当前位置: 仪器信息网 > 行业主题 > >

超快时间分辨荧光仪

仪器信息网超快时间分辨荧光仪专题为您提供2024年最新超快时间分辨荧光仪价格报价、厂家品牌的相关信息, 包括超快时间分辨荧光仪参数、型号等,不管是国产,还是进口品牌的超快时间分辨荧光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快时间分辨荧光仪相关的耗材配件、试剂标物,还有超快时间分辨荧光仪相关的最新资讯、资料,以及超快时间分辨荧光仪相关的解决方案。

超快时间分辨荧光仪相关的资讯

  • 日本电子收购超快时间分辨电镜商IDES:补强时间分辨TEM技术
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2020年1月17日,日本电子(JEOL Ltd.)消息,日本电子完成收购INTEGRATED DYNAMIC ELECTRON SOLUTIONS,INC.(总部位于美国加利福尼亚,以下称IDES)的所有股份,IDES是一家专门从事与透射电子显微镜(TEM)相关技术的创业型企业。收购后,IDES将成为日本电子全资子公司。/span/pp style="text-indent: 2em "strong背景与目的/strong/pp style="text-indent: 2em "正如日本电子正在实施的新的中期业务计划“三角计划2022”中概述——strongspan style="color: rgb(0, 32, 96) "公司将通过实施加速业务扩张的举措来推动持续和可持续的增长/span/strong。日本电子的旗舰产品TEM系统旨在观察原子分辨率的材料并检查其静态结构。strongspan style="color: rgb(0, 32, 96) "IDES的独特技术将把这些TEM系统升级为“超快时间分辨的TEMs”,能够在纳秒(十亿分之一秒(10-9))到飞秒(一千万亿分之一秒(10-15秒)之间捕捉静止和动态图像,并用纳米级的空间分辨率进行记录。/span/strong/pp style="text-indent: 2em "span style="color: rgb(0, 32, 96) "strong这些创新的系统可用于探索常规TEM无法触及的动力学和量子现象。将来,该系统还可以升级以支持在生命科学领域中的应用,如蛋白质运动研究。/strong/span/pp style="text-indent: 2em "IDES还提供与高速静电偏转和压缩感测有关的独特技术。span style="color: rgb(0, 32, 96) "strong这些技术可以作为附件集成到TEM中,以微秒级的分辨率提供最小的损坏、高通量的TEM图像采集。/strong/span/pp style="text-indent: 2em "此外,span style="color: rgb(0, 32, 96) "strongIDES的当前技术及其正在开发的未来技术将使升级冷冻电子断层扫描_、扫描和扫描透射成像技术成为可能。/strong/span/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于IDES/strong/span/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 200px height: 57px " src="https://img1.17img.cn/17img/images/202001/uepic/2de2900a-ac7f-40e8-9020-a5963f29bf1e.jpg" title="ides.png" alt="ides.png" width="200" height="57" border="0" vspace="0"//ppbr//pp style="text-indent: 2em "strong名称:/strongINTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC.(集成动态电子解决方案公司)/pp style="text-indent: 2em "strong地址:/strong美国加利福尼亚州普莱森顿市117单元5653号/pp style="text-indent: 2em "strong成立时间:/strong2009年/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于日本电子/strong/span/pp style="text-align: left text-indent: 0em "img style="max-width: 100% max-height: 100% width: 200px height: 92px " src="https://img1.17img.cn/17img/images/202001/uepic/1b59b8a7-58ee-4a52-8926-50da7ac0baa7.jpg" title="img_logo_en.png" alt="img_logo_en.png" width="200" height="92" border="0" vspace="0"//pp style="text-indent: 2em "日本电子株式会社(JEOL Ltd., 董事长:栗原 权右卫门)成立于1949年,公司的业务包括三个部分:科学/计量仪器、工业设备以及医疗器械。主要产品如下:/pp style="text-indent: 2em "strong科学/计量仪器/strong/pp style="text-indent: 2em "电子光学设备(透射电子显微镜、 扫描电子显微镜、电子探针、 俄歇电镜、光电子谱仪和电子显微镜周边设备等)/pp style="text-indent: 2em "分析仪器(核磁共振谱仪、 电子自旋共振谱仪、质谱仪、(飞行时间质谱仪, 气相色谱-质谱联用仪, 液相色谱-质谱联用仪) 、 便携式气相色谱仪、气体监测仪等)/pp style="text-indent: 2em "计量检查仪器(扫描电子显微镜、 分析型扫描电子显微镜、电子显微镜周边设备、 复合电子束加工观察设备、 聚焦离子束加工观察设备、截面抛光仪、离子切片仪、半导体缺陷分析仪 、X射线荧光元素分析仪、手持式X射线荧光元素分析仪等)/pp style="text-indent: 2em "strong工业设备/strong/pp style="text-indent: 2em "半导体设备(电子束光刻系统(可变矩形束电子束光刻)、电子束光刻系统(圆形电子束光刻)等)/pp style="text-indent: 2em "工业设备(电子束蒸镀用的电子枪及电源、大功率电子枪及电源、 内置等离子体枪及电源、产生等离子体的高频电源、高频感应热等离子体装置等)/pp style="text-indent: 2em "strong医疗设备/strong/pp style="text-indent: 2em "医疗设备(自动分析仪、 样品传输系统、临床检查信息处理系统、 全自动氨基酸分析仪等)/ppbr//p
  • 超快超分辨成像问题在列:2023年度15个重大科学问题、工程技术难题和产业技术问题
    为进一步加强科技前瞻研判,引领原创性科研攻关,打造学术创新高地,推进科技自立自强,按照《中国科协办公厅关于征集2023重大科学问题、工程技术难题和产业技术问题的通知》 (科协办函创字[2023]8号)文件要求,中国光学工程学会面向国内外科技组织和科技工作者,共征集58个全球共同关注的前沿科学问题、工程技术难题和产业技术问题。经过专家委员会函评和终审评议,共评选出15个前沿科学问题、工程技术难题和产业技术问题。本次评选出的5个前沿科学问题中,第一个就是超分辨率成像技术,该技术在近几年得到了快速的发展,目前已经有多项科研转化成果成功产业化。5个前沿科学问题1、如何突破时-空极限实现超快超分辨成像?How to break through the spatio-temporal limit to achieve ultrafast and super-resolution imaging?2014年诺贝尔奖授予了将光学显微带入纳米尺度的超分辨荧光成像技术,但其依赖于荧光标记,且时间分辨率较低。压缩超快成像技术兼具飞秒时间分辨率和极高数据压缩比,但以牺牲空间分辨率来观测超快动态过程。发展超快超分辨成像技术,在无标记宽场成像下实现时-空分辨率的协同突破,将极大推动人类对各类超快微观现象的认知,助力“追光捕快、察微显纳”的新成像体系建设。2、人们能以多高的自由度塑造光?How arbitrarily can light be shaped?自从认识光现象起,人们便尝试不断改变光的“造型”。从早期的透镜聚焦光能,到现代显微技术中的复杂结构光、激光雷达形貌测量中的点阵投影等,还有精细激光加工中超长焦深的贝塞尔光束、具有弯曲空间传播轨迹的艾利光束等。对光的塑造能力越高、对其利用程度也越高。为此,应从原理上探索塑造光的极限,即人们能以多高的自由度塑造光?3、光学系统的体积极限是多小?What is the volume limit of an optical system?光学元件的性能在很大程度上受到可用光学材料和结构设计的限制。基于超表面的平面光学器件以及各类新型微纳元件有望将核心光学元件缩小到几百微米级别,相比传统复杂光学系统体积显著减小了六个数量级。但如何确定具有特定功能的光学系统的体积理论极限还有待研究,从而进一步实现微型化、微型化与集成化,将在AR/VR、遥感探测及未来纳米科技等领域产生巨大影响。4、光电子芯片的集成度极限是什么?What is the limit of photonic integration? 面向未来十年或更长远时间,光电子芯片集成度的增长会遇到瓶颈,相应的容量要扩展到Pb/s量级会遇到许多根本性的限制。本科学问题涉及芯片容量、尺寸、功耗三个方面的理论和技术的极限,需要在超宽带透明光电材料、高集成度器件中的光场调控、高效率低功耗调谐机理等方面研究变革性的新原理和新技术。5、如何使光计算完备?How to make optical computing complete?采用光学方法来实现运算处理和数据传输是后摩尔时代算力、功耗问题极具潜力的解决途径之一。光子具有光速传播、抗电磁干扰等特性,以及具有天然的多维复用和并行计算优势,十分契合人工智能等应用领域大数据处理的需求。但目前光子计算面临着很多挑战,例如光子芯片的集成度仍有待提高;计算精度仍低于电子芯片,器件架构未优化,上述挑战亟需研究5个工程技术难题1、如何实现EW超强激光?How to create EW ultra-intense laser?依托我国神光装置,攻克甚多束超短脉冲激光高效优质相干合成、超高信噪比管控、等离子体压缩等核心难题,突破EW超强激光高增益、高品质、高负载三大受限条件,国际上率先实现EW级峰值功率激光输出,率先进入超相对论物理等前沿基础研究领域,辐射带动平均功率万瓦级超短激光技术发展和应用。2、如何构建超大型空间光学装置?How to construct the ultra-large space optical instrument?超大型空间光学装置是当前世界宇航企业重点发展的综合性大系统工程方向。在轨组装和维护则是构建超大型空间光学装置的重要技术途径,即将系统的各个组成模块发射入轨,再利用空间操控工具对各个模块进行在轨组合和装配。该技术的实现将引领弹性可重构光学遥感系统的跨越式发展,并为未来空间飞行器维护与服务奠定技术基础。3、如何实现高功能密度感存算一体光电集成芯片?How to realize that photoelectric integrate chip with high functional density sensing and memory integration?能够执行探查、识别、飞行、定向打击等任务的微型机器人对功耗、尺寸、功能要求十分苛刻。现有设备集成化程度低,处理数据量大,成像体制单一,无法实现一体化探查。为解决这些问题,可采用感存算一体化仿生架构,突破光电融合集成、智能感知处理等关键技术,挖掘低频有效信息,降低能耗压力,实现高功能密度、极小型化、极低功耗的一体化光电集成芯片。4、如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?How to achieve real-time and real-space imaging of microscopic dynamics on the intrinsic scale of atoms and electrons?原子、电子是自然界许多现象的核心,其结构及运动状态决定了所构成物质的宏观特性。原子、电子的运动发生在飞秒至阿秒的超快时间尺度以及皮米的超小空间尺度上,因此,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术以实现对原子-亚原子微观世界中超快动力学过程的探测与控制,揭示材料中各种功能的微观起源。5、如何实现高时空分辨率的全球重力梯度测量?How to retrieval high time and spatial resolution global gravity gradient?地球重力场是地球的基本物理场之一,反映了地球表层及内部物质的空间分布、运动和变化,同时也决定着大地水准面的起伏和变化。利用高精度冷原子重力梯度仪对全球的重力梯度进行高时空分辨率的测量,可以更好地监测揭示海洋环流活动规律,全球陆地水储量变化,冰盖和大型冰川系统的质量平衡,为人类未来的生存和发展制定科学的应对策略。5个产业技术问题1、如何打造成熟的硅基光电异质集成工艺平台,支撑新一代信息技术发展的需求?How to build the accessible platform for optoelectronic heterogeneous integration based on silicon photonics, to facilitate the development of next-generation information technology?随着AI、下一代数据中心、激光雷达、卫星通信等战略应用迅速发展,单一集成光子材料已不能满足产业需求。以III-V半导体、薄膜铌酸锂为代表的硅基光电异质集成可融合多种光电功能材料的优势,将成为高端光子芯片在上述应用领域的重要解决途径。鉴于光电异质集成国际竞争态势,我国迫切需要提升高端异质集成光子芯片的研发及产业化能力,支撑产业发展。2、如何突破激光时空特性测试计量短板难题?How to break through the difficult problem of measuring the spatial and time domain parameters of lasers?2022年,激光产业销售收入大于800亿。然而,支撑我国激光产业发展的激光参数测试仪95%依赖进口,年高达3亿元。特别是激光时域和空域参数测试计量缺失,全部依赖德国、美国、加拿大等仪器。典型的包括:测量皮秒、飞秒和阿秒的自相关仪、FROG和SPIDER等;千瓦级功率激光光束质量测试仪等。测试仪器短板,风险大,是急需攻关的问题。3、中高端传感器如何实现自主可控?How to achieve self- production and controllability of medium and high-end sensors?传感器是物理与数字世界纽带,万物互联基石,对国力有重要影响。目前我国低端传感器产能过剩,中高端传感器自主可控率低。小到手机摄像头、大到汽车发动机,中高端传感器严重限制了我国产品市场竞争力。传感器专业点多面广,对材料、集成电路等基础工业水平要求高。如何实现中高端传感器自主可控是一个关键产业技术难题。4、如何谱写智能网联汽车的“中国方案”?How to compose the "Chinese Approach" for intelligent connected vehicles?智能化、网联化已成为各国汽车产业博弈未来的战略制高点,李克强院士提出了智能网联汽车的中国方案—“车路云一体化融合系统控制”的技术路线。在路侧通过将激光雷达、毫米波雷达和摄像头融合在一体,具备全天候全息环境感知能力,并有传输延迟低、覆盖范围广、数据精度高、易维护安装的特点,可以解决交通拥堵、交通事故两大核心痛点,进一步提升我国交通信息化、智能化。5、如何突破反谐振空芯光纤降损及大规模工业化制备难题?How to break through the loss-reducing and massive industrial manufacture of anti-resonant hollow-core fiber?作为近半世纪光通信行业基础媒介的实芯光纤正面临容量与时延两项限制。反谐振空芯光纤在理论损耗、带宽、非线性和介质光速等方面全面优于实芯光纤,将对光纤、光器件、光网络系统形成颠覆性变革,有望构建下一个50年的光通信生态。其理论损耗极限、将损耗降至可商用水平并实现大规模工业制备,是亟待突破的技术和产业问题。
  • 突破传统光学衍射极限:新一代Nanoimager可轻松实现超分辨荧光成像
    近年来,随着活细胞体系单分子荧光成像技术的发展,膜蛋白单分子研究,特别是受体动力学的研究,已成为目前单分子研究领域中活跃的研究方向之一。近几年发展起来的超分辨成像技术因其能够突破光学衍射限,而比传统光学显微镜具有更高的分辨率和更高的定位精度。英国Oxford Nanoimaging公司新推出的超分辨荧光显微镜—Nanoimager,由牛津大学Achillefs Kapanidis教授团队经过8年时间研发而成,是全球台大视野单分子FRET显微镜,将以超强的分辨率在单分子示踪、活细胞成像、蛋白互作、3D成像等研究领域发挥重要作用。Nanoimager主要技术特点? 横向分辨率20nm;纵向分辨率50nm ? 稳 定 性:1 μm/K的漂移;1 nm (1 Hz to 500 Hz)振幅 ? 支持同时双色成像和顺序四色成像 ? 采用1激光,使用安全 图1 Nanoimager 超分辨成像 Nanoimager采用PALM/dSTORM技术和光激活定位显微技术 (PALM) ,利用单分子定位算法并结合光学系统艾里斑的形状,以超高精度(纳米量)获得荧光分子的中心位置,然后用CCD将其信号进行采集转化终得到分辨率为20nm的超分辨图像。 Nanoimager主要应用案例1、单分子FRET FRET是一种两个荧光分子间非辐射性的能量转移方式,反映两者的分子间距(一般在2 – 10 nm的间距发生)。Nanoimager是台用于大视野单分子荧光共振能量转移(smFRET)的商业化仪器,其适用于smFRET的关键功能包括:同时双色成像;单分子散射光强度和总体平均的实时分析;视野中数千个单分子的高通量成像,以及用交替荧光激发 (ALEX) smFRET的功能来定量化学计量与FRET效率。图2是smFRET用于研究单个DNA霍利迪交叉的动力学。 图2 用smFRET检测霍利迪交叉(HJs)的实时构象变化 2、单分子示踪 Nanoimager可以在两个通道同时示踪细胞或者纯化物样品中的单分子 (图3),并计算扩散系数。细胞中分子的扩散系数可以被示踪,如酶或蛋白可以通过药物和抗生素的反应来示踪。低扩散率可以表示标记分子与另一分子或结构的相互作用或相结合。 Nanoimager可以直接反映纯化样品中荧光粒子的扩散率和预估大小,具有敏感性 (单荧光分子别) 和特异性 (双色标记可以显著降低检测杂质的可能性)。 图3 Nanoimager双色追踪单分子/粒子 3、更大视野的成像 Nanoimager的每个成像通道均有50 μm x 80 μm的大视野,且照明均匀,可以实现单分子或细胞的高通量成像并快速收集数据。图4显示了以10倍于其他技术的速度对突变的大肠杆菌细胞的不同表型进行成像。为了获得不同表型的可靠的结果,需要对大量细胞进行比较。使用具有大视野,能够自动对焦和自动获取数据的Nanoimager可以显著加快整个实验速度和通量。将大视野与超分辨成像结合是Nanoimager的特优势。 图4 Nanoimager的大视野可以在高分辨率下实现高通量成像 超分辨荧光显微镜以其特的优势,已成为生物医学研究的重要工具。如果您想了解更多关于Nanoimager的技术和应用详情,欢迎致电010-85120280咨询,我们会尽快给您满意的答复! 相关产品及链接 1、新一代超分辨荧光显微镜 (NEW):http://www.instrument.com.cn/netshow/SH100980/C273664.htm2、LaVision BioTec光片照明显微镜:http://www.instrument.com.cn/netshow/SH100980/C132856.htm3、双光子荧光显微镜:http://www.instrument.com.cn/netshow/SH100980/C132637.htm4、LVEM5 台式透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C157727.htm
  • 我国超分辨率荧光显微镜研制取得新突破
    通过采用独特的分子设计,我国光电国家实验室朱明强教授课题组近日研发了一种超级荧光分子开关,将基于二芳基乙烯的荧光分子开关比提高了4个数量级,达到1万倍以上,响应速率也大幅度提高。并且,课题组还利用这种超级荧光分子开关的新特性,制作出具有超级光敏感和应用潜力的全光晶体管,这对我国研制新型超分辨率荧光显微镜意义重大。相关成果的论文日前已经在国际知名的《自然· 通讯》杂志上发表。  据介绍,在过去很长一段时间,世界各国科学家认为光学显微镜有一个极限,即无法获得比半光波长更好的分辨率。但在&ldquo 荧光分子&rdquo 的帮助下,科学家可以突破这种极限。2014年,美国及德国三位科学家就是因为&ldquo 研制出超分辨率荧光显微镜&rdquo ,将光学显微镜带入了纳米维度,获得诺贝尔化学奖。  在&ldquo 纳米&rdquo 级的超分辨率荧光显微镜下,科学家可以实现活体细胞中单个分子通路的可视化,能够观察到分子是如何在大脑神经细胞之间生成神经突触,可以追踪帕金森病、阿尔兹海默症和亨廷顿症患者体内相关蛋白的累积情况,还能跟踪受精卵在分裂形成胚胎时蛋白质的变化过程等。
  • 詹求强教授课题组《自然通讯》新成果:非线性荧光损耗机理及超分辨成像技术获进展
    作者:朱汉斌 来源:中国科学报华南师范大学华南先进光电子研究院教授詹求强课题组在非线性荧光损耗机理及超分辨荧光显微成像领域取得重要进展。相关研究5月23日在线发表于《自然通讯》(Nature Communications)。该研究在荧光损耗物理机理上,提出了受激辐射诱导激发损耗新机理,“拔本塞源”式对敏化能级进行损耗,从源头阻断荧光的激发能量,新机理带来的“荧光损耗放大效应”大幅降低了超分辨所需要的激光光强,在低光强条件下实现了9种不同光谱探针的荧光损耗。在超分辨成像技术上,由此发展了一种通用性强的基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,克服了传统多色STED超分辨系统所依赖的多对超快脉冲光束协同工作的复杂系统、高成本、低稳定性等问题。受激发射损耗(Stimulated emission depletion, STED)超分辨显微镜的概念由德国科学家Stefan W. Hell于1994年提出,该技术于2014年获得了诺贝尔奖。然而,传统STED显微镜存在原理性局限和问题:受激辐射作用如果要在与自发辐射(寿命有机染料通常为纳秒级)竞争中占主导,通常需要高功率的超短脉冲(飞秒/皮秒)激光作为损耗激光,这往往会导致严重的光漂白、光毒性和重激发背景等问题。此外,多色STED超分辨技术和系统复杂度高、成本高、维护难。詹求强自2017年起带领研究生探索新机理,最终以STED原理性缺陷为突破口,提出全新机理解决了关键问题。上转换荧光纳米颗粒是一种纳米荧光探针,具有近红外激发、反斯托克斯位移大、无背景荧光、发光极其稳定等独特优势。上转换纳米探针通常是一个敏化-发光二元系统,敏化离子负责吸收激发光能量,然后传递给发光离子辐射波长更短的荧光。为解决STED面临的上述难题,詹求强课题组基于上转换荧光技术提出了全新的思路:抑制敏化离子和发光离子间的能量传递过程就可以切断对发光离子的能量补给,使得发光离子被“釜底抽薪”,即受激辐射诱导激发损耗(Stimulated-emission induced excitation depletion, STExD)机理。结合上转换发光的多光子非线性泵浦依赖特性(非线性效应随泵浦的光子数增多而不断增强),实现了光子数越高的荧光能级电子损耗越强烈,STExD机理具有传统STED所不具有的对荧光损耗进行非线性放大的独特效应,与之伴随的技术意义就是可以逐级降低高能级荧光损耗所需要的饱和光强,这突破了传统STED中的饱和光强理论的限制(实验测得值显著低于传统理论值)。基于此,课题组使用740 nm的激发光和1064 nm的损耗光,在钕掺杂的上转换荧光探针中实现了高达99.3%的超高损耗效率,损耗饱和光强降低至23.8 kW/cm2,比传统STED探针降低了3个数量级。结合上转换发光一对多的敏化-发光特性,STExD可以实现一对激光实现对多种UCNPs探针的光开关控制。钕离子是上转换发光常用的敏化离子,可以单独或与镱离子联合敏化多种发光离子,课题组利用镱离子的能量传递桥梁作用,仅使用一组固定波长的激光器就成功实现了铒离子,钬离子的高效荧光损耗,损耗效率分别超过90%和80%。进一步地,也分别在镨、铕、铥、铽掺杂的体系中实现了高效的荧光损耗效应,总计实现9种不同光谱探针的同时荧光损耗。以此新机理STExD为基础,课题组发展了一种基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,分别对钕(黄色),铒(红色),钬(绿色)掺杂的上转换荧光探针实现了不同颜色的超分辨成像,原始图像分辨率达34 nm,并进一步实现了钕、钬掺杂的上转换荧光双色超分辨成像。通过荧光探针的表面改性和特异性修饰,课题组成功将上转换荧光探针免疫标记到HeLa癌细胞的肌动蛋白纤维,实现了亚细胞结构的超分辨生物成像。该工作提出的STExD通用发光损耗策略巧妙地利用了上转换荧光的传能发光特性,为解决传统STED技术的问题、开发新型探针提供了新的方案,为开发低光毒性、深层组织(近红外II区损耗激光)的多色超分辨成像技术奠定了基础,在突破衍射极限的光传感、光遗传学、光刻等前沿领域也具有广泛的应用前景。华南师范大学博士研究生郭鑫、蒲锐为该论文共同第一作者,来自瑞典皇家理工学院(KTH)的刘海春博士、Jerker Widengren教授等人以及詹求强课题组2016级黄冰如、2015级吴秋生等硕士生对该课题的完成做出了重要贡献,詹求强教授为论文通讯作者,华南师范大学为论文第一完成单位。该研究得到了国家自然科学基金、广东省自然科学基金等项目经费的支持。相关论文信息:https://www.nature.com/articles/s41467-022-30114-z
  • 首台高重频高通量高次谐波超快角分辨光电子能谱仪应用
    角分辨光电子能谱仪(ARPES)因其具有能量和动量分辨能力,是探测材料能带结构的重要手段。随着超快激光技术的不断发展,结合泵浦-探测技术的超快角分辨光电子能谱仪(TR-ARPES)由于兼具时间分辨能力,可以用来探测非平衡态的电子能带信息,因此近年来备受人们的重视。特别是基于高次谐波产生(HHG)的TR-ARPES还具有光子能量高、光子能量可调谐的优点,使得其探测范围可以覆盖到大范围布里渊区,在电荷密度波(CDW)材料、过渡金属二硫化物(TMD)材料的超快动力学过程研究中具有重要的作用。  近日,中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室丁洪研究组(EX7组)的博士生陈发民、潘默君、刘俊德在钱天研究员和运晨霞副主任工程师的指导下,研制成功国内首台基于高重复频率、高通量高次谐波光源的超快角分辨光电子能谱仪(HHG-TRARPES),并通过了专家的现场测试(图1)。该仪器系统配备了六轴低温样品台,DA30半球分析器,极限真空优于10-10torr,最低温度小于6K,其光子能量连续可调(20-60eV),重复频率为0.4MHz。第18阶次光子(21.6eV)的能量分辨率为109meV,时间分辨率为120fs,样品位置处的光通量约为1011ph/s,综合参数达到世界同类型设备的一流水平。此外,全设备接入自主开发的控制系统,实现了集成化、智能化、便捷化操作,时间和角度联动扫谱,内置真空自锁与保护功能。目前实验装置已经进入稳定运行阶段,实现了对拓扑绝缘体Bi2Se3未占据态和电荷密度波材料1T-TiSe2能带动力学演化过程的测量(图2和图3)。这一设备的搭建完成,填补了国内相关领域的空白,为未来研究量子材料中电子的超快动力学过程、未占据态以及新型电子态提供了关键的实验平台。  这项工作及相关研究得到北京市科委、国家自然科学基金委、中国科学院战略性先导科技专项(B类)和中国科学院科研仪器设备研制项目等项目的大力支持。高次谐波光源部分得到光物理重点实验室L07组赵昆副研究员、魏志义研究员及联培博士生王佶、许思源等人的密切协助与配合(详细信息请见:科研进展∣高重复频率极紫外相干光脉冲的产生)。图 1:实验室设备全图图 2:拓扑绝缘体Bi2Se3未占据态的测量图 3: CDW材料1T-TiSe2的能带动力学过程(T=87K)图 4:集成控制系统
  • 专家点评NBT| 陈良怡/李浩宇合作团队发明计算超分辨图像重建算法,稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。哈尔滨工业大学博士生赵唯淞、北京大学博士后赵士群、李柳菊为共同第一作者,哈尔滨工业大学仪器科学与工程学院李浩宇教授和北京大学未来技术学院陈良怡教授为论文共同通讯作者,共同作者还包括哈尔滨工业大学谭久彬院士、刘俭教授,北京大学毛珩博士,生科院成像平台单春燕博士和华南师范大学刘彦梅教授。参与合作的实验室包括武汉大学宋保亮教授、北京大学陈兴教授、中科院国家纳米科学中心丁宝全教授和生物物理所纪伟教授等。该项工作得到北京大学膜生物学重点实验室、麦戈文脑研究所、北大-清华生命科学联合中心、北京智源人工智能研究院的支持,也是多模态跨尺度国家生物医学成像设施建设过程中的重要成果。专家点评徐平勇(中科院生物物理所)自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。在固定细胞中,以MINFLUX、SIMFLUX以及ROSE等为代表的超分辨成像技术利用调制光照射单分子定位的方法实现了小于10纳米的空间分辨率。然而,在活细胞中进一步提高成像的空间分辨率仍然面临挑战。一个主要原因是活细胞成像的时空分辨率是互相关联的,为了减少活细胞里的运动伪影,需要通过提高采样频率来提高时间分辨率,但是采样频率或者时间分辨率的提高会减少记录的光子数,使得空间分辨率下降。在现有超分辨成像技术中,结构光照明成像SIM技术具有最高的时间分辨率,但是受限于成像原理本身和所采用的维纳反卷积等算法,空间分辨率进一步提高遇到了挑战。陈良怡和李浩宇团队合作发展的稀疏结构光超分辨显微成像技术(Sparse-SIM),保留了陈良怡团队前期发展的海森-SIM的高时间分辨率的优点,并进一步将SIM的空间分辨率提高到60纳米。该技术属于计算超分辨率成像方法,主要包括两步迭代解卷积求解算法。其核心是将Richardson–Lucy反卷积算法应用到SIM成像中,通过前期发展的基于信号的时空连续性的先验知识重建图像的方法减少或者消除Richardson–Lucy反卷积应用中的噪声问题;并利用提出的“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个先验知识作为约束条件,建立通用的计算框架——稀疏解卷积技术。该工作有几个方面的突破和创新:1)解决了Richardson–Lucy反卷积应用到生物成像中的噪声和先验知识问题,拓展了它在生物成像中的实际应用;2)利用稀疏结构光超分辨成像在活细胞中实现了同时高时空分辨率长时程成像;3)方法具有普适性,可以广泛用于宽场成像和其它超分辨成像技术,提高这些成像方法的分辨率。目前发展的Sparse-SIM主要是基于二维结构光 (2D-SIM) 系统,实现了活细胞中空间分辨率60nm、时间分辨率564Hz、成像时间1小时以上的超分辨成像。这是目前活细胞成像中同时具有的最高时空分辨率。其空间分辨率可与非线性SIM相媲美,但是时间分辨率更高,成像设备上的复杂程度也相对要低一些。将来Sparse-SIM技术也有望能用于三维结构光成像,尽管受限于3D-SIM成像方法本身成像的时间分辨率会有所下降。总之,Sparse-SIM技术同时具有高的时间和空间分辨率,其在活细胞成像中的应用有望带来诸多生物学中的重要发现。尤其重要的是,稀疏解卷积技术框架适用于目前多数荧光显微镜成像方法,并将这些成像的空间分辨率提升了近两倍,将大大促进这些荧光成像方法的发展和它们在生物学中的广泛应用。刘兴国(中科院广州生物医药与健康研究院)以SIM、STORM/PALM、STED为代表的的超分辨成像技术,成功突破了光学衍射极限,极大推动了亚细胞结构和细胞器互作动态等微观结构研究,获得了2014年诺贝尔化学奖。然而超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高——在超分辨成像技术中,SIM技术具有最好的时间分辨率,然而空间分辨率也是3种主流技术中最低的,缺乏对100nm以下尺度的亚细胞器结构的解析力。在充分利用SIM技术的时间分辨率的基础上,如何提高空间分辨率是一个重要的研究方向。北京大学陈良怡团队与哈尔滨工业大学李浩宇教授在Nature Biotechnology 杂志报道最新开发的Sparse deconvolution算法,并成功结合SIM技术开发出Sparse-SIM,在时空分辨率上成功将SIM技术的空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率。同时,陈良仪团队研究显示,本技术同样可以提高SD-SIM、STED等超分辨技术的轴向分辨率,甚至可以使普通宽场显微镜获得更好的信噪比。这一精彩的工作不但是领域的重要技术进展,而且具有广阔的应用空间。 陈良怡团队之前的工作,在硬件和软件水平挖掘SIM技术的时空分辨率,成功开发了高时空分辨率的Hessian SIM技术;本次研究再次在软件算法上取得突破,进一步推动了SIM技术在活细胞超分辨成像在时空分辨率的极限。应用Sparse-SIM技术,同时检测了核孔复合物结构、网格蛋白(clathrin)动态、溶酶体和内质网相互作用、内质网对线粒体内嵴动态的调控等重要过程,显现出Sparse-SIM强大的应用能力和应用前景。如何易于操作的提高超分辨成像技术的时空分辨率是亚细胞器结构和动态研究方面的一个重要方向,Sparse deconvolution算法或者Sparse-SIM提供了一个重要的生命科学研究工具,去探索更微观的生命科学过程。参考文献[1] Weisong Z, Shiqun Z, Liuju L, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy [J]. Nature biotechnology, 2021: DOI: https://doi.org/10.1038/s41587-021-01092-2.[2] Huang X, Fan J, Li L, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J]. Nature biotechnology, 2018, 36(5): 451-459.[3] Gu L, Li Y, Zhang S, et al. Molecular resolution imaging by repetitive optical selective exposure [J]. Nature Methods, 2019, 16(11): 1114-1118.[4] Szymborska A, Marco A d, Daigle N, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging [J]. Science, 2013, 341(6146): 655-658.[6] Ornberg R L, Reese T S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes [J]. The Journal of Cell Biology, 1981, 90: 40 - 54.[7] Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy [J]. PNAS, 2013, 110(52): 21000-21005.[8] Sun D-E, Fan X, Shi Y, et al. Click-ExM enables expansion microscopy for all biomolecules [J]. Nature Methods, 2021, 18: 107–113.[9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.[10] Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging [J]. Nature Methods, 2021, 18(1): 46-49.
  • 阿基米德发布Archimed X6时间分辨荧光定量PCR新品
    Archimed是鲲鹏基因汲取定量PCR技术发展之精华,由国际化资深技术团队匠心打造的全球首款时间分辨实时荧光定量PCR系统。基于菲涅尔透镜的新型光路系统、专利的时间分辨信号采集技术及独特的控温技术,使Archimed在检测灵敏度、光路串扰、温度均一性及准确性等方面引领国际先进水平。同时,基于全球视野的产品设计理念及制造工艺,赋予Archimed国际水准的优异品质。 精益求精,恒久品质Constant Perfection,Constant Quality 卓越品质:• 创新的光学检测系统——更高的灵敏度• 专利的时间分辨信号采集技术——更少的光路串扰• 独特的镂空式温控模块——更稳定快速的热循环控制• 人性化且功能完备的软件——更全面的应用、更简易的操作• 高性价比——更新的技术、更合理的价格• 即装即用——无需调试校正,更低维护成本• 全方位的售后服务——更值得信赖的合作伙伴 广泛应用:• 基因表达分析 • 基因分型 • 基因突变检测 • 病原体检测• 转基因检测 • 蛋白热稳定性分析 • miRNA研究 • 遗传分析技术创新,引领未来Innovation for Excellence Archimed光学检测系统核心优势:• 高灵敏 • 防串扰 • 快速检测 • 免校正 • 免维护 光路系统示意图Archimed温控模块核心优势:• 杰出的温度均一性及准确性,孔间温度均一性及准确性可达±0.2℃;• 极佳的升降温速率,模块最大升降温速率6℃/秒,样品最大升降温速率2.7℃/秒;• 无温度边缘效应 温控模块示意图性能优异,结果可靠Excellent Performance,Reliable Results 极佳的性能表现:• 温度均一性和准确性达到±0.2℃,确保极高的数据重复性(SD0.05)。• 低至1.33倍的高分辨率和宽广的线性范围(10 logs),确保优异的数据准确性。• 杰出的防串扰多色检测性能,确保日益增长的多重数据需求。 高重复性(Ct SD≤0.05) 高分辨率(低至1.33倍) 宽广的线性范围(10 Logs) 多色防串扰 智能分析,多样应用Intelligent Analysis,Multiple Applications 智能便捷的软件系统:• 灵活的程序设定和操作向导; • 完备的数据分析方法; • 一键式数据导出;• 全中文界面,针对中国用户使用习惯而设计; • 无限制的安装拷贝次数;• 软件版本终身免费升级。 人性化导航实验设置 数据结果自动分析 快捷数据导出全面的功能:• 定性检测 • 绝对定量 • 相对定量 • 熔解曲线• 基因分型 • 蛋白热稳定性 • 梯度PCR 绝对定量-标准曲线 熔解曲线分析 定性分析 相对定量-表达差异柱状图创新点:光学检测方面,Archimed采用菲涅尔透镜结合大尺寸PMT这一专利的新型信号检测系统,PMT高检测灵敏度结合菲涅尔透镜体薄、焦距短的特点,辅以特殊的光路设计,缩短检测光路,让检测器最大程度接近样品。扫描方式上,Archimed创新地采用时间分辨逐孔扫描检测技术,隔行排布扫描头的设计,高精度扫描头按时间顺序(时间分辨)让每个荧光检测通道遍历每个样品孔,从空间角度最大程度规避孔间串扰。温控方面,Archimed采用最新型Peltier元件,保证质量和性能最佳。镂空式反应模块设计减少导热金属质量,提升升降温速率;镂空式孔槽有助于空气流通;利用导热碳膜及辅助加热板,实现边缘孔的温度补偿,提高整板温度均一性。Archimed X6时间分辨荧光定量PCR
  • 成果速递 | 超高分辨散射式近场光学显微镜在超快研究领域最新应用进展
    近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。 前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学化率有重大影响,因此引起了人们的研究兴趣。 2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。 原文导读: ① 在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针的点上,从探针点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV ② 研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。图2:WSe2晶体稳态动力学的时空纳米成像研究。a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析 c: Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。 ③ 为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的个ps内,虚部q2(图3a)突然下降(δq20)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。 为了弄清各种瞬态机制,微分色散关系被研究者引入。先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与抑制耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。图3:WSe2中波导模的微分色散和动力学研究。a: δq2与Δt曲线;b: δq1与Δt曲线 c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系 综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。 neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。 参考文献:[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020).
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 120万!福建省立医院全自动时间分辨荧光免疫分析仪采购项目
    项目编号:[3500]FJYS[GK]2022183项目名称:福建省立医院全自动时间分辨荧光免疫分析仪采购项目预算金额:120.0000000 万元(人民币)采购需求:品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02321900-临床检验设备全自动时间分辨荧光免疫分析仪1(套)是本项目为福建省立医院全自动时间分辨荧光免疫分析仪采购项目。具体详见招标文件1,200,000.00工业合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕本项目( 不接受 )联合体投标。
  • 国内首台!高重频高通量高次谐波超快角分辨光电子能谱仪搭建完成并实现应用
    角分辨光电子能谱仪(ARPES)具有能量和动量分辨能力,是探测材料能带结构的重要手段。随着超快激光技术的发展,结合泵浦-探测技术的超快角分辨光电子能谱仪(TR-ARPES)由于兼具时间分辨能力,可用来探测非平衡态的电子能带信息,备受关注。基于高次谐波产生(HHG)的TR-ARPES还具有光子能量高、光子能量可调谐的优点,使得其探测范围可覆盖大范围布里渊区,在电荷密度波(CDW)材料、过渡金属二硫化物(TMD)材料的超快动力学过程研究中具有重要作用。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室丁洪研究组(EX7组)博士生陈发民、潘默君、刘俊德,在研究员钱天和副主任工程师运晨霞的指导下,研制出国内首台基于高重复频率、高通量高次谐波光源的超快角分辨光电子能谱仪(HHG-TRARPES),并通过了现场测试(图1)。该仪器系统配备了六轴低温样品台、DA30半球分析器,极限真空优于10-10torr,最低温度小于6K,其光子能量连续可调(20-60eV),重复频率为0.4MHz。第18阶次光子(21.6eV)的能量分辨率为109meV,时间分辨率为120fs,样品位置处的光通量约为1011ph/s,综合参数达到世界同类型设备的一流水平。此外,全设备接入自主开发的控制系统,实现了集成化、智能化、便捷化操作,时间和角度联动扫谱,内置真空自锁与保护功能。目前,实验装置已进入稳定运行阶段,实现了对拓扑绝缘体Bi2Se3未占据态和电荷密度波材料1T-TiSe2能带动力学演化过程的测量(图2、3)。这一设备的搭建完成,为未来研究量子材料中电子的超快动力学过程、未占据态及新型电子态提供了关键的实验平台。研究工作得到北京市科学技术委员会、国家自然科学基金委员会、中科院战略性先导科技专项(B类)、中科院科研仪器设备研制项目等的支持。高次谐波光源部分得到光物理重点实验室(L07组)副研究员赵昆、研究员魏志义及联合培养博士研究生王佶、许思源等的协助。图1 实验室设备全图图2 拓扑绝缘体Bi2Se3未占据态的测量图3 CDW材料1T-TiSe2的能带动力学过程(T=87K)图4 集成控制系统
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 活细胞超分辨率显微技术研究获进展
    2016年12月31日,中国科学院生物物理研究所徐平勇课题组、中国科学院计算技术研究所张法课题组以及美国科学院院士HHMI研究员Jennifer Lippincott-Schwartz合作在《细胞研究》(Cell Research)在线发表了题为Live-cell single molecule-guided Bayesian localization super-resolution microscopy 的文章,介绍了一种新型活细胞超分辨率显微技术及其独特优势。  超分辨率荧光显微技术由于打破了传统光学衍射的限制,使得人们能够更深入地理解细胞生物学,获得了2014年诺贝尔化学奖。但是由于设备和时空分辨率的影响,活细胞超分辨率技术仍面临诸多挑战。近年来,贝叶斯定位显微技术(Bayesian analysis of the blinking and bleaching,3B)利用荧光蛋白漂白和闪烁的特性,通过分析整个图像序列的变化得到荧光蛋白的概率分布图,该方法用简单的光学设备就能实现活细胞动态结构的超分辨率成像,成为活细胞超分辨率成像的重要工具之一。作为细胞成像新的重要工具,它仍然有三个关键的问题没有解决:1)在精度方面,存在严重的结构缺失,定位精度不高 2)在速度方面,该方法极其耗时,为了得到1.5μ m的超分辨率结构,大约需要6小时,并且随着图像尺寸的增加,计算时间急剧增长 3)在分析尺度方面,由于速度的限制,该方法很难获得全细胞大尺度长时间的动态变化。针对以上问题,实验人员通过将单分子定位和贝叶斯技术相结合,开发了一种新型活细胞超分辨率显微技术(single molecule guided Bayesian localization microscopy,SIMBA),该技术有以下优点:1)适用范围广,不需要任何额外的硬件设备,就能与主流TIRFM、PALM、STROM和light-sheet显微镜相结合,便于推广和使用 2)时空分辨率高,减少了结构伪迹的同时实现了50nm的空间分辨率和0.5-2s的时间分辨率 3)运行速度快,相比3B,加速比超过100倍,并且随着图像尺度的增大,加速效果更加明显 4)分析尺度大,实现了全细胞大尺度长时间动态变化分析。  活细胞超分辨率显微技术是当前研究的热点,开发新型活细胞超分辨率成像探针和新方法是中科院生物物理所徐平勇课题组的重要研究方向。徐平勇、张法、Jennifer Lippincott-Schwartz为本文的通讯作者 徐帆、张名姝为共同第一作者。该工作受到国家“973”计划 、国家自然科学基金、北京市自然科学基金、中科院基金先导项目等的资助,并申请专利“一种贝叶斯显微成像方法”。SIMBA对于固定细胞actin和活细胞CLC重构结果展示
  • 美德科学家因超分辨率荧光显微镜获诺贝尔化学奖
    瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为&ldquo 阿贝分辨率&rdquo 。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一&ldquo 束缚&rdquo ,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破&ldquo 阿贝分辨率&rdquo 的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术&mdash &mdash 单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。
  • 设备更新选型指南丨超快荧光三维成像技术推荐
    市面绝大多数共聚焦显微镜采用点扫描式激光共聚焦技术,成像速度较慢,难以满足活细胞动态观测、大视野快速扫描等成像需求。长光辰英的S3000转盘共聚焦显微镜采用三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,将成像速度提高至少二十倍。同时采用LED面光源激发光线更均匀,光毒性、光漂白性大大降低,适合连续观测。作为超快荧光三维成像的革新者,长光辰英的成像产品为活细胞,细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。推荐产品 S3000超快三维荧光成像系统S3000 超快三维荧光成像系统 (qq.com) PRECI SCS-F荧光单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)应用案例Daphnia活体内纳米塑料颗粒排出过程的动态成像Daphnia吃到肠道内的纳米塑料颗粒会产生红色荧光,用共聚焦模式进行拍摄随着Daphnia肠道蠕动,纳米塑料颗粒排出的全部过程。此动图由10min的实际时间缩时到12s。传统点扫描激光共聚焦显微镜很难对动态过程实现拍摄,S3000转盘共聚焦成像系统可以很好地捕捉活体样本的动态变化。斑马鱼活体全鱼3D荧光成像神经细胞转入GFP基因的3d日龄斑马鱼,在镜下进行长达2h的活体动态荧光扫描,整张图由8个视野,每个视野17层进行逐层扫描成像,可以在2分钟内进行斑马鱼活体全鱼的荧光扫描,实现了激光点扫描共聚焦无法达到的速度,更好的保持斑马鱼的活性,提供长时间拍摄的条件。肺组织切片的超大视野快速成像对小鼠肺叶组织切片进行共聚焦切片扫描,在其中橙色标明的气管ROI区域进行更大放大倍数的细节扫描。对常规荧光切片扫描仪难以捕捉及判断的信号进行高清成像。肠道微生物高分辨成像利用能够代谢标记肽聚糖的D型氨基酸荧光探针(FDAA)作为工具,通过使用红绿两种FDAA探针对小鼠进行序贯在体标记,随后,对肠道微生物进行取样,并使用S3000转盘共聚焦显微镜观察双色荧光在细菌上的分布,进而推测其增殖分裂模式。【文章链接:《mLife》丨基于共聚焦荧光成像的单细胞分选测序技术揭示肠道菌群中细菌的分裂模式及种属分类 (qq.com)】【拓展阅读:想知道共聚焦显微镜下的昆虫什么样子吗?(qq.com)】【拓展阅读:HOOKE S3000转盘共聚焦显微镜下的微观世界掠影 第二篇--植物系列 (qq.com)】【拓展阅读:共聚焦显微镜下掠影 第三篇《动物组织系列》 (qq.com)如果您对我们的产品和服务感兴趣,请随时联系我们
  • 我国科研团队在光学超分辨显微成像技术领域取得重要突破
    16日,记者从哈尔滨工业大学获悉,该校仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。  显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。  在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。  据悉,该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》为题,以长文形式在线发表于国际权威杂志《自然-生物技术》。
  • IRsweep发布微秒级时间分辨超灵敏红外光谱仪新品
    微秒级时间分辨超灵敏红外光谱仪 传统光谱仪由于光源,测量方式等限制,需要几秒钟或者更长的测量时间来获取一个完整的光谱。 然而,生物医学、化学动力学等许多过程都是发生在微秒级的时间内,这些过程是传统技术的光谱仪没办法观察到。IRsweep公司推出的IRis-F1时间分辨快速双光梳红外光谱仪是一种基于量子级联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1 μs时间分辨的红外光谱快速测量,完美提供了结合高测量速度(微秒级时间分辨率)、高光谱分辨率和宽光谱范围的解决方案,这种高速的测量方案开启了生物医药、化学反应动力学光谱分析的全新的可能。IRis-F1 微秒级时间分辨超灵敏红外光谱仪 IRis-F1 微秒级时间分辨超灵敏红外光谱仪原理示意图 主要特点: 1 μs时间分辨率 高达0.25 ~0.5 cm-1波数分辨率 双量子级联激光频率梳技术提供高能量光源 测量数据信噪比高 易于微量及痕量光谱分析 方便易用、可靠性高 主要技术参数: 高信噪比广泛的应用领域: 时间分辨光谱 动力学研究 光催化研究 高通红外光谱分析 适用固体、液体、气体样品化学成分分析 主要应用案例:1、菌紫红质时间分辨红外光谱研究 菌紫红质(bacteriorhodopsin)是存在于细菌(如生活在盐湖中的嗜盐细菌)中的光敏跨膜质子泵。 菌紫红质结构示意图 盐湖中嗜盐细菌光敏变色 实验装置示意图 时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的菌紫红质光敏状态变化 在微秒测试时间内,mOD浓度下光谱结果良好 光谱噪音水平低 时间分辨快速双光梳红外光谱适用于: 直接分析快速生物过程 实时研究动力学变化 高通分析蛋白-配体相互作用 时间分辨快速双光梳红外光谱测量结果 2、光催化过程的时间分辨红外光谱研究 三联吡啶钌(Ru(bpy)32+ )由于具有良好的受激发特性,在电致发光(ECL)检测领域有着广泛的应用。 光催化水分解反应机理: (i) Ru(bpy)32+ 被光激活;(ii) 消耗 S2O82- ,变为3+ 价转态 (iii)在 Co3O4 催化下,电子从水转移到 Ru(bpy)33+ 还原成2+价转态 相应的实验方案示意图 时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的催化反应 获得μOD浓度下信号 能结合ATR技术时间分辨快速双光梳红外光谱适用用于: 催化反应 化学反应 反应过程监控时间分辨快速双光梳红外光谱测量结果 3、时间分辨红外光谱进行远距探测 远距探测用于远程探测危险物质,如爆炸物、生物/化学试剂等在安全防护领域具有重要的意义。而远距探测依赖于来自遥远表面的光束反射信号探测,具有较大的挑战。 实验装置示意图IRsweep远程探测方案测量结果 IRsweep远程探测方案测量结果显示: 成功探测到远程物体的漫反射信号 较高的输出能量具有远程探测的优势 能探测到 1 μg/cm2 表面覆盖的信号IRsweep远程探测方案可用于: 国土安全 机场安检 IRsweep 相关光学产品 IRcell – 超长光程激光样品池 适用于红外激光吸收光谱 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试 更低容量更高灵敏度 光程长度:349 cm 样品池体积:38 ml 低边噪声水平:0.2‰ rms IRcell 技术参数: IRcell 应用案例 实时分析呼吸气体中的CO和CO2 — using an EC-QCL 实验装置示意图 实验测试结果Ghorbani, R. & F. Schmidt, F.M. Appl. Phys. B (2017) 123: 144. doi:10.1007/s00340-017-6715-x 使用IRcell用于呼吸气体的分析结果显示: 成功探测呼唤气体中的CO2和CO 较长的光程具有痕量气体探测的优势 对痕量气体探测具有很高的信噪比IRcell适用用于: 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试 部分用户 2018年8月,首套新一代IRis-F1时间分辨快速双光梳红外光谱系统在德国柏林自由大学( Free University of Berlin)的Joachim Heberle 教授组成功完成安装。 创新点:基于量子级联激光器频率梳技术,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μ s时间分辨的红外光谱快速测量。微秒级时间分辨超灵敏红外光谱仪
  • 新品推出 | IRsweep: 微秒级时间分辨超灵敏红外光谱仪
    瑞士IRsweep公司成立于2014年,脱离苏黎世联邦理工学院,由Dr. Andreas Hugi,Dr. Markus Mangold,Dr. Markus Geiser三位创始人联合创立。该公司提供基于中红外光谱的量子联激光器(QCL)双频率梳的的光学传感解决方案,致力于为多种应用提供快速的、实时的、选择性强的和宽带光谱的激光光谱解决方案。 微秒时间分辨超灵敏红外光谱仪IRis-F1 传统光谱仪由于光源、测量方式等限制,需要几秒钟或者更长的测量时间来获取一个完整的光谱。然而,生物医学、化学动力学等许多过程都是发生在微秒的时间内,这些传统技术的光谱仪是无法观察到的。 IRsweep公司推出的微秒时间分辨超灵敏红外光谱仪IRis-F1是一种基于量子联激光器频率梳的红外光谱仪,能实现高达1 μs时间分辨的红外光谱快速测量,该技术结合了高测量速度(微秒时间分辨率)、高光谱分辨率和宽光谱范围的解决方案,这种高速的测量方案开启了生物医药、化学反应动力学光谱分析的全新可能。 主要特点: 1 μs时间分辨率 高达0.25 - 0.5 cm-1波数分辨率 双量子联激光频率梳技术提供高能量光源 测量数据信噪比高 易于微量及痕量光谱分析 方便易用、可靠性高 IRsweep公司目前主要提供的商业化产品还包括IRcell超长光程激光样品池。 适用于红外激光吸收光谱 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试更低容量更高灵敏度 光程长度:349 cm 样品池体积:38 ml 低边噪声水平:0.2‰ rms 2018年8月,套新一代的微秒时间分辨超灵敏红外光谱仪IRis-F1在德国自由柏林大学( Free University of Berlin) Joachim Heberle教授组完成安装验收。Quantum Design中国子公司也于2018年正式将该产品引进中国,为中国客户提供高效的技术支持和解决方案,欢迎广大科研工作者垂询。 相关产品及链接:1、 IRsweep微秒时间分辨超灵敏红外光谱仪IRis-F1:https://www.instrument.com.cn/netshow/C305345.htm2、 neaspec纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 neaspec超高分辨散射式近场光学显微镜:https://www.instrument.com.cn/netshow/C170040.htm
  • 陈良怡/李浩宇合作团队发明:稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。
  • 南开大学团队:研制出世界首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队成功研制并报道了国际首套超快扫描电子显微镜(SUEM)与超快阴极荧光(TRCL)多模态载流子动力学探测系统。该系统在飞秒超快电子模式下实现了空间分辨率优于10 nm,SUEM成像和TRCL探测的时间分辨率分别优于500 fs和4.5 ps,各项技术性能和参数指标达到国际领先水平。该团队利用该多模态载流子动力学探测系统在飞秒与纳米时空分辨尺度直接追踪了n型掺杂砷化镓(n-GaAs)半导体中的光生载流子的复杂动力学过程,结合SUEM成像和TRCL测量成功区分了其表面载流子和体相载流子的动力学行为,全面直观地给出了其光生载流子动力学的物理图像。该仪器系统的成功研制填补了我国在该技术领域的空白,为研究和解耦半导体中复杂的光生载流子动力学过程提供了一个强有力的高时空分辨测量平台,将为新型半导体材料与高性能光电功能器件的开发提供重要支撑。该研究近日以“A femtosecond electron-based versatile microscopy for visualizing carrier dynamics in semiconductors across spatiotemporal and energetic domains”(一种基于飞秒电子的可用于跨时空和能量维度可视化半导体载流子动力学的多功能显微镜)为题,发表于重要国际学术期刊《Advanced Science》。半导体光电材料与器件的功能和性能主要取决于其材料表/界面的载流子动力学过程,例如光伏与光电探测器件需要增强其界面光生载流子的分离与传输,抑制载流子的复合,而发光器件则要增强其界面载流子的辐射复合,抑制非辐射复合。这些载流子的动力学过程多发生在表/界面处,且动力学过程快至皮秒乃至飞秒量级,因此以超高的时间、空间以及能量分辨率测量半导体材料表/界面载流子不同类型的动力学过程对于现代半导体器件的研发及应用起着至关重要的作用,尤其是对于一些低维、高速、超灵敏的半导体光电器件。当前,研究半导体光生载流子动力学的时间分辨探测技术主要有瞬态吸收显微镜(TAM)及光谱、时间分辨近场扫描光学显微镜(NOSM)、时间分辨阴极荧光(TRPL)、时间分辨光发射电子显微镜(TR-PEEM)等。然而,光学衍射极限限制了这些技术的空间分辨率,并且激光较大的作用深度使得测得的动力学信号主要来自材料内部的平均载流子动力学信息,很大程度上掩盖了来自表面或界面载流子的贡献,且单一的探测手段难以同时给出载流子不同类型的动力学信息。因此,为了全面表征半导体材料的载流子动力学,特别是表/界面载流子的动力学,亟需发展一种在时空间和能量维度上同时具有超高分辨率并且兼具高表面敏感特性的超快探测手段。图1. 仪器系统的示意图和时空分辨性能表征。(a)超快扫描电镜与超快阴极荧光多模态载流子动力学探测系统的示意图。其中包含飞秒光学系统、扫描电镜系统、阴极荧光收集系统、条纹相机以及液氦低温台。图中左上角分别为金刚石微晶的扫描电镜图、阴极荧光强度分布图像、阴极荧光光谱以及n型GaAs在77 K下的条纹相机图像 (b)传统模式下锡球标样的SEM图 (c)和(d)不同放大倍数下锡球标样的飞秒脉冲电子图像,表明飞秒脉冲电子模式下良好的成像质量,其空间分辨率优于10 nm。(e)初始红外飞秒激光脉冲的脉宽;(f)超快扫描电子成像的时间分辨率测试,其仪器相应函数(IRF)大约为500 fs;(g)超快阴极荧光探测的时间分辨率测试,其IRF约为4.5 ps。随着超快电子显微镜技术的蓬勃发展,超快扫描电子显微镜(SUEM)和超快阴极荧光(TRCL)技术也迅速兴起,两者都同时兼具超短脉冲激光的超快时间分辨率和电子显微镜的超高空间分辨率。其中SUEM技术是基于泵浦-探测原理,用一束可见波段飞秒激光激发样品表面产生光生载流子,另一束同步的紫外飞秒激光激发扫描电子显微镜的光阴极产生飞秒脉冲电子进行扫描成像。由于扫描电子显微镜主要收集来自距离样品表面几个纳米范围内的二次电子信号,使得超快扫描电子显微镜技术具有表面敏感特性,能够直接对半导体材料表面或界面光生载流子(电子和空穴)的时空演化动力学进行成像。然而,该技术无法直接区分辐射复合与非辐射复合动力学过程。TRCL技术是用聚焦的飞秒脉冲电子束激发样品产生瞬态荧光,用条纹相机或时间相关单光子计数器对瞬态荧光进行测量,具有能量敏感特性,且信号绝大部分来源于材料体内,可直接反映载流子的辐射复合行为。因此,SUEM和TRCL在功能上形成良好的互补,将两者有机结合有望实现在超高的时空和能量分辨下全面解析半导体材料表/界面和体相载流子的动力学信息。鉴于此,付学文教授团队将飞秒激光、场发射扫描电子显微镜和瞬态荧光探测模块相结合,研制出了国际首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统(如图1示意图和图2实物图所示),实现了对半导体材料表/界面和体相载流子动力学过程的高时空分辨探测和解析。图2. 超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统实物照片。图3. 利用该系统对n型GaAs单晶表面的SUEM成像和TRCL测量结果。(a)n型砷化镓表面测量得到的随时间演化的SUEM图像;(b)从图(a)中光激发区域提取的二次电子强度演化及相应的载流子演化时间常数;(c)表面载流子的空间分布随时间的演化;(d)从297 K到77 K的变温时间积分CL光谱;(e)和(g)在图(a)的SUEM测试区域中分别探测得到的297 K和77 K下的条纹相机图像;(f)和(h)分别从(e)和(g)中提取的带边发射的衰减曲线及相应的荧光寿命。为展示SUEM成像与TRCL探测在超高时空和能量分辨率下直接可视化并解耦半导体中复杂激发态载流子动力学过程上的独特优势,该团队利用该自主研发的多模态实验装置研究了n型GaAs中的载流子动力学。如图3所示,SUEM图像表明由于表面能带弯曲效应,飞秒激光作用后表面光生载流子发生快速分离使空穴向表面富集。通过分析随时间变化的SUEM图像,提取出了光生载流子不同阶段的衰减时间常数;同时通过计算表面空穴分布的均方根位移,揭示了对应不同阶段表面空穴随时间的超扩散、局域化和亚扩散过程。通过进一步分析室温和液氦温度下测量的条纹相机图像中相应的非平衡载流子复合动力学过程和寿命,不但区分出了体相和表面载流子动力学过程的差异,还揭示了上述表面载流子的空间演变过程分别对应于能量空间热载流子冷却、缺陷捕获和带间/缺陷辅助辐射复合过程。该工作阐明了表面态和缺陷态对半导体表/界面载流子动力学的重要影响,展示了超快扫描电子显微镜和超快阴极荧光多模态动力学探测系统在超高时空尺度解耦半导体表/界面和体相载流子动力学中的独特优势。南开大学为该项工作的第一完成单位及通讯单位。南开大学物理科学学院博士生张亚卿和博士后陈祥为该论文共同第一作者,南开大学付学文教授为通讯作者。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。文章链接:https://doi.org/10.1002/advs.202400633
  • 220万!华东师范大学时间分辨荧光显微镜采购项目
    项目编号:0773-2241SHHW0153项目名称:华东师范大学时间分辨荧光显微镜项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:设备名称:时间分辨荧光显微镜;数量及单位:1套;简要技术参数:3.2、像元:1×1—4096×4096;3.3、镀银高反射率的xy光学振镜扫描系统;★3.3.1、扫描频率0~5KHz,最短单点停留时间0.5µs, 最长单点停留时间无限;其余内容详见本项目招标文件。合同履行期限:自合同签订之日起120天内;本项目( 不接受 )联合体投标。
  • 全球首创的时间分辨发射光谱(TRES)新型系统横空出世
    日前,德国PicoQuant、意大利NIREOS和Micro Photon Devices公司联合开发了一种基于干涉仪记录时间分辨发射光谱(TRES)的全新紧凑型系统,而该系统搭建的模块分别由这三家公司提供。时间分辨发射光谱(TRES)新型系统是基于NIREOS研发的超稳型干涉仪GEMINI,它能直接将样品的荧光发射光谱和荧光寿命进行Mapping,具有高时间和高光谱分辨率(即TRES)等特点,也正是因为这些特点时间分辨发射光谱(TRES)新型系统将光谱的变化过程直接提升到了ps量级的分辨率。该系统功能非常强大,但光路却极其简单。在样品测试中,信号光通过NIREOS 的紧凑和超稳定的GEMINI干涉仪获得高分辨率的全光谱信息;然后由Micro Photon Devices的PDM系列探测器进行单光子检测;最后,经过PicoQuant的时间相关单光子计数器(TCSPC)PicoHarp 300获得高时间分辨率的荧光寿命信息,最终获得时间分辨发射光谱(TRES)。具体光路示意和探测及分析,请参见下图所示:图1:光路示意 图2:功能简介 图3:软件界面 如需了解更多该系统的完整实验光路和功能演示视频等相关资料,请联系我们!
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 与时间赛跑 和光谱同行——BCEIA 2019超快分子光谱高峰论坛在京隆重举行
    p  strong仪器信息网讯/strong 2019年10月24日下午,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019)同期会议——超快分子光谱高峰论坛在北京国家会议中心举行。本次会议由中国分析测试协会与北京理化测试技术学会联合举办,参会观众近百人。/pp  超快分子光谱方法具有极高的时间分辨率,所涉及的工作波段包括红外,太赫兹,可见,紫外等 利用多束飞秒激光脉冲,能实现多种光谱形式测量,如泵浦-探测瞬态光谱,二维红外光谱,二维可见光谱等 对于物质激发态原处过程、材料中载流子过程、分子超快结构与能量传递动力学过程都具有非常高的灵敏性。/pp  清华大学教授孙素琴主持了本次会议。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 338px " src="https://img1.17img.cn/17img/images/201910/uepic/6f33000a-6697-4c1c-a45e-4c013ee63841.jpg" title="孙素琴.jpg" alt="孙素琴.jpg" width="500" height="338" border="0" vspace="0"//pp style="text-align: center "strong清华大学教授 孙素琴/strong/pp  中国工程物理研究所液体物理研究所教授杨延强作“分子晶体选键激发与振动能量转移过程的超快分子光谱研究”的报告,其中介绍了含能分子晶体在国防及经济建设中的应用,以及在安全性可靠性等方面的需求,并以此为牵引,报告了含能材料反应微观机制研究的最新进展情况,包括含能材料的VET过程的时间分辨振动光谱、IVR过程的相干拉曼光谱技术及研究进展、Shock-Raman光谱技术的应用等。研究工作中利用Fs-CARS技术,实现了分子振动模的选键激发、集体激发 利用时间分辨Shock-Raman技术,实现了对冲击驱动的分子内电子重分布过程的监测等,为新型含能材料的设计提供了建设性建议。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 367px " src="https://img1.17img.cn/17img/images/201910/uepic/40174eee-c009-407a-9576-2df710173afe.jpg" title="杨延强.jpg" alt="杨延强.jpg" width="500" height="367" border="0" vspace="0"//pp style="text-align: center "strong中国工程物理研究所液体物理研究所教授 杨延强/strong/pp  华东师范大学精密光谱科学与技术国家重点实验室教授徐建华作“精密光谱技术与应用”的报告,介绍了精密光谱技术在光学、生物学、化学、材料学等学科中的重要应用,包括基于Trp-X分子的荧光动力学与生物应用研究、基于荧光蛋白的荧光动力学与生物应用的研究、5-氮胞嘧啶及其衍生物的激发态动力学 展望精密光谱技术的产业化应用,如癌症预警传感器等 提出了精密光谱技术高分辨、高精度、高灵敏的发展方向。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 319px " src="https://img1.17img.cn/17img/images/201910/uepic/051af1d9-9909-4e3b-998f-784cfa58c2d5.jpg" title="徐建华.jpg" alt="徐建华.jpg" width="500" height="319" border="0" vspace="0"//pp style="text-align: center "strong华东师范大学教授 徐建华/strong/pp  中国科学技术大学教授张群作“超快光谱在凝聚相分子和微纳体系中的应用”的报告,介绍了凝聚相复杂体系中的激发态动力学演化行为和作用机制,包括电子行为、空穴行为、能量转移、激子效应、等离激元效应等,为相关功能材料的研发提供了机理方面的指导 并提出了未来几年的关注点,包括纳米体系各种动力学过程中新奇效应、机制、调控等。 /pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 386px " src="https://img1.17img.cn/17img/images/201910/uepic/a57fc2f1-4475-4b4a-a408-aa9806380dab.jpg" title="张群.jpg" alt="张群.jpg" width="500" height="386" border="0" vspace="0"/ /pp style="text-align: center "strong中国科学技术大学教授 张群/strong/pp  北京理工大学教授邹炳锁作“II-VI族稀磁半导体微纳米结构的微区光学性质研究”的报告,其研究工作表明微区发光可以反映磁性离子间的自旋耦合和磁性 自旋极化导致的激子凝聚态与相干激射有重要应用 反铁磁和顺磁离子也会极化激子,导致相干激射 瞬态光脉冲产生的高密度激子可能形成动态激子BEC态等。因此,超快微区光谱在揭示其凝聚与磁耦合机制方面有不可替代的作用。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/201910/uepic/aa35dd19-3b90-4525-ac5c-e7121d8215ba.jpg" title="邹炳锁.jpg" alt="邹炳锁.jpg" width="500" height="375" border="0" vspace="0"//pp style="text-align: center "strong北京理工大学教授 邹炳锁/strong/pp  中国化学院化学研究所研究员王建平作“生物和材料体系结构动力学与能量传递的飞秒二维红外光谱研究”的报告,介绍了超快结构动力学的2D IR研究以及在生物和材料体系结构动力学及能量传递过程中的最新应用 并提出了2D IR发展的三个挑战性技术问题:如何拓展激光脉冲的谱带、如何保障多个脉冲的相位稳定性、如何提高二维广谱的检测分辨率。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 411px " src="https://img1.17img.cn/17img/images/201910/uepic/3840a98f-d140-451c-b240-09ec7d9b856f.jpg" title="王建平.jpg" alt="王建平.jpg" width="500" height="411" border="0" vspace="0"//pp style="text-align: center "strong中国化学院化学研究所研究员 王建平/strong/pp  本次论坛,聚焦于现代超快分子光谱手段的发展现状,从先进光谱手段与技术出发,介绍了这一光谱方法在物理、化学、材料与生物等领域的重要应用。通过本次会议,学者们在会议当中进行了充分交流,加强了高校、科研院所与企业的交流合作,推动了我国超快分子光谱领域的方法创新和发展,会议取得了圆满成功。/ppbr//p
  • 350万!中国科学院天津工业生物技术研究所计划采购四通道全内反射超分辨荧光显微镜
    项目概况中国科学院天津工业生物技术研究所四通道全内反射超分辨荧光显微镜采购项目 招标项目的潜在投标人应在www.o-science.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室获取招标文件,并于2022年06月09日 13点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:OITC-G220271157项目名称:中国科学院天津工业生物技术研究所四通道全内反射超分辨荧光显微镜采购项目预算金额:350.0000000 万元(人民币)最高限价(如有):350.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(套/台)是否允许采购进口产品1四通道全内反射超分辨荧光显微镜1是2、投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业单位采购的项目。3.本项目的特定资格要求:(1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;(3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(4)按本投标邀请的规定获取招标文件;(5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。三、获取招标文件时间:2022年05月19日 至 2022年05月26日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.o-science.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室方式:登录东方在线www.o-science.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月09日 13点30分(北京时间)开标时间:2022年06月09日 13点30分(北京时间)地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、招标文件采用网上电子发售购买方式:1)有兴趣的投标人可登陆“东方在线”(http://www.o-science.com 招标在线频道),完成投标人注册手续(免费),已注册的投标人无需重新注册。招标文件售价:每包人民币600 元,售后不退。如决定购买招标文件,请完成标书款缴费及标书下载手续。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账 号:8620816577100013)投标人应在“东方在线”上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方在线”上登记的电子邮箱,投标人自行下载打印。2、以电汇方式购买招标文件的,须在电汇凭据附言栏中写明招标编号(如未标明招标编号,有可能导致投标无效)。3、投标文件的递交:考虑疫情因素,本项目将采用网络平台云会议室线上开标的方式进行。投标人应采用邮寄方式递交投标文件。投标人应充分预留投标文件邮寄、送达所需要的时间,建议选择邮寄运送时间有保障的快递公司寄送投标文件,并确保在递交截止时间前送达,逾期送达或不符合规定的投标文件恕不接受。投标文件邮寄地址:北京市海淀区西三环北路甲2号院北京理工大学西门国防科技园6号楼13层1301室;收件人:王琪;联系方式:010-68290523;4、为保证投标人代表顺利在线观看开标过程,请提前下载“腾讯会议”APP并完成注册(手机或电脑均可安装),并在投标文件密封信封上标明投标人代表的电子邮箱,以获取开标会议账号及密码。5、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院天津工业生物技术研究所     地址:天津空港经济区西七道32号        联系方式:陈老师 022-84861979      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室            联系方式:窦志超、王琪010-68290502/0523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290502/0523
  • 苏州医工所李辉团队在SIM超分辨显微成像研究中取得系列进展
    结构光照明显微镜(SIM)以成像速度快、无需特殊荧光标记和光毒性小等优势,被视为当前最适合活细胞成像的超分辨(SR)技术。经过二十多年的快速发展,SIM在成像理论和应用研究方面都取得了长足进步,但依然有许多普遍存在的棘手问题亟待解决和完善。   中国科学院苏州生物医学工程技术研究所李辉团队着眼于解决SIM在实际生物成像应用中的短板,致力于打造“user acknowledgeable”的SIM成像技术和仪器装备,最近在避免结构光参数估计、深度学习图像重构、升级宽场显微镜系统的模块化SIM解决方案等方面取得系列重要进展。   长期以来,大多数SIM算法直接或间接遵循标准的Wiener-SIM架构或依赖于其重建结果。Wiener-SIM重建涉及耗时的照明条纹参数估计和伪影敏感的频域去卷积。此前,李辉团队发展了基于“频谱优化”理念的高保真SIM重建技术HiFi-SIM并发表于Light: Science & Applications, 10, 70, (2021),有效克服了SIM图像中的典型伪影,但HiFi-SIM仍依赖于结构光条纹参数的精确估计。然而,条纹参数很小的偏差就会导致Wiener-based SIM算法产生明显伪影,实践中现有的参数估计方法在很多成像场景中经常难以估计出可靠的条纹参数。更关键地,Wiener-SIM重建假设条纹参数在成像视场内均匀分布,但采集图像的条纹参数不仅依赖于条纹质量还受样本特性影响,因此难以保证全视场中的均一性。   针对上述问题,李辉团队的文刚等开发了一种无需估计结构光条纹参数的直接重建SIM算法,direct-SIM (direct reconstruction SIM algorithm)。该方法采用空域直接重建与频域频谱优化相结合的联合重建策略,避免了耗时且麻烦的条纹参数估计,同时采用新型频谱优化策略绕过了伪影敏感的频域Wiener滤波去卷积(图1a)。得益于其局域独立重建的特性,direct-SIM对于包含多组不同条纹的场景依然能够重建高质量SR图像(图1b)。该研究成果以“Spectrum-optimized direct image reconstruction of super-resolution structured illumination microscopy”为题发表于PhotoniX 期刊(中科院1区Top,IF16.5),其中,文刚副研究员为第一作者,唐玉国研究员和李辉研究员为通信作者。相比于上述基于物理模型的SIM算法,深度学习近年来被广泛用于SIM超分辨图像重建来减少样本光漂白和光毒性。然而,数据驱动的深度学习算法用于预测未经训练的生物结构的可靠性仍饱受质疑。当前,基于深度学习的SIM算法需要对不同生物样本单独训练以达到理想的预测性能,但仍难以可靠地应用于未训练结构的观察。   为此,李辉团队进一步发展了一种基于关键帧辅助的动态SIM成像方程,命名为KFA-RET:在动态成像过程中,第1帧SR图像由成像初始采集的完整原始图像通过传统SIM重建算法重建,该高保真SR图像被作为关键帧参与后续重建;随后通过基于深度学习的重构算法KFA-RET实现宽场图像的SR重建。KFA-RET以关键帧结构作为参照并结合生物结构的时间连续性,极大地提高了重建SR图像的质量,同时有效地减少了光漂白和光毒性。此外,KFA-RET对网络未训练过的新生物样本结构也具有很强的迁移能力。该研究成果以“Keyframe-aided resolution enhancement network for dynamic super-resolution structured illumination microscopy”为题发表于Optics Letters,其中博士研究生唐于珺为论文第一作者,李辉研究员为通信作者。为了适应更多不同用户对SIM成像仪器配置的要求,李辉团队在之前开发安装于显微侧边的结构光照明插件(HiFi-SIM-C)的基础上,进一步开发了安装于显微镜后口的结构光照明模块HiFi-SIM-B。可安装于多款国产和进口的倒置荧光显微镜,并且与常规的宽场荧光照明器兼容,具有体积小、稳定性高、安装方便等优点,为实验室原有荧光显微镜进行高性价比的超分辨升级改造提供了更多选择。目前,搭载在国产舜宇IRX60倒置荧光显微镜的HiFi-SIM-B样机在2023年细胞生物学大会展,获得广泛关注。搭载在奥林帕斯IX73手动倒置荧光显微镜的HiFi-SIM-B样机也于近期交付中国科学技术大学生命科学院使用。图3 (a)兼容荧光照明器的显微镜后口结构光照明模块HiFi-SIM-B (b)搭载在国产舜宇显微镜的HiFi-SIM-B在2023年中国细胞生物学第十八次学术大会(苏州)上展出 (c)搭载在奥林巴斯IX73显微镜上的HiFi-SIM-B在中国科学技术大学装机现场及成像效果图。
  • 我国科学家在光学超分辨显微成像技术领域取得重要突破
    近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy)为题,以长文形式在线发表于国际权威杂志《自然-生物技术》(Nature Biotechnology)。显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。该项工作在物理和化学方法基础上,首次从计算的角度提出了突破光学衍射极限的通用模型,实现了从0到1的原理创新,是目前活细胞光学显微成像中分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨显微仪器。该技术框架也被证明适用于目前多数荧光显微镜成像系统模态,均可实现近两倍的稳定空间分辨率提升,为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。哈工大为论文第一单位,哈工大博士生赵唯淞、北大博士后赵士群和李柳菊为论文共同第一作者,哈工大李浩宇副教授和北大陈良怡教授为论文共同通讯作者,哈工大刘俭教授和谭久彬院士均为论文共同作者和哈工大科研团队负责人。合作单位还包括中科院国家纳米中心、中科院生物物理所、武汉大学等。
  • 鲲鹏基因新品发布会:推出两款时间分辨荧光定量PCR仪
    p  2018年12月7日,鲲鹏基因(北京)科技有限责任公司(以下简称:鲲鹏基因)在北京西郊宾馆举办“未来丨有你才行”新产品发布会,隆重推出旗下最新款Archimed(阿基米德)系列荧光定量PCR系统Archimed X6和Archimed X4。参会人员有来自医疗机构、疾控中心、科研院所、高等院校等单位的专家学者,以及来自华东、华南、华中、西南及西北地区的近40家仪器行业经销商。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6af45bd6-dc0f-44f3-9f25-561fb0503cdb.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "阿基米德系列发布会现场/span/pp  img src="https://img1.17img.cn/17img/images/201812/uepic/49ad3799-ab0c-42fb-b0ae-651b13125060.jpg" title="2.jpg" alt="2.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "阿基米德系列定量PCR仪/spanbr//pp  据了解,本次推出的Archimed系列荧光定量PCR系统,是鲲鹏基因历时两年研发而成,旨在填补国产高端荧光定量PCR仪的空白。该系统将瞄准同类进口产品,志在打破进口品牌对该领域的长期垄断,为中高端分子诊断及科研市场提供国际一流水平的“仪器+试剂耗材+软件”的闭环产品及服务,实现分子诊断领域中实时荧光定量PCR技术平台的国产替代。/pp  发布会伊始,鲲鹏基因创始人及CEO郭求真先生代表公司诚挚欢迎与会人员的到来,并详细介绍了公司的创业历程、发展思路及未来的愿景。郭求真先生表示:“公司自创立以来,始终以技术研发为基点,以 “保持潜心研发与市场判断的独立性”为基本原则,开发具有自主知识产权,国际领先的科研与分子诊断产品,并将“提升品牌价值、仪器+试剂+软件形成产品闭环“作为战略发展方向。”/pp  img src="https://img1.17img.cn/17img/images/201812/uepic/74450953-98fd-4f35-b81d-0945d81e6f76.jpg" title="郭求真.jpg" alt="郭求真.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因CEO 郭求真/spanbr//pp  荧光定量PCR作为一种较成熟的基因研究工具,已发展超过20年时间。在谈到为什么将该产品作为公司的第一款自主研发产品时,郭先生表示:“首先,我们将快速增长的分子诊断市场作为公司的目标参与市场,而PCR技术及产品无论目前还是未来仍将占据分子诊断市场的大部分份额,这将是公司长期发展的源动力 其次,作为PCR技术平台核心产品的实时荧光定量PCR仪仍然被少数几家国外厂商所垄断,严重影响行业的健康发展,虽然国内厂商已陆续开发出相关产品,但由于设计理念、水平等原因,现有国产产品基本定位于低端市场,无法真正实现该类产品的国产替代 再次,作为一家初创型企业,我们需要一步一个脚印地做事情,通过Archimed荧光定量PCR仪这种市场需求广,用户认知感强的产品,我们可以更好的“以用户为师,以市场需求为标杆”,踏踏实实地将产品的研发、生产、销售及服务体系建立完善,为后续分子诊断产品的开发奠定坚实的基础。”/pp  作为鲲鹏基因合伙创始人及产品总监王梓先生为与会人员详述了产品的特色及优势:”Archimed较现有同类产品主要具备三大亮点:1、基于菲涅尔透镜、高效PMT及免维护LED的新型光信号检测系统,进一步提升检测灵敏度 2、创新的检测通道排布及独特的时间分辨采集技术,有效避免荧光多色串扰及边缘效应 3、独特的边缘补偿辅助控温技术,实现极佳的温度均一性及准确性。”  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/93c02dc8-a12d-4891-8a9f-68bdd9d4e79a.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因合伙创始人及产品总监 王梓/spanbr//pp  鲲鹏基因合伙创始人及销售总监戴涛先生热情地欢迎了与会代表,并详细介绍了Archimed产品的市场及销售策略。作为资深的业内职业经理人,戴涛先生表示:“Archimed产品的推出就是响应国家的《“十三五”国家战略性新兴产业发展规划》的号召,“加速发展体外诊断仪器、设备、试剂等新产品,推动高特异性分子诊断、生物芯片等新技术发展,支撑肿瘤、遗传疾病及罕见病等体外快速准确诊断筛查”。鲲鹏基因以真正的国产精品为国人提供 “中国智造”的选择,全面提升国产仪器在市场中的竞争力”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/dea0ed12-3543-446c-a736-bd54d5c6d76f.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "鲲鹏基因合伙创始人及销售总监 戴涛/span/pp  关于产品详情,请关注仪器信息网后续报导。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制