快时间分辨荧光仪相关的厂商

  • 400-860-5168转5092
    大连创锐光谱科技有限公司 依托自主知识产权的核心超快时间分辨光谱技术,专注于开发和生产应用于科学研究和教学领域的高科技时间分辨光谱仪器和设备。公司主营业务包括稳态、瞬态荧光(寿命)光谱仪、超快到纳秒瞬态吸收光谱系统、超快显微镜、时间分辨荧光成像系统等高端科研级仪器设备的研发、生产销售以及时间分辨光谱系统集成、技术开发和检测服务。客户覆盖国内外各大高校、科研院所及知名企业。我们精准把握科学研究发展的需求,与国内外著名高校研究机构建立广泛的技术合作,结合自身的技术优势,积极开发国产化的世界一流光谱科技产品,为我国光电材料、纳米材料、光谱学、动力学等领域科学事业的发展贡献一份力量。我们期待与您携手并进,通过光谱技术,助力您的科研事业不断创新。系列产品:超快瞬态光谱系统、纳秒瞬态吸收光谱系统、闪光光解系统、超快瞬态显微镜系统、时间分辨荧光系统、TCSPC、模块化稳态/瞬态荧光光谱系统、时间分辨显微镜荧光光谱系统。技术服务:客户定制化时间分辨光谱技术解决方案、样品检测服务、技术培训。
    留言咨询
  • 卓知科仪(北京)技术有限公司,创立于2003年,始终致力于高质量科研产品的推广工作,在超快时间分辨光谱及成像、飞秒激光器及飞秒微纳加工等超快领域拥有专业、全套的解决设备及方案。公司在北京总部设有光电实验室和售后服务中心,2018年正式对外免费开放。主要代理科研产品:一体化飞秒激光器及纳秒激光器、皮秒激光器、超连续白光光源、科研级芯片、科研级深度制冷CCD、sCMOS、ICCD、EMCCD、深度制冷近红外相机、高性能光谱仪及瞬态吸收、荧光上转换、TCSPC光谱系统、太赫兹时域光谱系统、一体化紫外可见近红外分光光度计、三级联显微拉曼光谱系统、便携式拉曼光谱仪等,产品线还在不断的更新完善。目前设有北京总部,杭州办事处,长春办事处和深圳办事处。专业的销售队伍、强大的技术支持、优质的科研仪器,使卓知科仪成为全国各大科研院所和高等院校信赖的科研仪器代理单位。
    留言咨询
  • 400-860-5168转2387
    天津东方科捷科技有限公司 Orient KOJI instrument Co., Ltd.,基于高素质的专家研发及实践团队,为专业化的需求,研制特殊满足用户科研及测试要求的光谱仪部件和外设,使您的科研更便捷,更加准确;提供光谱测量、时间分辨、量子效率和共焦显微相关需求的方案;HORIBA Scientific 所属JY 荧光光谱仪的区域总代理商;Fluorolog-3; FluoroMax-4;Aqualog;DeltaFlex;荧光寿命部件及光源;美国ISS 公司的激光共焦荧光成像系统,激光共焦技术的领跑者;Alba 和 Q2满足您模块化的需要;适于单光子和多光子激发荧光的强度成像、寿命成像FLIM和FCS,FLIM-FRET、单分子荧光寿命成像;ALBA-STED满足您超分辨成像的需要。日本大塚电子公司的紫外可见近红外量子效率测试系统,满足粉末、薄膜、液体的300-1600nm发光定量测试需要,同时具备耦合激光器的PLQY测试能力,特别适合单态氧发光效率测量、上转换发光效率测量。极限测试可到0.01%;显微荧光寿命(TCSPC)测量系统,μFRaL 显微荧光拉曼测试系统,可以在共焦显微平台上为您提供荧光光谱、荧光寿命、拉曼光谱及超低波数拉曼光谱的采集;可以提供快速光谱成像。采用开放式显微镜,满足4k低温、高压、高温部件耦合的需要。TAP-02 300℃高温荧光(热猝灭及热稳定性)测量附件。是公司自我开发的第一件产品,产品满足40-300℃超稳定及快速变温的测试需要,使用方便简洁。已经在SCI检索论文中广泛出现。其他产品包括:荧光光谱仪用微量粉末夹具,积分球漫反射测量配置粉末盒;HJY荧光内置PLQY绝对量子产率附件,荧光光谱仪用光纤远程测量及微区测量附件;提供固体表面电位测试系统和粒度分析;x射线荧光光谱仪 HORIBA 公司的阴极射线发光系统--CL系统时间分辨的电致发光光谱测试系统已经开放成功!同时提供:仪器维护及部件更换服务;欢迎咨询和讨论最适合您的技术方案。
    留言咨询

超快时间分辨荧光仪相关的仪器

  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • HORIBA Scientific(Jobin Yvon光谱技术)作为荧光光谱仪的全球,可以提供全套稳态、瞬态和稳-瞬态以及各种耦联技术的解决方案。从上世纪70年代HORIBA Scientific一直专注于TCSPC系统的开发,并始终保持着荧光系统设计和生产领域的世界领导地位。基于四十年的寿命系统研发和生产经验,新一代荧光寿命测试系统DeltaFlex凭借的高性能以及简单实用的特点,赋予了TCSPC系统新的定义。DeltaHub——DeltaFlex的核心部件 超短的死时间(10ns):配合高重复频率的激光光源和高速检测器,可实现无损失的光子计数,达到快速采集数据和准确的分析结果。 超快寿命测试技术:真正实现了荧光寿命动力学测试,采集时间低至1ms(全球同类产品中快),支持1ms-10,000min无间断寿命动态监测。新型脉冲半导体光源 DeltaFlex配置新型脉冲半导体光源作为荧光和磷光的激发光源(四大类型,百种可选),即插即用,无需校准,而且终身免维护。 其中DeltaDiode光源的重复频率可达100MHz,是超快寿命测试的首选光源,同时可配置用于磷光测定的SpectraLED光源。与氙闪灯相比,SpectraLED具有265-1275nm宽波长的覆盖范围,以及实用方便、测试速度更快和信号无拖尾的优点。科研级模块化设计 在DeltaFlex系统上无需更换控制器和检测器,即可实现11个数量级(25ps-1s)范围内的荧光寿命测试。系统采用科研级模块化设计,配合新的F-Link技术,可自动识别各类部件,软件直接接入、附件即插即用,能够无限满足升级需求。尤其是其中采用了行业领先的寿命拟合软件,免费开放数十种主流专业拟合功能,可独立于仪器操作。 多种光谱仪可选,配合像差校正光栅,覆盖200-1600nm宽光谱范围,完美实现时间分辨发射谱功能,支持100条发射波长动态连续监测,软件自动获得衰减相关光谱参数。 荧光寿命技术是科研中强有力的工具,可广泛用于物理、化学、材料、信息、生物和医学等领域。主要应用: FRET(Forster共振能量转移) Stern-Volmer猝灭 稀土发光 时间分辨和磷光各向异性 分子互作,蛋白结构变化 太阳能材料 单线态氧测试 光物理可选附件: 手动或电动偏振器 自动光学部件 红外扩展 PPD 模块 (如PPD-850C 或 PPD-900C) NIR检测器(~1700nm) 固体样品支架 多种控温装置可选 多种光源 技术参数: 基于滤光片或单色仪实现波长选择 皮秒超快集成化PPD 光子检测模块(标配) 可升级NIR 检测器(~1700nm) 综合分析受命拟合软件,开放数十种拟合功能 标准液体样品架,加载温度传感器和搅拌装置 大尺寸样品仓,配置高效UV级光学部件 F-Link 即插即用型交互界面主要特点: 超宽寿命测试范围25ps-1s 超快测试时间(低至1ms),完美实现动态反应分析 超微量样品测试,低至1μL 综合分析软件,5指数寿命拟合 高稳定性设计,使用维护简单 高度自动化,一键测量分析 大尺寸样品仓设计,超强的附件兼容能力 高性能荧光、磷光寿命测试功能
    留言咨询
  • 产品简介:HORIBA Scientific(Jobin Yvon光谱技术)可以提供全套稳态、瞬态和稳-瞬态以及各种耦联技术的解决方案。基于四十年的寿命系统研发和生产经验,新一代荧光寿命测试系统DeltaFlex凭借高性能以及简单实用的特点,赋予了TCSPC系统新的定义---动态荧光寿命测试,1ms!新增加:瞬态电致发光测试功能,满足发光响应能力评估,发光衰减对比;反向外建电场对衰减的影响;DeltaHub——DeltaFlex的核心部件 超短的死时间(10ns):配合高重复频率的激光光源和高速检测器,可实现无损失的光子计数,达到快速采集数据和准确的分析结果。 超快寿命测试技术:真正实现了荧光寿命动力学测试,采集时间低至1ms,支持1ms-10,000min无间断寿命动态监测。新型脉冲半导体光源 DeltaFlex配置新型脉冲半导体光源作为荧光和磷光的激发光源(四大类型,百种可选),即插即用,无需校准,而且终身免维护。 其中DeltaDiode光源的重复频率可达100MHz,是超快寿命测试的光源,同时可配置用于磷光测定的SpectraLED光源。与氙闪灯相比,SpectraLED具有265-1275nm宽波长的覆盖范围,以及实用方便、测试速度更快和信号无拖尾的优点。科研级模块化设计 在DeltaFlex系统上无需更换控制器和检测器,即可实现11个数量级(25ps-1s)范围内的荧光寿命测试。系统采用科研级模块化设计,配合新的F-Link技术,可自动识别各类部件,软件直接接入、附件即插即用,能够无限满足升级需求。尤其是其中采用了成熟的寿命拟合软件,免费开放数十种主流专业拟合功能,可独立于仪器操作。 多种光谱仪可选,配合像差校正光栅,覆盖200-1600nm宽光谱范围,完美实现时间分辨发射谱功能,支持100条发射波长动态连续监测,软件自动获得衰减相关光谱参数。 荧光寿命技术是科研中强有力的工具,可广泛用于物理、化学、材料、信息、生物和医学等领域。主要应用: FRET(Forster共振能量转移) Stern-Volmer猝灭 稀土发光 时间分辨和磷光各向异性 分子互作,蛋白结构变化 太阳能材料 单线态氧测试 光物理可选附件: 手动或电动偏振器 自动光学部件 红外扩展 PPD 模块 (如PPD-850C 或 PPD-900C) NIR检测器(~1700nm) 固体样品支架 多种控温装置可选技术参数: 基于滤光片或单色仪实现波长选择 皮秒超快集成化PPD 光子检测模块(标配) 可升级NIR 检测器(~1700nm) 综合分析受命拟合软件,开放数十种拟合功能 标准液体样品架,加载温度传感器和搅拌装置 大尺寸样品仓,配置高效UV级光学部件 F-Link 即插即用型交互界面主要特点: 超宽寿命测试范围 5ps-1s 超快测试时间(低至1ms),完美实现动态反应分析 超微量样品测试,低至1μL 综合分析软件,5指数寿命拟合 高稳定性设计,使用维护简单 高度自动化,一键测量分析 大尺寸样品仓设计,超强的附件兼容能力 高性能荧光、磷光寿命测试功能
    留言咨询

超快时间分辨荧光仪相关的资讯

  • 日本电子收购超快时间分辨电镜商IDES:补强时间分辨TEM技术
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2020年1月17日,日本电子(JEOL Ltd.)消息,日本电子完成收购INTEGRATED DYNAMIC ELECTRON SOLUTIONS,INC.(总部位于美国加利福尼亚,以下称IDES)的所有股份,IDES是一家专门从事与透射电子显微镜(TEM)相关技术的创业型企业。收购后,IDES将成为日本电子全资子公司。/span/pp style="text-indent: 2em "strong背景与目的/strong/pp style="text-indent: 2em "正如日本电子正在实施的新的中期业务计划“三角计划2022”中概述——strongspan style="color: rgb(0, 32, 96) "公司将通过实施加速业务扩张的举措来推动持续和可持续的增长/span/strong。日本电子的旗舰产品TEM系统旨在观察原子分辨率的材料并检查其静态结构。strongspan style="color: rgb(0, 32, 96) "IDES的独特技术将把这些TEM系统升级为“超快时间分辨的TEMs”,能够在纳秒(十亿分之一秒(10-9))到飞秒(一千万亿分之一秒(10-15秒)之间捕捉静止和动态图像,并用纳米级的空间分辨率进行记录。/span/strong/pp style="text-indent: 2em "span style="color: rgb(0, 32, 96) "strong这些创新的系统可用于探索常规TEM无法触及的动力学和量子现象。将来,该系统还可以升级以支持在生命科学领域中的应用,如蛋白质运动研究。/strong/span/pp style="text-indent: 2em "IDES还提供与高速静电偏转和压缩感测有关的独特技术。span style="color: rgb(0, 32, 96) "strong这些技术可以作为附件集成到TEM中,以微秒级的分辨率提供最小的损坏、高通量的TEM图像采集。/strong/span/pp style="text-indent: 2em "此外,span style="color: rgb(0, 32, 96) "strongIDES的当前技术及其正在开发的未来技术将使升级冷冻电子断层扫描_、扫描和扫描透射成像技术成为可能。/strong/span/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于IDES/strong/span/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 200px height: 57px " src="https://img1.17img.cn/17img/images/202001/uepic/2de2900a-ac7f-40e8-9020-a5963f29bf1e.jpg" title="ides.png" alt="ides.png" width="200" height="57" border="0" vspace="0"//ppbr//pp style="text-indent: 2em "strong名称:/strongINTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC.(集成动态电子解决方案公司)/pp style="text-indent: 2em "strong地址:/strong美国加利福尼亚州普莱森顿市117单元5653号/pp style="text-indent: 2em "strong成立时间:/strong2009年/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于日本电子/strong/span/pp style="text-align: left text-indent: 0em "img style="max-width: 100% max-height: 100% width: 200px height: 92px " src="https://img1.17img.cn/17img/images/202001/uepic/1b59b8a7-58ee-4a52-8926-50da7ac0baa7.jpg" title="img_logo_en.png" alt="img_logo_en.png" width="200" height="92" border="0" vspace="0"//pp style="text-indent: 2em "日本电子株式会社(JEOL Ltd., 董事长:栗原 权右卫门)成立于1949年,公司的业务包括三个部分:科学/计量仪器、工业设备以及医疗器械。主要产品如下:/pp style="text-indent: 2em "strong科学/计量仪器/strong/pp style="text-indent: 2em "电子光学设备(透射电子显微镜、 扫描电子显微镜、电子探针、 俄歇电镜、光电子谱仪和电子显微镜周边设备等)/pp style="text-indent: 2em "分析仪器(核磁共振谱仪、 电子自旋共振谱仪、质谱仪、(飞行时间质谱仪, 气相色谱-质谱联用仪, 液相色谱-质谱联用仪) 、 便携式气相色谱仪、气体监测仪等)/pp style="text-indent: 2em "计量检查仪器(扫描电子显微镜、 分析型扫描电子显微镜、电子显微镜周边设备、 复合电子束加工观察设备、 聚焦离子束加工观察设备、截面抛光仪、离子切片仪、半导体缺陷分析仪 、X射线荧光元素分析仪、手持式X射线荧光元素分析仪等)/pp style="text-indent: 2em "strong工业设备/strong/pp style="text-indent: 2em "半导体设备(电子束光刻系统(可变矩形束电子束光刻)、电子束光刻系统(圆形电子束光刻)等)/pp style="text-indent: 2em "工业设备(电子束蒸镀用的电子枪及电源、大功率电子枪及电源、 内置等离子体枪及电源、产生等离子体的高频电源、高频感应热等离子体装置等)/pp style="text-indent: 2em "strong医疗设备/strong/pp style="text-indent: 2em "医疗设备(自动分析仪、 样品传输系统、临床检查信息处理系统、 全自动氨基酸分析仪等)/ppbr//p
  • 超快超分辨成像问题在列:2023年度15个重大科学问题、工程技术难题和产业技术问题
    为进一步加强科技前瞻研判,引领原创性科研攻关,打造学术创新高地,推进科技自立自强,按照《中国科协办公厅关于征集2023重大科学问题、工程技术难题和产业技术问题的通知》 (科协办函创字[2023]8号)文件要求,中国光学工程学会面向国内外科技组织和科技工作者,共征集58个全球共同关注的前沿科学问题、工程技术难题和产业技术问题。经过专家委员会函评和终审评议,共评选出15个前沿科学问题、工程技术难题和产业技术问题。本次评选出的5个前沿科学问题中,第一个就是超分辨率成像技术,该技术在近几年得到了快速的发展,目前已经有多项科研转化成果成功产业化。5个前沿科学问题1、如何突破时-空极限实现超快超分辨成像?How to break through the spatio-temporal limit to achieve ultrafast and super-resolution imaging?2014年诺贝尔奖授予了将光学显微带入纳米尺度的超分辨荧光成像技术,但其依赖于荧光标记,且时间分辨率较低。压缩超快成像技术兼具飞秒时间分辨率和极高数据压缩比,但以牺牲空间分辨率来观测超快动态过程。发展超快超分辨成像技术,在无标记宽场成像下实现时-空分辨率的协同突破,将极大推动人类对各类超快微观现象的认知,助力“追光捕快、察微显纳”的新成像体系建设。2、人们能以多高的自由度塑造光?How arbitrarily can light be shaped?自从认识光现象起,人们便尝试不断改变光的“造型”。从早期的透镜聚焦光能,到现代显微技术中的复杂结构光、激光雷达形貌测量中的点阵投影等,还有精细激光加工中超长焦深的贝塞尔光束、具有弯曲空间传播轨迹的艾利光束等。对光的塑造能力越高、对其利用程度也越高。为此,应从原理上探索塑造光的极限,即人们能以多高的自由度塑造光?3、光学系统的体积极限是多小?What is the volume limit of an optical system?光学元件的性能在很大程度上受到可用光学材料和结构设计的限制。基于超表面的平面光学器件以及各类新型微纳元件有望将核心光学元件缩小到几百微米级别,相比传统复杂光学系统体积显著减小了六个数量级。但如何确定具有特定功能的光学系统的体积理论极限还有待研究,从而进一步实现微型化、微型化与集成化,将在AR/VR、遥感探测及未来纳米科技等领域产生巨大影响。4、光电子芯片的集成度极限是什么?What is the limit of photonic integration? 面向未来十年或更长远时间,光电子芯片集成度的增长会遇到瓶颈,相应的容量要扩展到Pb/s量级会遇到许多根本性的限制。本科学问题涉及芯片容量、尺寸、功耗三个方面的理论和技术的极限,需要在超宽带透明光电材料、高集成度器件中的光场调控、高效率低功耗调谐机理等方面研究变革性的新原理和新技术。5、如何使光计算完备?How to make optical computing complete?采用光学方法来实现运算处理和数据传输是后摩尔时代算力、功耗问题极具潜力的解决途径之一。光子具有光速传播、抗电磁干扰等特性,以及具有天然的多维复用和并行计算优势,十分契合人工智能等应用领域大数据处理的需求。但目前光子计算面临着很多挑战,例如光子芯片的集成度仍有待提高;计算精度仍低于电子芯片,器件架构未优化,上述挑战亟需研究5个工程技术难题1、如何实现EW超强激光?How to create EW ultra-intense laser?依托我国神光装置,攻克甚多束超短脉冲激光高效优质相干合成、超高信噪比管控、等离子体压缩等核心难题,突破EW超强激光高增益、高品质、高负载三大受限条件,国际上率先实现EW级峰值功率激光输出,率先进入超相对论物理等前沿基础研究领域,辐射带动平均功率万瓦级超短激光技术发展和应用。2、如何构建超大型空间光学装置?How to construct the ultra-large space optical instrument?超大型空间光学装置是当前世界宇航企业重点发展的综合性大系统工程方向。在轨组装和维护则是构建超大型空间光学装置的重要技术途径,即将系统的各个组成模块发射入轨,再利用空间操控工具对各个模块进行在轨组合和装配。该技术的实现将引领弹性可重构光学遥感系统的跨越式发展,并为未来空间飞行器维护与服务奠定技术基础。3、如何实现高功能密度感存算一体光电集成芯片?How to realize that photoelectric integrate chip with high functional density sensing and memory integration?能够执行探查、识别、飞行、定向打击等任务的微型机器人对功耗、尺寸、功能要求十分苛刻。现有设备集成化程度低,处理数据量大,成像体制单一,无法实现一体化探查。为解决这些问题,可采用感存算一体化仿生架构,突破光电融合集成、智能感知处理等关键技术,挖掘低频有效信息,降低能耗压力,实现高功能密度、极小型化、极低功耗的一体化光电集成芯片。4、如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?How to achieve real-time and real-space imaging of microscopic dynamics on the intrinsic scale of atoms and electrons?原子、电子是自然界许多现象的核心,其结构及运动状态决定了所构成物质的宏观特性。原子、电子的运动发生在飞秒至阿秒的超快时间尺度以及皮米的超小空间尺度上,因此,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术以实现对原子-亚原子微观世界中超快动力学过程的探测与控制,揭示材料中各种功能的微观起源。5、如何实现高时空分辨率的全球重力梯度测量?How to retrieval high time and spatial resolution global gravity gradient?地球重力场是地球的基本物理场之一,反映了地球表层及内部物质的空间分布、运动和变化,同时也决定着大地水准面的起伏和变化。利用高精度冷原子重力梯度仪对全球的重力梯度进行高时空分辨率的测量,可以更好地监测揭示海洋环流活动规律,全球陆地水储量变化,冰盖和大型冰川系统的质量平衡,为人类未来的生存和发展制定科学的应对策略。5个产业技术问题1、如何打造成熟的硅基光电异质集成工艺平台,支撑新一代信息技术发展的需求?How to build the accessible platform for optoelectronic heterogeneous integration based on silicon photonics, to facilitate the development of next-generation information technology?随着AI、下一代数据中心、激光雷达、卫星通信等战略应用迅速发展,单一集成光子材料已不能满足产业需求。以III-V半导体、薄膜铌酸锂为代表的硅基光电异质集成可融合多种光电功能材料的优势,将成为高端光子芯片在上述应用领域的重要解决途径。鉴于光电异质集成国际竞争态势,我国迫切需要提升高端异质集成光子芯片的研发及产业化能力,支撑产业发展。2、如何突破激光时空特性测试计量短板难题?How to break through the difficult problem of measuring the spatial and time domain parameters of lasers?2022年,激光产业销售收入大于800亿。然而,支撑我国激光产业发展的激光参数测试仪95%依赖进口,年高达3亿元。特别是激光时域和空域参数测试计量缺失,全部依赖德国、美国、加拿大等仪器。典型的包括:测量皮秒、飞秒和阿秒的自相关仪、FROG和SPIDER等;千瓦级功率激光光束质量测试仪等。测试仪器短板,风险大,是急需攻关的问题。3、中高端传感器如何实现自主可控?How to achieve self- production and controllability of medium and high-end sensors?传感器是物理与数字世界纽带,万物互联基石,对国力有重要影响。目前我国低端传感器产能过剩,中高端传感器自主可控率低。小到手机摄像头、大到汽车发动机,中高端传感器严重限制了我国产品市场竞争力。传感器专业点多面广,对材料、集成电路等基础工业水平要求高。如何实现中高端传感器自主可控是一个关键产业技术难题。4、如何谱写智能网联汽车的“中国方案”?How to compose the "Chinese Approach" for intelligent connected vehicles?智能化、网联化已成为各国汽车产业博弈未来的战略制高点,李克强院士提出了智能网联汽车的中国方案—“车路云一体化融合系统控制”的技术路线。在路侧通过将激光雷达、毫米波雷达和摄像头融合在一体,具备全天候全息环境感知能力,并有传输延迟低、覆盖范围广、数据精度高、易维护安装的特点,可以解决交通拥堵、交通事故两大核心痛点,进一步提升我国交通信息化、智能化。5、如何突破反谐振空芯光纤降损及大规模工业化制备难题?How to break through the loss-reducing and massive industrial manufacture of anti-resonant hollow-core fiber?作为近半世纪光通信行业基础媒介的实芯光纤正面临容量与时延两项限制。反谐振空芯光纤在理论损耗、带宽、非线性和介质光速等方面全面优于实芯光纤,将对光纤、光器件、光网络系统形成颠覆性变革,有望构建下一个50年的光通信生态。其理论损耗极限、将损耗降至可商用水平并实现大规模工业制备,是亟待突破的技术和产业问题。
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm

超快时间分辨荧光仪相关的方案

  • 利用微秒时间分辨超灵敏红外光谱仪研究高温反应动力学
    近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μ s的时间分辨率(理论时间分辨率 2 μ s)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μ s时间分辨测量速率解析丙炔氧化动力学,DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。
  • 时间分辨红外二区活体荧光成像
    采用二维振镜支持的激光扫描成像,独有的大视场设计,利用脉冲的808nm激光器,完成注射染料后的小鼠的荧光成像扫描;扫描时间很清晰的辨认小的血管,具有很好的对比度和分辨率。由于采用共焦扫描,所以可以使用小功率的激光器获得较好的信噪比,同时可以获得4096× 4096像素,远远超出采用IGA相机方法。同时系统的时间分辨能力,可以获得染料分子和所在微环境的相互作用及微环境信息,同时减少入射激发光的干扰;

超快时间分辨荧光仪相关的资料

超快时间分辨荧光仪相关的试剂

超快时间分辨荧光仪相关的论坛

  • 【求助】时间分辨荧光

    请教:请问PE的LS可以做时间分辨荧光免疫分析吗?与专用的时间分辨荧光光谱仪有什么区别吗?

超快时间分辨荧光仪相关的耗材

  • 超分辨成像缓冲体系试剂盒
    超分辨成像缓冲体系试剂盒用途:本试剂盒提供超分辨荧光成像所需的全套成像缓冲体系。规格:包含可进行50次独立实验的用量,每次实验可检测10个样品。1)试剂成分和pH稳定,能保证长时间的成像效果,且对样品无损伤;2)试剂盒内所有内容物均采用灭菌处理,无污染,且不产生背景荧光;3)方便快捷,用户只需提供样品,加入本品即可进行超分辨荧光成像;4)操作简单,即开即用,无需复杂配制过程,无需专业人员即可完成。
  • TPX3Cam用于纳秒光子时间戳的单光子快速光学相机 (1.6ns时间分辨高速成像光学相机)
    总览荷兰ASI出品的TPX3Cam是一款用于光学光子时间戳的快速光学相机。它基于一种新型硅像素传感器,并结合了Timepix3 ASIC和读出芯片技术,适用于电子、离子或单光子等需要时间分辨成像的各种应用。TPX3Cam可以很容易地集成在桌上型研究装置中,也可以集成在同步加速器或自由电子激光环境中。使用TPX3Cam,可在速度映射成像设备中测量电子和离子。纳秒级的时间分辨率和数据采集速率使我们能够以前所未有的方式进行测量。TPX3Cam能够在400至1000 nm波长范围内以高量子效率同时对超过1000个光子的闪烁光进行成像和时间戳记。它可以在VMI(速度映射成像)装置中高效地记录撞击在MCP(微通道板)上的离子。 MCP耦合到一个快速P47磷光体屏,该屏产生响应离子撞击MCP的闪烁光。TPX3Cam放置在真空之外,能检测来自磷光体屏的闪光。在TPX3Cam中,所有单个像素都可独立工作,且能对伴随发生的' 事件' 进行时间戳记。 这就将成像传感器变成了快速数字转换器阵列,具有并行作用的空间和时间分辨率,因此可以同时记录多个离子种类,允许进行符合测量和协方差分析。工作波长400-1000nm技术参数优点光敏硅传感器波长范围:400 - 1000nm每像素的同时检测时间(ToA)和强度(ToT)时间分辨率1.6ns,有效帧率 500 MHz无噪声、数据驱动读数,高达80 Mhits/s (10Gb/s)灵活光学设计下图:TPX3CAM能够同时对超过1000个光子进行成像和时间标记,在400到1000 nm波长范围内具有高量子效率。它可以在VMI(速度图成像)配置中有效地记录撞击在微通道板上的离子。MCP与快速P47荧光粉耦合,当离子撞击MCP时,该荧光粉会产生闪光。TPX3CAM,放置在真空之外,可以检测荧光粉的闪光。“在TPX3CAM中,所有单个像素都独立工作,能够对‘事件’进行时间标记。这将成像传感器转变成一个快速数化器阵列,具有空间和时间分辨率,同时发挥作用,因此可以同时记录多个离子种类,从而进行重合和协方差分析。"应用离子和电子成像TPX3CAM的应用包括飞行时间质谱中离子的空间和速度图成像;离子和电子的符合成像,以及其他时间分辨成像光谱类型。TPX3CAM能够以1.6 ns的时间分辨率检测离子撞击并对其进行时标记,从而可以同时记录所有碎片离子的离子动量图像。这种单检测器设计简单、灵活,能够进行高度差分测量。右边的图像显示了CH2IBr的离子TOF质谱,该质谱是在德国汉堡同步加速器的闪光光源下,用TimepixCam(TPX3CAM的之前型号)记录的,在强激光脉冲强场电离后,以及每个探测器的图像在TOF光谱中的峰值。单光子成像强化版TPX3CAM可以是单光子敏感的。在这种配置中,检测器与现成的图像增强器结合使用。应用包括宽场时间相关单光子计数成像(TCSPC),磷光寿命成像和任何需要时间分辨单光子成像的应用。图像(a): 通过TimepixCam获得,TimepixCam是TPX3CAM的前一个模型。图像(b):对于(a)中所示的A1-A4区域,强度是时间的函数(磷光衰减),磷光衰减和拟合的残差具有单指数拟合。 规格传感器材料光敏性增强的硅波长范围400 - 1000 nm探测范围~1000光子/每像素光学传感器活动区域14.1 x 14.1 mm2类型C型接口成像专用集成电路类型Timepix3像素间隔55 µm像素数量256 x 256阈值数量1吞吐量10 Gb/s 的情况下,高达80 Mhits/s1 Gb/s的情况下,高达15 Mhits/s停滞时间读数停滞时间为0时间分辨率1.6 ns有效帧速率 500 MHz像素击中停滞时间~1 µs读出模式数据驱动,通过每像素ToA和ToT检测同步时间和强度其他参数计算机接口1 Gb/10 Gb外部快门控制有外部信号时间戳260 ps重量2.2 kg尺寸(长x宽x高)28.8 x 8 x 9 cm冷却空气采集软件Windows/ Linux/Mac的图形用户界面
  • 应用于时间分辨PIV的高重频激光器
    LDY300 PIV 系列 应用于时间分辨PIV的高重频激光器特点: —高能量@527nm —0-20KHz连续可变 —可在现场更换的泵浦模块 —专用PIV激光头 —薄殷钢光学轨道 —坚固耐用的工业设计应用: —PIV —粒子筛选 —Ti:S泵浦 LDY300系列是半导体泵浦,双腔,Q开关Nd:YLF激光系统,适用于高速PIV.输出能量高达30mJ@1kHz(每个腔)@527nm。激光器建立在一个坚固的自承重殷钢轨道上,机械性能优异,光学稳定性好。配合专利的谐振腔设计,输出光束在时间/空间上分布平滑,稳定,从而提供几乎相同的间隔照明。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制