光学成像相机

仪器信息网光学成像相机专题为您提供2024年最新光学成像相机价格报价、厂家品牌的相关信息, 包括光学成像相机参数、型号等,不管是国产,还是进口品牌的光学成像相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学成像相机相关的耗材配件、试剂标物,还有光学成像相机相关的最新资讯、资料,以及光学成像相机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光学成像相机相关的厂商

  • 本公司经营的主要产品有:美国OGP自动影像量测系统,德国LEICA系列显微镜、成像和图像分析软件、各种成像CCD、数码相机及配件,日本NIKON投影机、工具显微镜、高度计,东京精密的粗糙度仪和圆柱度仪等。代理南京普西森的光学设备。光学成像仪器的维护及改造、硬度计、万能试验机及各种耗材等。
    留言咨询
  • 广州至一科技有限公司(To One Technolgoy Co.,Ltd)以欧美产品,特别是高精密设备为依托,致力于服务光学影像界,为光学影像生产制造商、光学影像研究机构、光学影像质检单位提供光学成像质量测试系统、仪器设备以及测试方案。 产品系列可用于测试镜头/镜片、相机的MTF、像散、MDTD、MRTD、焦距、畸变、杂散光等等,广泛运用于车载镜头、手机相机、热像仪、安防镜头、红外镜头等领域。
    留言咨询
  • 深圳市众寻光学仪器有限公司是专业从事显微镜及显微数码成像产品研发、生产与销售的高科技公司,拥有自己的品牌“众寻”,并具有完善的售后服务体系,可提供及时快捷的显微数码成像产品的技术支持与维修服务。众寻光学的销售体系已遍布全国各地,众寻人踏实淳朴,诚实信用的做事风格,已使得众寻光学成为中国市场上极具实力的显微镜供应商。正如众寻人的口号所说的,“众里寻他,无微不至”,众寻人一直在努力着,成为你在茫茫显微镜商海中寻找到最合适的那个“他”。我们坚信客户的满意,才是我们成功的动力,成为中国最专业的显微镜供应商也是我们不断追求的目标。众寻人期待着与大家一起努力,振兴民族光学。
    留言咨询

光学成像相机相关的仪器

  • 小动物活体光学成像系统PE小动物活体光学成像系统IVIS Lumina LT是 新推出的第三 代小动物活体光学二维成像平台,该系统具有高灵敏度生 物发光和荧光成像性能。该系统配备高灵敏 CCD 相机、 不透光成像室和全自动化的分析功能。作为小 动物活体成像平台,IVIS 系统包括一整套实验室认可 的实用配件。PE小动物活体光学成像系统IVIS Lumina LT主要性能:1、 高灵敏度生物发光二维成像2、覆盖至近红外光谱波段范围的荧光成像3、基于切伦科夫辐射原理的放射性同位素 成像4、为您量身定制的可扩展工作流程5、市场上全面和的小动物活 体光学成像系统,包括出色的成像技 术、试剂和特点一:定量、灵活、可扩展通过 5 - 12.5 (cm) 可调节视野以及扩展镜头,可将视野范围扩展至 2.5 - 24 (cm)。 利用此功能可以对五只小鼠或两只中等体型大鼠进行同时成像。Lumina LT 也可 进行培养皿或微孔板等体外成像应用。该系统还带有高级的动物操作功能,包 括可加热型动物载物平台、气体麻醉和 ECG 监测系统。特点二:出色的成像结果IVIS Lumina LT 同时具备高质量的荧光和生物发光成像功能,并且滤光片能用于绿光至近红外范围的所有荧光成像。所有 IVIS 仪 器出厂前均经过复杂且严格的光学校准,保证在同一实验条件下,使用不同仪器所获取的成像数据的*性及可重复性,方便不 同用户间的数据验证及交流。此外,Living Image 软件结合仪器校准、背景扣除和图像算法,使用户获得高质量、可重复性的 定量结果。IVIS Lumina LT — 激发和发射滤光片标准配置特点三:可选的多光谱分离成像升级IVIS Lumina LT 提供升级选项,可升级至 Lumina III 系统,通过该系统并且结合纯光谱分析算法 (CPS) 进行多光谱分离。纯 光谱分析算法可以利用生成光谱库的软件工具准确去除自发荧光并实现多光谱成像。该系统可以同时成像多个荧光报告基因,从 而在同一动物体内获得多个生理结果。此升级选项包含 19 个激发滤光片和 7 个发射滤光片,可以对绿光至近红外光范围的荧光 报告基因进行多光谱成像。视野图 1.IVIS Lumina LT 成像系统提供 5 个成像视野。多重报告基因的成像 图 2.对同一动物的多重报告基因成像。使用酶激活型荧光探针Cat B 680 FAST 监测 4T1-luc2 肿瘤模型中组织蛋白酶 B 的活性。OsteoSense 800 靶向骨架结构。双报告基因的成像——高分辨率的离体成像应用。图 3.双报告基因成像——高分辨率应用。患有肺炎球菌性脑膜炎小鼠的细菌荧光素酶 (500 nm) 和 GFAP (620 nm) 脑部成像。Kadurugamuwa et al.,Infection and Immunity,2005 。特点四:专业的活体光学成像分析软件 - Living Image结合的校准和仪器设置,研究者可以长时间监测信号,从而进行纵向观测研究。药物研发实验结果显示(图 4),肿瘤信号在为期 35 天的实验过程中发生了 3 个数量级的变化。利用 Living Image 软件功能,使用者能够进行荧光和生物发光成像。图 4.的校准功能进行长期纵向研究以及将不同实验室的结果进行对比。IVIS Lumina LT 内部配置CCD 相机高灵敏度 CCD,芯片尺寸为 13 x 13 (mm2),像素数量 为 1024 x 1024背照射、背部薄化科学 1 级 CCD 可在整个可见至近红 外光谱上提供高量子效率16 位数字转换器提供广泛的动态范围CCD 以热电方式 (Peltier) 冷却至 -90℃,确保了低暗电 流和低噪音成像暗箱高品质避光成像暗箱高聚光透镜,光圈范围:f/0.95 – f/16成像视野范围:5 x 5 (cm2) - 12.5 x 12.5 (cm2) 可选配扩展至 2.5 x 2.5 (cm2) - 24 x 24 (cm2)8 位发射滤光片转轮可完整升级至 Lumina III 系统用于明场成像的 LED 灯加热型动物承载平台所有部件均为电动控制ECG 监测系统用于平面多光谱成像的选配发射滤光片转轮集成的气体麻醉接口位于成像暗箱内的气体麻醉口可同时对 5 只小鼠进行 持续成像小动物活体光学成像系统" width="300" height="343" style="margin:0px padding:0px font-size:inherit line-height:inherit font-weight:inherit vertical-align:middle background-image:initial background-position:initial background-repeat:initial background-attachment:initial border:0px max-width:100% height:auto max-height:100% "
    留言咨询
  • IVIS Lumina LT 小动物活体光学成像系统IVIS Lumina LT Series III 是 PerkinElmer 最新推出的第三 代小动物活体光学二维成像平台,该系统具有高灵敏度生 物发光和荧光成像性能。该系统配备高灵敏 CCD 相机、 不透光成像室和全自动化的分析功能。作为全球领先的小 动物活体成像平台,IVIS 系统包括一整套全球实验室认可 的实用配件。主要性能:? 高灵敏度生物发光二维成像? 覆盖至近红外光谱波段范围的荧光成像? 基于切伦科夫辐射原理的放射性同位素 成像? 为您量身定制的可扩展工作流程? 市场上最全面和最值得信赖的小动物活 体光学成像系统,包括最出色的成像技 术、试剂和技术支持特点一:定量、灵活、可扩展通过 5 - 12.5 (cm) 可调节视野以及扩展镜头,可将视野范围扩展至 2.5 - 24 (cm)。 利用此功能可以对五只小鼠或两只中等体型大鼠进行同时成像。Lumina LT 也可 进行培养皿或微孔板等体外成像应用。该系统还带有高级的动物操作功能,包 括可加热型动物载物平台、气体麻醉系统和 ECG 监测系统。特点二:出色的成像结果IVIS Lumina LT 同时具备高质量的荧光和生物发光成像功能,并且滤光片能用于绿光至近红外范围的所有荧光成像。所有 IVIS 仪 器出厂前均经过复杂且严格的光学校准,保证在同一实验条件下,使用不同仪器所获取的成像数据的一致性及可重复性,方便不 同用户间的数据验证及交流。此外,Living Image 软件结合仪器校准、背景扣除和图像算法,使用户获得高质量、可重复性的 定量结果。IVIS Lumina LT — 激发和发射滤光片标准配置特点三:可选的多光谱分离成像升级IVIS Lumina LT 提供升级选项,可升级至 Lumina III 系统,通过该系统并且结合专利的纯光谱分析算法 (CPS) 进行多光谱分离。纯 光谱分析算法可以利用生成光谱库的软件工具准确去除自发荧光并实现多光谱成像。该系统可以同时成像多个荧光报告基因,从 而在同一动物体内获得多个生理结果。此升级选项包含 19 个激发滤光片和 7 个发射滤光片,可以对绿光至近红外光范围的荧光 报告基因进行多光谱成像。视野图 1.IVIS Lumina LT 成像系统提供 5 个成像视野。多重报告基因的成像 图 2.对同一动物的多重报告基因成像。使用酶激活型荧光探针Cat B 680 FAST 监测 4T1-luc2 肿瘤模型中组织蛋白酶 B 的活性。OsteoSense 800 靶向骨架结构。双报告基因的成像——高分辨率的离体成像应用。图 3.双报告基因成像——高分辨率应用。患有肺炎球菌性脑膜炎小鼠的细菌荧光素酶 (500 nm) 和 GFAP (620 nm) 脑部成像。Kadurugamuwa et al.,Infection and Immunity,2005 。特点四:专业的活体光学成像分析软件 - Living Image结合精确的绝对校准和仪器设置,研究者可以长时间监测信号,从而进行纵向观测研究。药物研发实验结果显示(图 4),肿瘤信号在为期 35 天的实验过程中发生了 3 个数量级的变化。利用 Living Image 软件功能,使用者能够进行荧光和生物发光成像。图 4.精确的绝对校准功能进行长期纵向研究以及将不同实验室的结果进行对比。 IVIS Lumina LT 内部配置CCD 相机高灵敏度 CCD,芯片尺寸为 13 x 13 (mm2),像素数量 为 1024 x 1024背照射、背部薄化科学 1 级 CCD 可在整个可见至近红 外光谱上提供高量子效率16 位数字转换器提供广泛的动态范围CCD 以热电方式 (Peltier) 冷却至 -90℃,确保了低暗电 流和低噪音成像暗箱高品质避光成像暗箱高聚光透镜,光圈范围:f/0.95 – f/16成像视野范围:5 x 5 (cm2) - 12.5 x 12.5 (cm2) 可选配扩展至 2.5 x 2.5 (cm2) - 24 x 24 (cm2)8 位发射滤光片转轮 可完整升级至 Lumina III 系统 用于明场成像的 LED 灯加热型动物承载平台所有部件均为电动控制ECG 监测系统用于平面多光谱成像的选配发射滤光片转轮集成的气体麻醉接口位于成像暗箱内的气体麻醉口可同时对 5 只小鼠进行 持续麻醉成像
    留言咨询
  • 高通量小动物活体光学成像系统-SpectrumBL主要性能 超高灵敏度生物发光成像、化学发光成像和切伦科夫成像 高通量(10只小鼠)成像 高分辨率(达20微米) 3D生物发光断层重建成像 3D光学数据可与microCT/PET/SPECT/MRI融合 国际标准的NIST光学绝对校准 可升级到IVIS Spectrum从而具备卓越荧光成像能力 IVIS SpectrumBL 小动物活体光学成像系统同时具备高通量二维及三维断层水平的生物发光、化学发光和切伦科夫辐射成像功能。SpectrumBL 可进行10 只小鼠同时成像,能够真正意义上对大批量小鼠进行高通量长时程成像研究。它所采用的独特光学成像技术有利于在活体动物内开展疾病发生发展,细胞动态变化以及基因表达模式的非侵入性长时程研究。高通量生物发光成像与其他IVIS成像系统一样,IVIS SpectrumBL提供最佳的生物发光灵敏度,能够一次进行10只小鼠的成像(图1)。SpectrumBL标配了10个小鼠麻醉面罩,对于长时程的研究可减少一半的成像时间,从而极大地提高药物研发工作进度。图1显示使用SpectrumBL,每年通过小动物活体成像得以分析和验证的化合物数量可增加120%。在早期临床前药物研发阶段,这些化合物经过活体水平的靶向或生物标记物的筛选验证后能极大提高后期临床阶段的研发效率。图1.使用 SpectrumBL 同时进行 10 只小鼠活体成像。右侧图表显示 SpectrumBL 的高通量成像能力使得更多的药物可以进行活体测试。业内公认最高灵敏度的生物发光成像基于-90℃制冷的CCD相机、大尺寸高量子效率CCD芯片及大光圈镜头,IVIS SpectrumBL具备了无与伦比的超高生物发光检测灵敏度。可以实现对以萤火虫荧光素酶、海肾荧光素酶、细菌荧光素酶等多种荧光素酶为报告探针的发光信号进行快速准确的成像检测。这种超灵敏的检测能力,使研究者能够在活体动物水平观测到低至单细胞数量级别的信号,进而帮助研究者在活体水平监测到肿瘤的早期微转移并对肿瘤的发展进行长时程的活体跟踪研究。其它应用还包括传染病研究(图3),干细胞追踪以及毒理学研究。图2. 在 4T1-luc2 肿瘤细胞皮下注射的活体裸鼠上可检测到单个细胞发出的信号 (A),对 NCI-H460-luc2 肺癌细胞的生长情况进行活体监测 (B),对左心室注射的 MDA-MB-231-luc2 肿瘤细胞在活体小鼠体内转移进行长期观测 (C)。图3. 对尿路感染,肺炎和脑膜炎小鼠模型进行传染病进展示踪研究。切伦科夫成像-优化的软件大大加速工作流程Living Image 软件通过非常直观的数据采集、分析和数据组织操作流程使得IVIS技术得以迅速普及。SpectrumBL 还添加了一些新的功能,如适合切伦科夫成像的成像模块。软件可以引导用户对相机参数进行优化,从而提高检测动物体内的放射性核素所发出光信号时的信噪比。Living Image 还支持动态对比增强(DyCETM)成像技术,能便捷地对放射性药物的活体生物学分布进行扫描,并通过光谱分离可以将放射性核素信号与其他光谱差异较大的发光信号区分开来。实验时,将放射性核素经尾静脉注入小动物体内,利用DyCE 成像模块获取多时间点的系列动态图像,通过专有的算法在数分钟内即可对放射性核素在体内主要脏器的分布进行呈现(图4)。DyCE 成像模块套装包含了多角度成像平台和专业软件,该软件拓展了Living Image 软件的功能,并适用于所有的IVIS 成像系统。图4.向右侧腹携带 4T1-luc2 皮下肿瘤的小鼠尾静脉注射 315 μCi 18F-FDG。从注射后 55 秒开始进行动态成像,通过切伦科夫辐射成像观测 18F-FDG 在小鼠体内的分布。高级3D 成像分析算法便于与MicroCT 成像进行数据融合二维成像只能实现对光学信号的相对定位和定量,而三维成像是解决上述问题的唯一途径。IVIS SpectrumBL 利用专利的生物发光三维成像技术对动物体内的光学信号进行断层扫描,并通过先进的模型算法对成像结果进行三维重建。重建出的三维结果可利用软件进行分析,获得光学信号在体内的深度、发光体积、发光强度、细胞数量等三维定量信息,以及结合小鼠数字器官模型而显示的器官定位信息(图5)。三维断层扫描和重建软件可以对肿瘤内部的细胞数量进行定量。三维生物发光信号的定量数据还可与Quantum FX microCT数据进行无缝融合(图6)。图5. 生物发光三维成像显示 GL261-luc2 胶质瘤在颅内的精确定位。图6. 小鼠通过心脏注射具有溶骨效应的 MDA-MB-231-luc-D3H2Ln 肿瘤细胞,该肿瘤细胞的三维生物发光成像与 Quantum FX 的结构成像数据可以进行完美融合。
    留言咨询

光学成像相机相关的资讯

  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 新颖的3D光学成像技术提高了荧光显微镜效率
    p style="text-align: justify text-indent: 2em "数十年来,科学家一直在使用荧光显微镜来研究生物细胞和生物的内部运作。但是,这些平台中的许多平台通常太慢,无法跟随3D的生物学作用,并可能在强光照射下对生物样本造成破坏。/pp style="text-align: justify text-indent: 2em "为了应对这些挑战,由香港大学(HKU)电气与电子工程学系副教授兼生物医学工程学学士学位课程主任、项目负责人Kevin Tsia博士领导的研究团队开发了一种新的光学成像技术——编码光片阵列显微术(CLAM)。它可以高速进行3D成像,并且具有足够的功率效率和柔和度,能够在扫描过程中以现有技术无法达到的水平保存活体标本。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 360px " src="https://img1.17img.cn/17img/images/202004/uepic/8b848a8f-6895-4507-a695-f4520371e1c7.jpg" title="1.jpg" alt="1.jpg" width="600" height="360" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "Kevin Tsia博士(右一)和他的团队开发了一种新的光学成像技术,可以使3D荧光显微镜更高效,更不损坏。/span/strong/pp style="text-align: justify text-indent: 2em "这项先进的成像技术最近发表在《光:科学与应用》上,这项创新已经提交了美国专利申请。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong新光学成像技术——编码光片阵列显微术(CLAM)/strong/span/pp style="text-align: justify text-indent: 2em "现有的3D生物显微镜平台速度较慢,因为必须依次扫描标本的全部体积,并逐点、逐行或逐平面成像。在这些平台上,单个3D快照需要在标本上重复照明,标本的光照强度通常是日光的数千倍至百万倍,这很可能会损坏标本本身,因此不利于长期用于各种解剖学、发育生物学和神经科学等领域的生物成像。/pp style="text-align: justify text-indent: 2em "此外,这些平台通常很快耗尽有限的荧光“预算”——这是一个基本限制,即荧光灯只能在有限的时间内通过照明产生,然后在一个称为“光漂白”的过程中永久消失,这就限制了在一个样本上可以执行多少图像采集。 /pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 360px " src="https://img1.17img.cn/17img/images/202004/uepic/3ca9166f-5215-4fb8-b0e0-a6eee546de6d.jpg" title=" 编码光片阵列显微镜(CLAM).jpg" alt=" 编码光片阵列显微镜(CLAM).jpg" width="600" height="360" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "编码光片阵列显微镜(CLAM) 香港大学/span/strong/pp style="text-align: justify text-indent: 2em "Tsia博士说:“ 样品上的重复照明不仅会加速光致漂白,而且还会产生过多的荧光,最终无法形成最终图像。因此,荧光' 预算' 在这些成像平台上被大大浪费了。而CLAM允许以高帧速率进行3D荧光成像,与最先进的技术(每秒约10倍的体积)相当。更重要的是,它比科学实验室中广泛使用的标准3D显微镜更节能,比标准3D显微镜温和1000倍以上,这大大减少了扫描过程中对活体标本造成的损害。” /pp style="text-align: justify text-indent: 2em "据介绍,CLAM的核心技术是使用一对平行反射镜将单个激光束转换成高密度的“光片”阵列,以荧光激发的方式将其扩散到整个样品区域。/pp style="text-align: justify text-indent: 2em "整个3D体积内的图像可以同时(即并行化)拍摄的,而无需按其他技术的要求逐点、逐行或逐平面扫描样本。这样的CLAM中的3D并行化可产生非常柔和而有效的3D荧光成像,而不会牺牲灵敏度和速度,CLAM在降低光漂白效果方面也胜过普通的3D荧光成像方法/pp style="text-align: justify text-indent: 2em "同时,为了在CLAM中保持图像分辨率和质量,团队转向了码分复用(CDM),这是一种图像编码技术,已广泛应用于电信领域,用于同时发送多个信号。/pp style="text-align: justify text-indent: 2em "开发该系统的另一位博士后研究员Queenie Lai博士解释说:“这种编码技术使我们能够使用2D图像传感器同时捕获和数字重建3D中的所有图像堆栈。CDM以前从未在3D成像中使用过,我们采用了这项技术,并取得了成功。”/pp style="text-align: justify text-indent: 2em "作为概念验证的演示,该团队应用CLAM以每秒超过10体积的体积速率捕获微流体芯片中快速微粒流动的3D视频。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong挑战极限 提高CLAM扫描速度 /strong/span/pp style="text-align: justify text-indent: 2em "CLAM对成像速度没有根本的限制,唯一的限制来自系统中使用的检测器(即用于拍摄快照的相机)的速度。随着高速相机技术的不断发展,CLAM始终可以挑战其极限,以达到更高的扫描速度。/pp style="text-align: justify text-indent: 2em "该团队进一步采取了行动,将CLAM与HKU LKS医学院新开发的组织清除技术相结合,以高帧频对小鼠肾小球和肠血管系统进行3D可视化。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 280px " src="https://img1.17img.cn/17img/images/202004/uepic/f453719f-bebb-406d-8486-fef778022593.jpg" title="2.jpg" alt="2.jpg" width="600" height="280" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strongspan style="font-size: 14px "使用CLAM进行3D高速成像。学分:香港大学 /span/strong/pp style="text-align: justify text-indent: 2em "蔡医生说:“我们预计,这种组合技术可以扩展到档案生物学样本的大规模3D组织病理学研究,例如在大脑中绘制细胞组织以进行神经科学研究。由于CLAM成像比其他所有方法都要温和得多,因此它独特地有利于对生物样本以其活体形式进行长期和连续的' 监视' 。这可能会影响我们对细胞生物学许多方面的基本了解,例如不断跟踪动物胚胎发育成成年形式;实时监测细胞/生物如何被细菌或病毒感染;观察癌细胞如何被药物杀死,以及当今现有技术无法实现的其他挑战性任务。”/pp style="text-align: justify text-indent: 2em "CLAM可以通过最少的硬件或软件修改就适用于许多当前的显微镜系统。利用此优势,该团队计划进一步升级当前的CLAM系统,以进行细胞生物学、动植物发育生物学研究。/pp style="text-align: left text-indent: 2em "原文链接:a href="https://www.sensorexpert.com.cn/article/7303.html" _src="https://www.sensorexpert.com.cn/article/7303.html"https://www.sensorexpert.com.cn/article/7303.html/a /pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong附:/strong/span/pp style="text-align: justify text-indent: 2em "讲座:《四合一数码显微镜,多种难题一机解决!》/pp style="text-align: justify text-indent: 2em "主讲人:夏天齐 基恩士/pp style="text-align: justify text-indent: 2em "时间:4月22日10: 00/pp style="text-align: justify text-indent: 2em "主要报告内容:此次讲座希望让更多使用显微镜的客户,了解到数码显微镜能解决的常规问题,作为技术储备,认识到VHX系列产品的一些功能和应用场景。/pp style="text-align: left text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html" target="_self"span style="color: rgb(0, 112, 192) "点击报名,免费听课:https://www.instrument.com.cn/webinar/meeting_13067.html/span/a/p
  • 米兰理工大学Federica Villa团队—推动影像科技发展的量子光学成像技术
    【重点摘要】量子相干性和纠缠可以使量子成像和显微技术的分辨率和灵敏度远超传统光学物理极限。为实现这些量子技术,需要使用具备特定功能的检测器。本文旨在强调基于单光子雪崩二极管(SPAD)的传感器在量子成像和显微应用中的重要性,为下一代理想的量子成像器铺平道路。在回顾了主要的提高样本图像分辨率和灵敏度的量子物理原理技术后,指出了雪崩光电二极管(APD)、增强型耦合电荷探测器(ICCD)和电子倍增CCD(EMCCD)等不同传感器的优缺点。然后主要分析了SPAD基传感器,将其确定为量子成像的最佳候选,并批判性地讨论了需求和性能,也与已有的具有特定功能的SPAD架构进行了关联,以配合应用。最终,下一代量子成像器应当整合在此呈现的所有最优构建方案,以检测光子巧合并执行高效的事件驱动式读取,还需利用适当的技术和SPAD设计来优化所讨论的检测性能。【解析度的量子】利用独特的量子纠缠和相干性,量子光学技术将传统光学的分辨率和灵敏度推向极限。通过操纵单个光子和光子对,量子成像系统可观测到病毒大小的细胞组织结构以及绝缘体材料中的纳米级缺陷。这种操控光的粒子性开启了成像科学的新纪元,将为生物医学应用带来广阔前景。【单光子检测的关键性】实现量子光学成像的核心是高效和高灵敏的单光子传感。与传统的雪崩光电二极管(APD)和增强型耦合电荷探测器(ICCD)不同,单光子雪崩二极管(SPAD)可以准确检测单个入射光子及其到达时间,从而检测不同通道光子的相干性。SPAD传感器这一独特优势使其成为量子成像领域的最佳解决方案。Enlitech的SPD2200是商业级SPD特性分析系统,专注于分析和测试对LiDAR技术重要的SPAD。近期成功卖入全球SPAD前三大晶圆厂之一。它提供了光谱和时域特性分析模块,灵活满足了dToF模块开发中多样的测量需求,可灵活选择单个模块或综合使用以进行全面性的特性分析。【光子巧合的量子标记】量子成像通常依赖于光子的量子纠缠和相干性。这需要同时检测两条光路中单个光子的到达时间,以标记光子对的关联性。SPAD传感器提供皮秒量级的时标功能,通过事件驱动式读出高效提取量子光学成像所需的关键信息,不同于CCD或CMOS成像传感器获得的整幅图像。【量子效应的跨尺度成像】单光子检测促进了从微观尺度到生物组织或器官水平的各种跨尺度的量子成像技术。例如,利用量子光学原理设计的光学相干断层扫描可以实现细胞和组织的三维结构重建 单光子自相关光谱技术可以实现深部组织的非侵入式检测。随着光子检测方法的发展,量子成像未来可望在生命科学和医学领域得到广泛应用。【让我们期待量子世界的新景象】当前,集成单光子检测的量子相机和显微镜仍属实验室概念验证阶段,但其呈现的分辨率和动态范围已远超同类产品。量子光学成像技术充分发挥量子世界的奥秘,必将给人类打开崭新的景象和认知世界的新视野。让我们共同期待这场成像领域的量子!图20 带电栅控SPAD图像传感器像素架构[64] 采用许可复制[64] 版权2018年,SPIE。图26 不同工艺制作的SPAD的PDP比较[54,65,81,82] 为完整起见,还增加了与ICCD PI-MAX4-III Gen和EMCCD ANDOR iXon3相关的PDP。

光学成像相机相关的方案

光学成像相机相关的资料

光学成像相机相关的试剂

光学成像相机相关的论坛

  • 2018年光学成像技术市场将达19亿美元

    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。http://www.instrument.com.cn/news/20130305/092849.shtml

  • 几何光学成像问题请教!!!

    几何光学成像问题请教!!!

    听闻这里藏龙卧虎,特来请教各位一个光学成像的物理问题:如下图所示:(1)A,B为不同入射方向的平行光,照射到一个样品上后,透射出来后经过物镜(凸透镜)作用后,在物镜的右边分别是如何成像的?(2)而如果两束入射光如图二情况,这时在物镜的右边 又是如何成像的?望各位大侠多多指教!!http://ng1.17img.cn/bbsfiles/images/2011/07/201107202212_306129_2342870_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/07/201107202214_306130_2342870_3.jpg

光学成像相机相关的耗材

  • TPX3Cam用于纳秒光子时间戳的单光子快速光学相机 (1.6ns时间分辨高速成像光学相机)
    总览荷兰ASI出品的TPX3Cam是一款用于光学光子时间戳的快速光学相机。它基于一种新型硅像素传感器,并结合了Timepix3 ASIC和读出芯片技术,适用于电子、离子或单光子等需要时间分辨成像的各种应用。TPX3Cam可以很容易地集成在桌上型研究装置中,也可以集成在同步加速器或自由电子激光环境中。使用TPX3Cam,可在速度映射成像设备中测量电子和离子。纳秒级的时间分辨率和数据采集速率使我们能够以前所未有的方式进行测量。TPX3Cam能够在400至1000 nm波长范围内以高量子效率同时对超过1000个光子的闪烁光进行成像和时间戳记。它可以在VMI(速度映射成像)装置中高效地记录撞击在MCP(微通道板)上的离子。 MCP耦合到一个快速P47磷光体屏,该屏产生响应离子撞击MCP的闪烁光。TPX3Cam放置在真空之外,能检测来自磷光体屏的闪光。在TPX3Cam中,所有单个像素都可独立工作,且能对伴随发生的' 事件' 进行时间戳记。 这就将成像传感器变成了快速数字转换器阵列,具有并行作用的空间和时间分辨率,因此可以同时记录多个离子种类,允许进行符合测量和协方差分析。工作波长400-1000nm技术参数优点光敏硅传感器波长范围:400 - 1000nm每像素的同时检测时间(ToA)和强度(ToT)时间分辨率1.6ns,有效帧率 500 MHz无噪声、数据驱动读数,高达80 Mhits/s (10Gb/s)灵活光学设计下图:TPX3CAM能够同时对超过1000个光子进行成像和时间标记,在400到1000 nm波长范围内具有高量子效率。它可以在VMI(速度图成像)配置中有效地记录撞击在微通道板上的离子。MCP与快速P47荧光粉耦合,当离子撞击MCP时,该荧光粉会产生闪光。TPX3CAM,放置在真空之外,可以检测荧光粉的闪光。“在TPX3CAM中,所有单个像素都独立工作,能够对‘事件’进行时间标记。这将成像传感器转变成一个快速数化器阵列,具有空间和时间分辨率,同时发挥作用,因此可以同时记录多个离子种类,从而进行重合和协方差分析。"应用离子和电子成像TPX3CAM的应用包括飞行时间质谱中离子的空间和速度图成像;离子和电子的符合成像,以及其他时间分辨成像光谱类型。TPX3CAM能够以1.6 ns的时间分辨率检测离子撞击并对其进行时标记,从而可以同时记录所有碎片离子的离子动量图像。这种单检测器设计简单、灵活,能够进行高度差分测量。右边的图像显示了CH2IBr的离子TOF质谱,该质谱是在德国汉堡同步加速器的闪光光源下,用TimepixCam(TPX3CAM的之前型号)记录的,在强激光脉冲强场电离后,以及每个探测器的图像在TOF光谱中的峰值。单光子成像强化版TPX3CAM可以是单光子敏感的。在这种配置中,检测器与现成的图像增强器结合使用。应用包括宽场时间相关单光子计数成像(TCSPC),磷光寿命成像和任何需要时间分辨单光子成像的应用。图像(a): 通过TimepixCam获得,TimepixCam是TPX3CAM的前一个模型。图像(b):对于(a)中所示的A1-A4区域,强度是时间的函数(磷光衰减),磷光衰减和拟合的残差具有单指数拟合。 规格传感器材料光敏性增强的硅波长范围400 - 1000 nm探测范围~1000光子/每像素光学传感器活动区域14.1 x 14.1 mm2类型C型接口成像专用集成电路类型Timepix3像素间隔55 µm像素数量256 x 256阈值数量1吞吐量10 Gb/s 的情况下,高达80 Mhits/s1 Gb/s的情况下,高达15 Mhits/s停滞时间读数停滞时间为0时间分辨率1.6 ns有效帧速率 500 MHz像素击中停滞时间~1 µs读出模式数据驱动,通过每像素ToA和ToT检测同步时间和强度其他参数计算机接口1 Gb/10 Gb外部快门控制有外部信号时间戳260 ps重量2.2 kg尺寸(长x宽x高)28.8 x 8 x 9 cm冷却空气采集软件Windows/ Linux/Mac的图形用户界面
  • 热成像相机配件MTC160
    热成像相机配件MTC160是全球领先的红外相机和Thermal imaging热成像方案,留有CCTV接口,热成像相机MTC160广泛用于监视系统,消防设备,武器瞄准器,安防等。热成像相机配件MTC160介绍后侧有多接口设计,以此可以轻易地连接到客户的产品或系统。与用户现有的设备或网络连接后,可以进行数字视频输出(LVDS),复合视频输出(BNC),和使用计算机(RS232)远程控制。除红外图像分辨率不同外,其他性能一样,同时,我们提供了4种不同的销售包装供用户选择:无镜头包装,可选镜头包装,无镜盖包装和裸芯片包装(不含镜头及外壳)。使用M3和1/4“-20底座可以便利地固定到现有的CCTV系统,该热成像摄像机还可以应用到各种应用中,如夜视系统,消防设备,武器瞄准器,安防产品,以及更多应用程序。热成像相机配件MTC160特点包装紧凑重量轻,易于整合。 50Hz帧频,得到实时、清晰的热视频。高灵敏度检测器:25μ微米的像素间距,NETD 自动/手动亮度/对比度调整。黑白或彩色显示屏输出视频。可切换PAL/NTSC格式输出模拟视频。串行LVDS数据流/ BT.656并行数据流输出数字视频。多个接口,方便运行嵌入式应用。热成像相机配件MTC160特色 2倍数码变焦,用户能够看到物体细节。RS232接口为PC机远程控制提供访问入口。RS232下载最新软件和远程更新。先进的图像处理功能,生成高清晰的热图像视频。专业分析软件使客户能够创建自己的应用。5种无热化镜片,5手动镜头,和定制的镜头可用。 热成像相机配件MTC160应用监控 安防 政府 消防 交通运输 医学 热成像
  • Atik CMOS相机 (USB 3.0,ACIS 7.1系列制冷相机)
    总览索尼CMOS IMX428,7.1MP传感器的紧凑外形与优化的冷却性能相结合,使这款相机成为科学成像的理想选择。由于我们内部研发团队对ACIS 7.1进行了优质设计,该相机具有低读噪声电子设备和高光子转换效率,并将提供可靠的成像性能,非常适合因光线不足而需要广视域的应用。阳极氧化外壳专为在成像系统环境中实现最高电池兼容性能(EMC)而设计。ACIS 7.1配备了全面的软件开发工具包,并且与许多第三方图像采集程序完全兼容。可以定制基础级ACIS 7.1,以满足特定OEM应用的要求,因此如果您需要任何修改,请使用以下详细信息与我们联系。技术参数主要特征USB3连接索尼IMX 428 CMOS传感器通过ISO 9001认证的欧洲工厂生产7.1mp传感器,需置于干燥、气密的环境中有三种不同的模式可作为板式摄像机使用BK7光学窗口,两侧均有多层镀膜(BBAR)软件开发工具包涵盖所有相机功能的C++库Visual Basic包装.net 包装Linux 驱动程序主要优势与其他设备实现高速通信电荷耦合器件(CCD)无可比拟的灵敏度,互补金属氧化物半导体(CMOS)价格优廉可靠且坚固无冷凝成像模式切换增强了通用性可根据您的具体要求进行定制无反射成像Atik OEM ACIS 7.1 像素总数传感器单声道Sony IMX428 LLJ-C传感器颜色Sony IMX428 LQJ-C传感器对角线17.6 mm传感器规格CMOS 1.1”分辨率 H3208 x 像素分辨率V2208 x 像素像素 L & W4.5 µm噪声5e- (典型)模数转换器16 bit冷却T(amb)-35°C (规定的)暗电流0.03e-/p /s at -10°C反焦点12.5 mm ±0.5重量约530g接口USB 3.0功率12VDC 0.8A (中心正极)可用附件通用电源(90-240V AC)/DC 12Vc型镜头适配器订购代码Atik OEM ACIS 7.1-C colourAtik OEM ACIS 7.1-M mono服务项目干燥剂筒产品特点主要特征USB3连接索尼IMX 428 CMOS传感器通过ISO 9001认证的欧洲工厂生产7.1mp传感器,需置于干燥、气密的环境中有三种不同的模式可作为板式摄像机使用BK7光学窗口,两侧均有多层镀膜(BBAR)软件开发工具包涵盖所有相机功能的C++库Visual Basic包装.net 包装Linux 驱动程序主要优势与其他设备实现高速通信电荷耦合器件(CCD)无可比拟的灵敏度,互补金属氧化物半导体(CMOS)价格优廉可靠且坚固无冷凝成像模式切换增强了通用性可根据您的具体要求进行定制无反射成像
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制