精度调整专用位移台

仪器信息网精度调整专用位移台专题为您提供2024年最新精度调整专用位移台价格报价、厂家品牌的相关信息, 包括精度调整专用位移台参数、型号等,不管是国产,还是进口品牌的精度调整专用位移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精度调整专用位移台相关的耗材配件、试剂标物,还有精度调整专用位移台相关的最新资讯、资料,以及精度调整专用位移台相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

精度调整专用位移台相关的厂商

  • 北京睿诚科仪科技有限公司是一家具备光学仪器,精密定位设备以及计算机技术等研发生产能力的高科技企业,主要从事光学平台,电动手动位移台、光学调整架,光纤耦合对准系统,高精度定位系统,激光加工设备,工业机械臂,自动化系统以及其相关产品制造、研发和销售。其产品广泛用于光学、激光、光纤、光电子、光通讯、光传感、机械传动设备等相关产业。公司技术力量雄厚,拥有一批长期从事光电产品研发、生产、销售的专业团队,在位移精密调整、运动控制、精密影像测量等方面具有广泛的专业经验。公司已获多项国家专利。产品结构先进,性能稳定,质量可靠。关键部件采用国际名牌产品,在国内外享有良好的声誉。国家科研院校的实验室、国内光电厂商已经广泛使用我公司产品;我公司的产品已经批量进入国际市场。常规产品备有现货,特殊要求接受定制。产品设计先进独特,结构合理,质量稳定,被各大专院校、科研院所和工业用户广泛应用于机械、电子、冶金、医疗、化工、卫生、教育、国防等领域。我们的宗旨:睿智的理念做产品,诚实的信念做服务!睿诚科仪,睿智真诚!我们期望以高质量的产品、合理的价格、诚信的服务获得您支持,并成为您值得信赖的合作伙伴。
    留言咨询
  • 普爱纳米位移技术(上海)有限公司是德国跨国公司Physik Instrumente(PI)GmbH & Co.KG在中国设立的独资子公司。 PI-纳米位移和定位领域的市场领导者。哪里需要挑战极限位移,哪里就会有PI! 40多年来,PI的产品一直以高品质和创新技术而著称。在提供最佳产品质量的同时,PI更为用户提供创新的技术服务和最佳的解决方案。从精密加工到数字与模拟控制电路,从亚纳米级的电容位置传感器到独创的PICMA 压电陶瓷促动器,PI已掌握全套关键技术,强大的技术实力推动着微米纳米定位技术不断地向前沿发展,也使得PI成为全球众多高科技企业、著名实验室的合作伙伴。 PI为用户提供各种不同类型的压电纳米定位系统和电机微米定位系统的解决方案,并可根据用户需求,提供各种OEM产品和定制产品。PI的产品包括,六自由度并联机器人,压电纳米定位台,压电偏转镜,PIFOC 显微物镜定位器,以及直线与旋转定位台等。今天,无论是在计量、显微,生命科技,还是激光技术,精密加工技术;无论是半导体科技,数据存储技术,还是光电子/光纤,天文等领域,PI的产品和技术正得到越来越广泛的应用,也赢得了越来越广泛的赞誉。 具体产品信息请参见PI公司官方网站:www.pi-china.cn www.pi.ws
    留言咨询
  • 山东创谱光学仪器是一家集光学、精密机械、电子、计算机技术于一体的高科技企业。目前公司的光学隔振平台、光学积分球、电控位移台、手动位移台、光学调整架等产品已经形成产品系列化,规格多元化,国内多家科研单位、激光加工设备厂商、光纤设备厂商在使用我们的产品。 创谱仪器主要生产经营:光源(氙灯/光催化氙灯光源,卤钨灯光源,氘灯,汞灯,多波长可调光源,激光器)、分光单色仪、光学积分球、光电探测器、数据采集器、光谱测量系统、电控精密位移台、手动精密位移台、光学调整架、光学平台、光学元件等系列产品。   我们诚心聆听用户的需要与批评,作为不断改进的动力,能让您满意创谱仪器的产品及服务,就是我们的成就。我们坚持从设计、零件选型、制造、装配、检验、包装、直到售后服务做好全方位质量保证,就是要让您 “付有所值”,以合理的价位得到优质的产品,这是我们对您选择创谱仪器真诚的回报。
    留言咨询

精度调整专用位移台相关的仪器

  • 全新推出NFP3561系列光纤专用多维调整架。NFP3561 系列光纤专用多维调整架,采用超高精度进口交叉滚柱导轨,具有精度更高,稳定性更好,手感更舒适的特点,更加适合于光纤无源及有源器件厂商及光纤相关研究领域的使用。 型号NFP-3561X 轴行程:Tx(mm)13Y 轴行程:Ty(mm)13Z 轴行程:Tz(mm)13分厘卡最小刻度(mm)0.01精度(mm)0.001光路中心高(mm)93承重(Kg)3
    留言咨询
  • 仪器简介:APFP精密光纤调整架主要零部件采用热稳定性优越的不锈钢,无需再担心漂移问题。APFP精密光纤调整架采用交叉滚柱导轨副实现位移,完全刚性调整,稳定性极佳。 APFP精密光纤调整架为系列产品有多种规格的光纤调整架。技术参数:APFP-XYZ三维光纤调整架■技术指标◆Tx:12mm ◆偏摆:<100&mu rad◆Ty:12mm ◆承重:2.3kg◆Tz:6mm ◆光路中心高;79mm主要特点:APFP-XYZ三维光纤调整架■主要特点:●可提供XYZ三维调整,其上配有燕尾座●可固定光学器件安装座●该产品分左右手(左手型号为APFP-XYZL
    留言咨询
  • PSAG15-250/PSAG15-370精密电控角位移台 PSAG15-250/370是我公司新开发的两款具有高负载能力的精密电控角位移台,该角位移台采用精密蜗轮蜗杆驱动,有效保证运动精度;使用弧形专用导轨,使得在高负载(不小于50Kg)情况下,旋转中心位置偏差控制在100微米以内,达到国内领先水平。该系列产品主要应用于大负载情况下的精密角度调整领域。技术指标: (尺寸图-请点击)型 号PSAG15-250PSAG15-370角度范围(° )± 15± 15台面尺寸(mm)280× 250340× 250轴心高(mm)250370导轨弧形导轨传动比610:1870:18细分下分辨率(° )0.000180.00013步进电机(步距角° )57(1.8)57(1.8)工作电流(A)2.42.4中心负载(kg)5050■产品特点:◆旋转中心较高,适合安装大尺寸物体◆调整角度± 15° ,适合于大多数调整领域◆两个产品配套设计,旋转中心重合,非常适合做多维角度调整◆采用精研蜗轮蜗杆驱动机构,定位精度高◆采用弧形交叉滚柱导轨,能有效控制角位移台旋转时的空间中心偏差◆严格的装配工艺和检验方法,保证了产品性能的一致性◆标准步进电机和DB9接口,可灵活选择我公司各类控制器◆电机后部带有手轮,可实现手动控制,方便使用 PSAG15-250 PSAG15-370
    留言咨询

精度调整专用位移台相关的资讯

  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • Nature、Science! mK极低温纳米精度位移台在二维材料、石墨烯等领域的前沿应用进展
    nature:二维磁性材料的磁结构与相关特性研究关键词:二维铁磁材料;低温纳米精度位移台;反铁磁态;二次谐波 近年来,二维磁性材料在国际上成为备受关注的研究热点。近日,中国与美国的研究团队合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。同时,研究团队发现双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量的提升,比常规铁磁界面产生的二次谐波更是高出十个数量。利用这一强烈的二次谐波信号,团队成功揭示双层三碘化铬的原胞层堆叠结构的对称性。图一 双层三碘化铬的二次谐波光学显微图 运用光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性是此实验的关键。团队利用自主研发搭建的无液氦可变温强磁场显微光学扫描成像系统,完成了关键数据的探测。值得指出的是,该无液氦可变温强磁场显微光学扫描成像系统采用德国attocube公司的低温强磁场纳米精度位移台和低温扫描台来实现样品的位移和扫描。德国attocube公司是上著名的端环境纳米精度位移器制造商。公司已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图二 attocube低温强磁场位移器、扫描器attocube低温位移台技术特点如下:参考文献:Sun, Z., Yi, Y., Song, T. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019). nature:石墨烯摩尔超晶格可调超导特性研究关键词:石墨烯 超晶格 高温超导高温超导性机制是凝聚态物理领域世纪性的课题。这种超导性被认为会在以Hubbard模型描述的掺杂莫特缘体中出现。近期,美国和中国的国际科研团队合作在nature上报道了在ABC-三层石墨烯(TLG)以及六方氮化硼(hBN)摩尔超晶格中发现可调超导性特征。研究人员通过施加垂直位移场,发现ABC-TLG/hBN超晶格在20K的温度下表现出莫特缘态。进一步通过冷却操作发现,在温度低于1K时,该异质结的超导特特性开始出现。通过进一步调控垂直位移场,研究人员还成功实现了超导体-莫特缘体-金属相的转变。 图1.德国attocube公司低温mK纳米旋转台电学输运工作的测量是在进行仔细的信号筛选后,本底温度为40mK的稀释制冷机内进行的。值得指出的是,样品的面内测量需要保证样品方向与磁场方向平行,这必须要求能够在低温(40mK)环境下实现良好且工作的旋转台来移动样品,确保样品与磁场方向平行。实验中使用了德国attocube公司的mK纳米精度旋转台(如图1所示)。Attocube公司可提供水平和竖直方向的旋转台,使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在超导体-莫特缘体-金属相的转变(结果如图2所示),为三层石墨烯/氮化硼的超晶格超导理论模型(Habbard model)以及与之相关的反常超导性质和新奇电子态的研究提供了模型系统。 图2. ABC-TLG/hBN的超导性图左低温双轴旋转台;图右下:石墨烯/氮化硼异质节的超导性测量测试结果,样品通过attocube的mK适用旋转台旋转后方向与磁场方向平行参考文献:Guorui CHEN et al, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature, 572, 215-219 (2019) nature:分数量子霍尔效应区的非线性光学研究关键词:量子霍尔效应 四波混频 化激元设计光学光子之间的强相互作用是量子科学的一项重要挑战。来自瑞士苏黎世联邦理工学院(Institute of Quantum Electronics, ETH Zürich, Zürich,)的研究团队在光学腔中嵌入一个二维电子系统的时间分辨四波混频实验,证明当电子初始处于分数量子霍尔态时,化激元间的相互作用会显著增强。此外,激子-电子相互作用导致化子-化激元的生成,还对增强系统非线性光学响应发挥重要作用。该研究有助于促进强相互作用光子系统的实现。值得指出的是,该实验在温度低于100mK的环境下进行,使用德国attocube公司的低温mK环境纳米精度位移台来实现物镜的移动和聚焦。参考文献:Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Science:NV center在加压凝聚态系统中的量子传感研究关键词:NV色心 量子传感器压力引起的影响包括平面内部性质变化与量子力学相转变。由于高压仪器内产生巨大的压力梯度,例如金刚石腔,常用的光谱测量技术受到限制。为了解决这一难题,巴黎十一大学,香港中文大学和加州伯克利大学的研究团队研发了一款新型纳米尺度传感器。研究者把量子自旋缺陷集成到金刚石压腔中来探测端压力和温度下的微小信号,这样空间分辨率不会受到衍射限限制。为此加州伯克利大学团队采用了德国attocube公司的与光学平台高度集成的闭循环低温恒温器- attoDRY800来进行试验,其中包含了attocube公司的低温纳米精度位移台,以此来实现快速并且控制金刚石压强的移动以及测量实验。参考文献:[1] S. Hsieh et al., Science, Vol. 366, Issue 6471, pp. 1349-1354 (2019) [2] M. Lesik, et al., Science, Vol. 366, Issue 6471, pp. 1359-1362 (2019)[3] K. Yau Yip et al., Science, Vol. 366, Issue 6471, pp. 1355-1359 (2019)
  • 极低温mK级纳米精度位移台助力量子通讯网络现实化
    光纤通信因其具有高带宽、低损耗、重量轻、体积小、成本低、抗电磁干扰等优点,已成为现代信息社会的支柱。同时,传统的微波无线技术也展现出了有效的泛在感知与接入能力。而将上述两种技术进行有机融合,则诞生了微波光子学。微波光子学为电子传感和通信系统提供了上述优势,但与非线性光学领域不同的是,到目前为止,电光器件需要经典调制场,其变化由电子或热噪声而不是量子涨落控制。从理论到实际的量子通讯不仅需要用于量子纠缠的组件,而且还需要一个低损耗和鲁棒性很好的网络来做进一步的数据分发和传输。超导处理器与光通信网络的接口问题是量子领域的一个开放性问题,也是目前面临的大挑战。近期,奥地利科学技术研究所(位于奥地利克洛斯特纽堡)的约翰内斯芬克小组提出了一个可能的解决办法。他们通过使用纳米机械传感器将双向和芯片可伸缩转换器的超导电路集成到大规模光纤网络中开辟了一条道路(如图一所示)。文章中介绍了一种可在毫开尔文环境下工作的腔电光收发器,其模式占用率低至0.025± 0.005噪声光子。其系统是基于铌酸锂回音壁模式谐振器,通过克尔效应与超导微波腔共振耦合。对于1.48 mw的大连续波泵浦功率,演示了X波段微波到C波段电信光的双向单边带转换,总(内部)效率为0.03%(0.7%),附加输出转换噪声为5.5光子(如图二所示)。10.7兆赫的高带宽与观测到的1.1兆赫噪声光子的非常慢的加热速率相结合使量子有限脉冲微波光学转换触手可及。该装置具有通用性和与超导量子比特兼容的特点,为实现微波场与光场之间的快速、确定的纠缠分布、超导量子比特的光介导远程纠缠以及新的多路低温电路控制和读出策略开辟了道路。图一:实验装置示意图图二:转换噪声与模式布居结果在10mK温度下,实现转换的关键是:光纤与微波芯片的对准和稳定连接需要一套用于x、y和z精密移动的位移台。实验中使用了attocube公司的 ANPx101/RES/LT-linear x-nanopositioner,ANPz101/RES/LT-linear z-nanopositioner,ANPx101/ULT/RES+/HV-Linear x-Nanopositioner和ANPz102/ULT/RES+/HV-linear z-nanopositioner系列mk环境兼容的位移台。attocube公司是上著名的端环境纳米精度位移器制造商,已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图三 attocube低温强磁场位移器,扫描器,及3DR旋转台低温mK纳米精度位移台技术特点如下: 参考文献:[1] Nature Communications 11, 4460 (2020) [2] PRX Quantum 1, 020315 (2020)

精度调整专用位移台相关的方案

精度调整专用位移台相关的资料

精度调整专用位移台相关的试剂

精度调整专用位移台相关的论坛

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 【原创】基于感应耦合比率臂的高精度位移测量系统

    常用的电气测量方法有很多种,依据测量误差与测量方法相关联的特点,可以将现有的各种测量方法分为如下三大类:(1)直接测量法:直接测量未知量的数据;(2)差值测量法:测量未知量与已知量之差,间接获得被测量的值;(3)比率测量法:测量未知量与已知量之比值,间接获得被测量的值。测量的过程就是要在未知量和已知量间建立起一定的关系,最后获得被测量的大小。在采用上述不同的测量方法的,测量装置和过程引入的误差是不一样的。如在直接测量法中,因为测量时间与环境的变化会引入一个系统误差;而采用差值测量法时,由于两个被比较的元件的外界条件相同,检测它们的差值可在很大程度上消除上述系统误差,尤其是利用零偏法时,差值测量可以获得相当精确的结果,不过所测得的两个量之差值仍随着外部条件的变动而变化。采用比率测量法能够显著减小在一级近似下被测量中依赖于外界条件以乘积因子形式出现的误差项,从而具有优于差值测量法的抗干扰性能。1 比率测量法 一个物理量f,其值取决于外界因素如t(温度)、u(电压)……等,其一阶展开式为: f=f0+(аf/аt)0Δt+(аf/аu)0Δu+A (1)为简化数字运算,只考虑存在一个干扰因素的情况,参考量f1与被测量f2可以分别写作:f1=f01(1+β1Δt)和f2=f02(1+β2Δt),此处β1=1/(f01)(аf1)/(аt)0, β2=1/(f02)[(аf2)/(аt)]0,且有β1Δt1,β2Δt1。容易求出上述三种方法中的相对测量误差各为: а绝对=β2Δt=Lβ1ΔT (2) а差值=[(f02β2-f01β1)Δt/(f02-f01)]=[(LK-1)/(K-1)]β1ΔT (3) а比率=(β2-β1) Δt=(L-1)β1Δt (4) 其中L=(β2)/(β1),K=(f02)/(f01)。图1表示取L=1.5时相对误差随元件值的分布情况。可以看出,比率测量法在很宽的测量范围内均具有良好的抗干扰能力。当存在多个影响因素或者在分析由上述方法组合成的测量装置时,可根据叠加原理按系统误差的理论综合评定其精度。 2 电容位移传感器与比率测量 电容式微小位测量系统是近年来发展最快的位移测量技术之一。众所周知,用两块平行的金属板就可以构成一个电容位移传感器,其电容量由极板的相对有效面积、极板间距以及填充的介质特性所决定。只要被测特体位置的移动改变了电容器上述任何一个结构参数,传感器的电容量就会发生变化,通过测量电容量的变动即可精确地知道特体位移的大小。 电容位移传感器的三种基本类型如图2所示。其具体结构可视实际运用的场合灵活多变,电容极板可以是平面的或者球面的;运行电极可以采用水银等导电液体。图2所示的三种基本类型均可组成差动式结构,如各分类中下部图形所示。采用差动式结构能够提高传感器线路的输出灵敏度,减小非线性,还能在一定程序上抑制由静电吸引带来的误差。当要求测量系统具有很高的分辨力时,一般是保持极板面积相对固定而使电容传感器极板间隙随被测位移改变,即如图2(a)所示的结构。反之,采用保持间隔恒定而让极板相对面积可变的结构,则可以在相当大的动态范围内获得线性的响应。一般情况下,电阻、电感和电容等电子元件均被盾作双端元件。两端电容器的等效电路示如图3(a)。由于各端钮对附近导电物体的分布电容C1G、C2G是变化的,所以其总电容C12+[(C1G×C2G)/(C1G+C2G)也是不稳定的。如果电容式传位移传感设计成这种简单的结构,外界干扰会很大。为了消除上述分布参数的影响,必须对电容传感器进行完善的静电屏蔽,形成如图3(b)的结构,称之为三端电容器。这样的三端电容元件中,由极板形成的直接电容C12是确定的,但是C13、C23仍受引线芯屏间电容的影响。如何排队三端电容中分布参数的影响?怎样准确测量与位移相关的直接电容的大小呢? 上世纪五十年代在电力工学和计算学领域出现了一种新型的电压比率器件——感应耦合比率臂,它的突出特点是分压精度高,可达10 -8量级以上;输出阻抗低,能做到10mΩ以下;长期稳定性非常好,年漂移率保持在10 -9的水平。其后,感应分压器的理论与工艺日臻完善,极大地提高了电工测量和标准计量的精度,实现了对小电容的高精度测量,进而以计算电容与感应分压器为基准导出了电阻、电感等的计量标准。这一成就也对精密测量领域产生了积极的推动作用。如果将两个三端电容串接起来,分别用两个信号源供电,就形成了如图4所示的等效电路,其中,Y12=jωC12,Y’12=jωC'12。在公共点D与接地端之间连接一个检流计,调节两个外加电压的幅值和相位,使通过两个直接电容流向D点的电流大小相等、方向相反,直道检流计指零,便可得到下面的关系式: C12/C’12=-(U2/U1) (5)可见,只要知道了两个电压之比也就知道了两个三端电容的直接电容之比,于是就可以准确测量传感器相应的位移。两个电压源如果用感应耦合比率臂来实现,端钮对屏蔽的导纳对测量结果将没有明显的影响,因为Y23、Y’23在电路不平衡时只影响灵敏度,而当线路达到平衡状态时就没有影响了。至于Y13、Y’13引起的分压误差,则可以得到极大的降低,只要信号源的内阻足够小即可。如前所述,感应耦合比较率臂正好具有这一优良特性。 现以设计一个测量微小位移的系统为例来说明上述测量方法的应用。首先,用高导磁率环形铁芯绕制出感应耦合比率臂,再设计适当的可变间距三电极差动式电容位移传感器的结构,并采用比率测量线路,就有如图5所示的微位移测量系统原理框图。对双极板电容传感器,不考虑电场的边缘效率,两个直接电容为:C12=[(εA1)/(3.6πd1)](pF),C’12=[(εA2)/(3.6πd1)](pF)。不失一般性,对两个差动电容器可假定极板相对面积相等,即A1=A2=A(cm2)。极板间介质的介电常数也有ε1=ε2=ε(譬如均为空气)。d1、d2(cm)分别为两传感器的极板间距。N1、N2系感应分压器两部分电压对应的匝数,N1+N2=N0。将两个电容表示式代入(5)式,可得: d1=KN1 (6) d2=K(N0-N1) (7) 式中,K=(d1+d2)/N1+N2为测量系统的灵敏度系数,表示比率臂单位读数变化所对应的传感器中心电极的位移。现估算一下这个测量系统可能达到的指标。感应耦合比率臂的总的分压比不难做到1/N0=10 -7,两个传感器极板间距之和是个常量,取d1+d2=1mm,则位移灵敏度系数K=10 -8cm,只有0.4纳米。N1为仪器面板上的读数,其变化范围为从0到N0。从最后获得的极板位移与比率变压器读数的关系式(6)可知,读数随中心电极的位移呈线性变化。实际完成的系统由于结构的不完善性,在接近量程的两端会出现一定程度的非线性,如果采取等电位屏蔽等措施,可以把输出特性的非线性降低到可以忽略的程度。可见,将差动式电容位移传感器与比率测量方法结合起来,设计的测量系统既有很高的分辨能力及较强的抗干扰能力,也能够获得很好的线性响应。还有更多的资料,我在这里就不添了,大家感兴趣的话到这个网站上去下载吧!http://www.yiqi120.com/zlzxInfo.asp?id=1676

精度调整专用位移台相关的耗材

  • 电动位移台
    直线电动位移台,电动直线位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,精通光学,服务科学,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口直线电动位移台,电动直线位移台,电动位移台。该直线电动位移台是一款无刷直线伺服电机驱动的电动直线位移台,融合了高速高精度的特点,具有亚微米的定位精度,可以为用户带来高工作量/吞吐量,最大负载高达50kg,最高速度高达3m/s.主要特色:电动直线位移台精确导向系统为高速度长行程提供稳定的定向和导向保障 直线电动位移台强大的直线电机提供高负载能量和大驱动力;电动直线位移台,高分辨率直线编码器(光栅尺)提供精确的定位反馈和闭环数字伺服控制;直线电动位移台具有美国制造的坚固耐用特性,高可靠性,长期工作。产品特色:这款直线电动位移台采用直接驱动的直线电机用于位移台的定位。这种技术与传统的导螺杆驱动的位移台相比,具有明显的优势:*直线电动位移台没有螺杆驱动系统中出现的弹性形变问题,可保障更为复杂而精密的定位轨迹,更短的设置和行进时间,更高的重复精度,更快的伺服反应。*电动直线位移台这种技术没有旋转惯性,可获得更高的加速度和行进速度。*直线电动位移台消除了旋转部件的磨损问题,具有更高的可靠性,更长的工作时间和寿命,更长的检修间隔时间,大大降低用户的使用成本。* 电动直线位移台这种直接驱动的直线电机具有高分辨率的编码器,可以精确调节速度,这种直线电机和其它部件可经过特殊处理具有真空兼容性,用于真空环境。产品描述:这款直线电动位移台的所有结构材料都是高强度的铝合金材料,材料表面经过精密机械加工,并进行硬质阳极氧化镀膜(涂层)成浅灰色。电动直线位移台采用两个带有再循环线性轴承的精密方形导轨作为承载部件,它由预加载的滚珠器件精密导引,这种导向系统只需要标准的润滑服务,不需要其他维护。这款直线电动位移台尺寸紧凑,驱动电机不单独外悬,直线电机,编码器和电缆等驱动部件安装于位移台底座,这种设计从而避免了那些外悬电机等核心部件受冲击等损害,具有更为安全的结构。这款电动直线位移台采用再循环轴承系统并配带精密导轨支撑位移台高速度,高精度运动。直线电动位移台使用的高强度铝合金材料,精密机械加工工艺把电动位移台的刚度和稳定性发挥到极致。电动直线位移台对于铝材料的标准处理是阳极氧化硬质涂层,对于不修钢部件采用抛光处理,对于特殊要求,比如Teflon特氟隆浸渍硬质涂层,非阳极氧化处理,化学镀镍等都可为用户提供。产品应用:这个系列Linax直线电动位移台是无刷直线电机(Brushless linear motor)驱动的电动位移台, 即使在高负载情况下也有超高可靠性和精密定位能力,是高负载,高精度高可靠性的最佳电动直线位移台。直线电动位移台具有超高加速能力和行进速度.这种电动直线位移台具有更小的惯性,比传统的罗杆驱动等机械传动的位移平台更适合应用.根据牛顿定律可知,负载的轻重直接影响到加速度,这款直线电动位移台,具有较高的加速度和运行速度, 能够帮助用户减少时间而提供工作量.直线电动位移台产品规格和型号参数直线电动位移台行程范围:125-750mm直线电动位移台驱动系统:无刷直线电机直线电动位移台最大加速度: 取决于负载直线电动位移台最大速度:3米/秒(无负载时)直线电动位移台最大峰值力:800N直线电动位移台最大连续力:160N电动直线位移台最大负荷:XY平台50Kg,Z轴25kg电动直线位移台反馈系统:非接触式直线编码器系统电动直线位移台TTL分辨率:5 μm, 1μm, 0.5μm,0.25μm, 0.2μm,100 nm & 50 nm电动直线位移台重复精度:5x分辨率电动直线位移台构造:铝合金主体,硬质灰色阳极镀膜型号LX-8125LX-8375LX-8500LX-8625LX-8750行程(mm)125375500625750精度Standard SP 标准型± 11&mu m± 12µ m± 16 µ m± 18µ m± 22 &mu mHigh Precision HP高精度型± 5 .5µ ± 7 µ m± 8 µ m± 10 µ m± 11 µ m平整度Standard SP标准型± 6 µ m± 12 µ m± 20 µ m± 28 µ m± 36 µ mHigh Precision HP高精度型± 4 µ m± 6 µ m± 10 µ m± 14 µ m± 18 µ mYaw/Pitch/RollStandard SP20 arc-sec20 arc-sec20 arc-sec20 arc-sec20 arc-secHigh Precision HP10 arc-sec10 arc-sec10 arc-sec10 arc-sec10 arc-sec2 axis systemOrthogonalityStandard SP20 arc-sec20 arc-sec20 arc-sec20 arc-sec20 arc-secHigh Precision HP5 arc-sec5 arc-sec5 arc-sec5 arc-sec5 arc-secExtra High Precision XHP3 arc-sec3 arc-sec3 arc-sec3 arc-sec3 arc-sec
  • 三维位移台
    该电动三维位移台是一款无刷直线伺服电机驱动的电动直线位移台,融合了高速高精度的特点,具有亚微米的定位精度,三维位移平台可以为用户带来高工作量/吞吐量,最大负载高达50kg,最高速度高达3m/s.主要特色:三维位移台精确导向系统为高速度长行程提供稳定的定向和导向保障 三维位移台强大的直线电机提供高负载能量和大驱动力;三维移动台高分辨率直线编码器(光栅尺)提供精确的定位反馈和闭环数字伺服控制;三维移动台具有美国制造的坚固耐用特性,高可靠性,长期工作。产品特色:这款三维位移平台采用直接驱动的直线电机用于位移台的定位。这种技术与传统的导螺杆驱动的位移台相比,具有明显的优势:三维位移平台没有螺杆驱动系统中出现的弹性形变问题,可保障更为复杂而精密的定位轨迹,更短的设置和行进时间,更高的重复精度,更快的伺服反应。*三维位移台,三维移动台,三维位移平台这种技术没有旋转惯性,可获得更高的加速度和行进速度。*三维位移台,三维移动台,三维位移平台台消除了旋转部件的磨损问题,具有更高的可靠性,更长的工作时间和寿命,更长的检修间隔时间,大大降低用户的使用成本。*三维位移台,三维移动台,三维位移平台这种直接驱动的直线电机具有高分辨率的编码器,可以精确调节速度,这种直线电机和其它部件可经过特殊处理具有真空兼容性,用于真空环境。产品描述:这款三维位移台,三维移动台,三维位移平台的所有结构材料都是高强度的铝合金材料,材料表面经过精密机械加工,并进行硬质阳极氧化镀膜(涂层)成浅灰色。电动直线位移台采用两个带有再循环线性轴承的精密方形导轨作为承载部件,它由预加载的滚珠器件精密导引,这种导向系统只需要标准的润滑服务,不需要其他维护。这款三维位移台,三维移动台,三维位移平台尺寸紧凑,驱动电机不单独外悬,直线电机,编码器和电缆等驱动部件安装于位移台底座,这种设计从而避免了那些外悬电机等核心部件受冲击等损害,具有更为安全的结构。这款三维位移台,三维移动台,三维位移平台采用再循环轴承系统并配带精密导轨支撑位移台高速度,高精度运动。三维位移台,三维移动台,三维位移平台使用的高强度铝合金材料,精密机械加工工艺把电动位移台的刚度和稳定性发挥到极致。三维位移台,三维移动台,三维位移平台对于铝材料的标准处理是阳极氧化硬质涂层,对于不修钢部件采用抛光处理,对于特殊要求,比如Teflon特氟隆浸渍硬质涂层,非阳极氧化处理,化学镀镍等都可为用户提供。产品应用:这个系列三维位移台,三维移动台,三维位移平台是无刷直线电机(Brushless linear motor)驱动的电动位移台, 即使在高负载情况下也有超高可靠性和精密定位能力,是高负载,高精度高可靠性的最佳电动直线位移台。三维位移台,三维移动台,三维位移平台具有超高加速能力和行进速度.这种电动直线位移台具有更小的惯性,比传统的罗杆驱动等机械传动的位移平台更适合应用.根据牛顿定律可知,负载的轻重直接影响到加速度,这款直线电动位移台,具有较高的加速度和运行速度, 能够帮助用户减少时间而提供工作量.直线电动位移台,电动直线位移台,电动位移台。产品规格和型号参数行程范围:125-750mm驱动系统:无刷直线电机最大加速度: 取决于负载最大速度:3米/秒(无负载时)最大峰值力:800N最大连续力:160N最大负荷:XY平台50Kg,Z轴25kg反馈系统:非接触式直线编码器系统TTL分辨率:5 μm, 1μm, 0.5μm,0.25μm, 0.2μm,100 nm & 50 nm重复精度:5x分辨率构造:铝合金主体,硬质灰色阳极镀膜型号LX-8125LX-8375LX-8500LX-8625LX-8750行程(mm)125375500625750精度Standard SP 标准型± 11μm± 12μm± 16 μm± 18μm± 22 μmHigh Precision HP高精度型± 5 .5μ± 7 μm± 8 μm± 10 μm± 11 μm平整度Standard SP标准型± 6 μm± 12 μm± 20 μm± 28 μm± 36 μmHigh Precision HP高精度型± 4 μm± 6 μm± 10 μm± 14 μm± 18 μmYaw/Pitch/RollStandard SP20 arc-sec20 arc-sec20 arc-sec20 arc-sec20 arc-secHigh Precision HP10 arc-sec10 arc-sec10 arc-sec10 arc-sec10 arc-sec2 axis systemOrthogonalityStandard SP20 arc-sec20 arc-sec20 arc-sec20 arc-sec20 arc-secHigh Precision HP5 arc-sec5 arc-sec5 arc-sec5 arc-sec5 arc-secExtra High Precision XHP3 arc-sec3 arc-sec3 arc-sec3 arc-sec3 arc-sec
  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度XT 25XT 50XT 2525XT 5050Travel Length (mm)25 mm50 mm25 x 25 mm50x 50 mmTrajectory ControlAccuracyLinear Encoder± 1.0 &mu m± 2.0 &mu m± 2.0 &mu m± 4.0 &mu mStraightness/Flatness± 1.0 &mu m± 1.0 &mu m± 2.0 &mu m± 2.0 &mu mYaw/Pitch/Roll5 arc-sec5 arc-sec10 arc-sec10 arc-sec2 axis systemOrthogonalityStandard GradeNANA5 arc-sec5 arc-secHigh PrecisionNANA2 arc-sec2 arc-secExtra High PrecisionNANA1 arc-sec1 arc-sec
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制