当前位置: 仪器信息网 > 行业主题 > >

光学成像相机

仪器信息网光学成像相机专题为您提供2024年最新光学成像相机价格报价、厂家品牌的相关信息, 包括光学成像相机参数、型号等,不管是国产,还是进口品牌的光学成像相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学成像相机相关的耗材配件、试剂标物,还有光学成像相机相关的最新资讯、资料,以及光学成像相机相关的解决方案。

光学成像相机相关的论坛

  • 2018年光学成像技术市场将达19亿美元

    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。http://www.instrument.com.cn/news/20130305/092849.shtml

  • 几何光学成像问题请教!!!

    几何光学成像问题请教!!!

    听闻这里藏龙卧虎,特来请教各位一个光学成像的物理问题:如下图所示:(1)A,B为不同入射方向的平行光,照射到一个样品上后,透射出来后经过物镜(凸透镜)作用后,在物镜的右边分别是如何成像的?(2)而如果两束入射光如图二情况,这时在物镜的右边 又是如何成像的?望各位大侠多多指教!!http://ng1.17img.cn/bbsfiles/images/2011/07/201107202212_306129_2342870_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/07/201107202214_306130_2342870_3.jpg

  • 计算自适应光学技术可实现高清医学成像

    科技日报 2012年04月25日 星期三 本报讯 实时3D微观组织成像技术的出现不啻为癌症诊断、微创手术和眼科等医疗领域的一场革命。据物理学家组织网4月23日报道,美国伊利诺伊大学的研究人员开发出用计算自适应光学系统校正光学层析成像的畸变技术,给未来医疗的“高清”成像带来前景。相关技术成果刊登在最新一期美国《国家科学院学报》在线版上。 美国贝克曼研究所高级科学和技术博士后研究员史蒂芬说:“该技术能够超越现在的光学系统,最终获得最佳品质的图像和三维数据。这将是非常有用的实时成像技术。” 畸变如散光或扭曲困扰着高分辨率成像。其会使对象细点的地方看上去如斑点或条纹。分辨率越高,问题会变得更糟糕。这是在组织成像中特别棘手的问题,而精度对于正确诊断至关重要。 自适应光学可以校正成像的畸变,被广泛应用于天文学来校正当星光过滤器通过大气层的变形。医学科学家已经开始将这种自适应光学系统的硬件应用于显微镜,希望能改善细胞和组织成像。 但伊利诺伊大学生物工程内科医学的电子和计算机工程教授斯蒂芬指出,这同样富有挑战,将其应用于组织、细胞成像,而不是通过大气对星星成像,存在很多光学上的问题。基于硬件的自适应光学系统复杂而昂贵,调整繁琐,故不太适用于医疗扫描。 由此,该团队采用计算机软件来发现并纠正图像畸变,替代硬件的自适应光学,称为计算自适应光学技术。研究人员用此技术演示了大鼠肺组织含有微观粒子凝胶的幻影。用光学成像设备干涉显微镜的两束光扫描组织样本,计算机收集所有数据后,纠正所有的深度图像,使模糊的条纹变成尖锐的点而特征显现,用户可用鼠标点击改变参数。研究人员说:“我们能够纠正整个研究体积的畸变,在其任何地方呈现高清晰度图像。由此,现在可以看到以前不是很清楚的所有组织结构。” 该技术可以应用于许多医院和诊所的台式电脑,可对任何类型进行干涉成像,如光学相干断层扫描。(华凌)

  • 无透镜摄像机问世 或将打破光学成像技术垄断

    无透镜摄像机问世 或将打破光学成像技术垄断

    2013年06月07日 来源: 腾讯科学 腾讯科学讯(过客/编译)这种摄像装置使用了一种名为压缩传感的技术,这项技术依靠的是假设许多普通的测量值有大量冗余。因此只需要少量仔细筛选的测量值就可能获得同样的数据。http://ng1.17img.cn/bbsfiles/images/2013/06/201306071456_443428_1644522_3.jpg 研究团队称,无透镜压缩成像的结构是值得推荐的,它能够减少尺寸、成本以及复杂性。 这种技巧需要了解保留哪些测量值以及如何对它们进行组合。这项技术有可能彻底改变传统的光学成像,传统的光学成像依靠透镜创建图像而且使用感光胶卷记录光线。 贝尔实验室的装置相当简单。它由一个允许光线通过的LCD显示屏和一个能探测三种光线色彩的单一传感器组成。这个原型是由市场上可以买到的廉价部件打造的。使用这种方法拍摄有着许多好处。首先没有透镜会减少成本和复杂性。此外,没有场景会模糊不清,图像的清晰度只由光圈部分决定。它也能被用于拍摄其它光谱范围的照片,比如说红外线或者毫米波。 LCD显示屏上让光线通过的一些开口是随意打开的。光孔的不同排列能够拍摄不同的场景。快照拍摄的越多,影像就越丰富。它也可能使用正常照片所需要数据的一小部分就创建出一张完整的照片。研究团队拍摄了大量的物体,包括书本和睡觉的猫,只使用了他们记录数据的25%。研究团队在论文中写到:“无透镜压缩成像的结构是值得推荐的,它能够在减少尺寸、成本以及复杂性的同时,构建出简单、可靠的成像设备。”研究团队声称,使用这种结构的设备能够被用于监测,或者可以用于提取特性,比如说移动物体的速度等。

  • 发表《自然通讯》|研究成员提出一种近场光学成像技术

    来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和红外声子之间具有强相互作用,这有望应用于光电调制器和光电芯片等领域。相关研究成果在线发表于《自然通讯》杂志。近年来,三层石墨烯引发了研究人员的广泛关注。通常,三层石墨烯可呈现出两种不同的堆叠几何构型,分别是菱形堆垛和Bernal堆垛。“这两种堆垛的三层石墨烯具有完全不一样的对称性和电子特性,比如中心对称的菱形堆垛的三层石墨烯具有位移电场可调的能隙,并可展现出一系列Bernal堆垛三层石墨烯不具有的关联物理效应:莫特绝缘态、超导和铁磁等。”论文共同通讯作者、中国科学院物理研究所研究员张广宇说。[align=center][img=,573,323]https://img1.17img.cn/17img/images/202403/uepic/75ae2619-5736-4ee9-bf61-925d0d6d44bd.jpg.2[/img][/align][align=center] 三层石墨烯中堆垛相关的电声耦合示意图。受访者供图[/align]如何理解三层石墨烯菱形堆垛中的这些独特关联物理效应,已成为当前重要研究前沿之一。此次,科研人员通过[b]栅电压可调的拉曼光谱和激发频率依赖的近场红外光谱[/b],[b]发现了菱形堆垛三层石墨烯中电子和红外声子之间具有强相互作用。[/b]“[b]我们提出了一种简单、无损、高空间分辨的近场光学成像技术,不仅可以鉴别石墨烯的堆垛次序,还可以探索电子—声子强相互作用,这为将来多层石墨烯以及转角石墨烯的研究提供坚实基础[/b]。”论文共同通讯作者、国家纳米科学中心研究员戴庆说。据悉,这项研究为理解菱形堆垛的三层石墨烯中的超导和铁磁等物理效应提供了新的视角。同时,它也为新一代光电调制器和光电芯片的设计提供了相关材料研究的基础。[来源:科技日报][align=right][/align]

  • 光电所“小型化视网膜自适应光学连续成像仪”研制完成

    近日,由中科院科研装备研制项目资助的“小型化视网膜自适应光学连续成像仪”研制工作在光电技术研究所顺利完成。该成像仪通过校正人眼像差可以获得高分辨率眼底视网膜图像,在临床疾病早期诊断等方面具有重要应用价值。 变形镜作为自适应光学系统的核心器件,其性能决定了成像仪的整机性能。光电所前期研制的视网膜自适应光学成像仪采用分立式压电驱动变形镜,受目前构造工艺的限制,其变形量小、口径大、成本高,难以适应临床大规模人群使用和产业化推广,寻求一种新型的变形镜以突破其临床应用限制已成为成像仪产业化推广过程中亟待解决的问题之一。与此同时,由于双压电片变形镜具有构造简单、结构灵活多样且易于小型化等优点,在眼科自适应光学领域具有较好的应用前景。因此,光电所于2010年开展了基于双压电片变形镜的新一代小型化视网膜自适应光学成像仪研制。 项目组在前期研究工作的基础上,针对人眼像差特性,设计并研制成功35单元双压电片变形镜,其行程达到20微米,而口径仅有原来分立式压电驱动变形镜口径的一半。在变形镜研制的基础上,先后解决基于双压电片变形镜的AO系统优化设计、闭环控制算法等关键技术,研制成功首套基于双压电片变形镜的小型化视网膜自适应光学成像仪,其体积仅为原来37单元成像仪的一半,但像差校正性能却得到大幅提升,大大降低了对人眼低阶像差预补偿的要求。 通过小规模人眼实验表明,新一代成像仪分辨率高、像差校正范围大、操作简单,这为其临床大规模人群使用和产业化推广走出重要一步。

  • 利用光子反弹可对角落处物体成像

    中国科技网讯 受光子放大和光子在室内被物体和墙壁反弹现象的启发,美国麻省理工学院、哈佛大学、威斯康星大学和莱斯大学的科学家利用先进的光学系统追踪反弹的光子,从而能够“看到”隐藏在屋内拐角处无法直接看到的物体。该技术在未来有望成为减灾和无损生物医学成像的无价之宝。 麻省理工大学研究生奥特克莱斯特·古普塔表示,当光子从墙上反弹并射在室内拐角处暗藏物体上被反射回来时,利用光子环绕和反弹的时间数据,他们能够获取有关物体几何形状的信息。 先进光学系统主要由超快激光器和两维超快扫描照相机组成,它们的工作频率可达每秒万亿次。科学家用它们能在1秒钟内拍摄数10亿张图像,通过分析反弹光子的运动状况“看到”室内拐角处的物体。 超快扫描照相机与其他照相机不同,它是根据光子进入照相机的时间来成像。古普塔说,这样的成像方式为人们提供了了解光子需要多长时间被反弹回来的良好途径。如果在拐角处存在某种物体的话,光子返回得越快则进入超快扫描照相机的时间就越早。他们用超快扫描照相机捕捉和计算光子数,每张图像上有3个或更少的光子。通过快速大量的成像来生产扫描图像,帮助他们决定光子传输的距离(以厘米计算)。当数据收集完成后,他们便能了解拐角处暗藏物体的基本几何形状和3维成像。 新的成像技术具有众多潜在的应用,其中包括在救灾方面的应用。古普塔认为,如果有房屋倒塌,新技术能够帮助救灾人员知道废墟内是否有人存在。事实上,新技术几乎适用于各种各样的灾害现场,特别是需要了解内部具体情况以及角落处是否有人的火灾,火灾的危险程度以及有害环境,由此人们不会冒险派人进入燃烧的房屋内,新技术可以极大地减少救灾人员可能面对的威胁。 此外,新技术十分有望被用作无损或非侵害生物医学成像,帮助医生掌握病人皮下组织的情况。这是科学家目前要着手研究的课题。古普塔表示,根据典型的时间表,研发展示到产品推出,新技术商业化需要5年至10年的时间。(驻美国记者 毛黎) 《科技日报》(2012-08-17 二版)

  • 活体光学成像技术专栏| 荧光成像与生物发光成像技术的比较

    [i][font='Times New Roman'][font=宋体]引言[/font][/font][/i][font='Times New Roman'][font=宋体]在上一期的专栏里[/font][/font][font=宋体],我们对荧光成像和生物发光的基本原理进行了对比。同时也留下了几个问题:[/font][font='Times New Roman'][font=宋体]针对我的课题[/font][/font][font=宋体],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。别急,今天将为大家解答关键问题:[/font][b][font=宋体][color=#ff0000]荧光成像和生物发光成像的优缺点是什么?[/color][/font][/b][align=center][font='Times New Roman']一、 [/font][b][font=宋体]荧光成像技术的优点[/font][/b][/align][font='Times New Roman'][font=宋体]相比生物发光成像[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像技术的优势主要表现在[/font][/font][font=宋体]:[/font][font='Times New Roman']1. [/font][b][font='Times New Roman'][font=宋体]荧光蛋白及荧光染料的标记能力更强[/font][/font][font=宋体]。[/font][/b][font=宋体]荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药物等进行标记。[/font][font=宋体][color=#ff0000]应用范围极广[/color][/font][font=宋体],可以对样本进行[/font][font=宋体][color=#ff0000]多色标记[/color][/font][font=宋体],一个样本同时获得多种细胞或药物的分布[/font][font=宋体]。[/font][font='Times New Roman']2. [/font][b][font='Times New Roman'][font=宋体]信号强度[/font][/font][font=宋体]高[/font][/b][font=宋体]由于荧光成像的[/font][font=宋体][color=#ff0000]光子强度较生物发光更强[/color][/font][font=宋体][font=宋体],持续时间长,对[/font]C[/font][font='Times New Roman']CD[/font][font=宋体]的灵敏度要求相对较低,不需要必须配备低温冷[/font][font='Times New Roman']CCD[font=宋体]即可获得清晰的成像结果,节省实验成本和购置成本。[/font][/font][font='Times New Roman']3. [/font][b][font='Times New Roman'][font=宋体]实验成本低[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]成像过程简单[/font][/font][/b][font='Times New Roman'][font=宋体]相比生物发光成像,成像前无需注射荧光素酶底物。有合适的激发光源照射就可以发出特定波长的发射光[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]只要荧光基团稳定,就可实现[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]随时激发随时发光随时检测[/font][/color][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman']4. [/font][b][font=宋体]从活体到离体均可成像[/font][/b][font=宋体][font=宋体]相比生物发光只能在活细胞内才会产生发光。荧光蛋白或荧光染料只需要保持荧光基团稳定即可稳定发光。可以在活体或离体组织器官进行观察,在实验前期荧光材料制备阶段,可以直接在[/font]E[/font][font='Times New Roman']P[font=宋体]管中进行成像观察[/font][/font][font=宋体]。[/font][font='Times New Roman']5. [/font][b][font=宋体]应用范围广[/font][/b][font=宋体]相比生物发光成像,荧光成像技术应用范围极广。在肿瘤生长与转移、药物的分布与代谢、纳米颗粒的靶向性与代谢、植物基因的表达、生物相容性材料开发、新型标记技术的开发等多个研究中均可用到荧光成像技术。([/font][font=宋体][color=#ff0000][font=宋体]点击了解[/font]FOBI[font=宋体]整体荧光成像在上述领域的应用[/font][/color][/font][font=宋体])[/font][align=center][font='Times New Roman']二、 [b][font=宋体]生物发光技术的优点[/font][/b][/font][/align][font='Times New Roman'][font=宋体]相比荧光成像[/font][/font][font=宋体],生物发光成像的主要优势表现在:[/font][b][font=宋体]1[font=宋体]、特异性强,无自发荧光[/font][/font][/b][font=宋体]以荧光素酶作为体内报告源的生物发光方法,特异性极强。由于动物本身没有任何自发光,使得生物发光具有极低的背景和极高的信噪比。[/font][b][font=宋体]2[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]高灵敏度[/font][/font][/b][font='Times New Roman'][font=宋体]由于生物体内很多物质在激发光的照射[/font][/font][font=宋体]下[/font][font='Times New Roman'][font=宋体]也会发出荧光[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]这些非特异性荧光背景会影响检测灵敏度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像的灵敏度最高可在动物体内检测到约[/font]10[/font][sup][font='Times New Roman']4[/font][/sup][font='Times New Roman'][font=宋体]细胞,而生物发光具有在动物体内监测[/font]10[/font][sup][font='Times New Roman']2[/font][/sup][font='Times New Roman'][font=宋体]数量级细胞的灵敏度。[/font][/font][b][font=宋体]3[font=宋体]、检测深度更高[/font][/font][/b][font='Times New Roman'][font=宋体]对于需要在深部[/font][/font][font=宋体]组织[/font][font='Times New Roman'][font=宋体]下进行的研究(检测的深度在[/font]3~4cm[font=宋体])[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]应用生物发光是最佳的选择[/font][/font][font=宋体]。[/font][b][font=宋体]4[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]精确定量[/font][/font][/b][font=宋体]由于荧光素酶基因是插入细胞染色体中稳定表达的,单位细胞的发光数量、发光条件相对稳定。即使标记细胞在动物体内有复杂的定位,亦可从动物体表的信号水平测量出发光细胞的相对数量。[/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像和生物发光技术[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]是互为补充[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]分别满足不同的研究领域[/font][/color][/font][font=宋体][color=#ff0000]。对于不同的研究,可根据两者的特定及实验要求,选择合适的方法。[/color][/font][table][tr][td][font='Times New Roman'] [/font][/td][td][align=center][font='Times New Roman']优点[/font][/align][/td][td][align=center][font=宋体]缺点[/font][/align][/td][/tr][tr][td][align=center][font=宋体]荧光成像技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]荧光染料、蛋白标记能力强,可用于多重标记[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]信号强度大,成像速度快[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]实验成本低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=宋体][color=#333333]体内、体外,器官、活体均可成像。[/color][/font][font=Verdana][color=#333333] [/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]应用范围极广[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]非特异性荧光限制了灵敏度,体内检测最低约[font=Verdana]104[/font][font=宋体]细胞[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]检测深度受限制[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]较难精确体内定量[font=Verdana] [/font][/color][/font][font=宋体][color=#333333]。[/color][/font][/td][/tr][tr][td][align=center][font=宋体]生物发光技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]特异性强,无自发荧光[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]背景低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]高灵敏度,在体内可检测到几百个细胞[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]可精确定量[/color][/font][font=宋体][color=#333333]。[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]信号较弱,检测时间较长,需要灵敏的[font=Verdana]CCD[/font][font=宋体]镜头,仪器价格贵[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]要求高[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]需要注入荧光素,实验成本高[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=宋体][color=#333333]只能用于细胞标记,应用范围窄。[/color][/font][/td][/tr][/table][i][font=宋体]结束语[/font][/i][font=宋体]随着活体成像技术的发展特别是荧光标记技术的发展,越来越多的生物学研究需要用到活体光学成像的方法。无论大家是选择生物发光或者荧光成像技术,苦恼总是随之而来,例如:[/font][font=宋体][color=#ff0000]生物素在体内可以维持多长时间?荧光蛋白和染料种类繁多,我该怎样选择呀?[/color][/font][font=宋体][font=宋体]别急,下期我们继续为大家介绍关于活体成像技术应用与选择的问题与难点。[/font][/font][font=宋体][font=宋体][url=http://dwz.date/cwes]点击了解更多活体成像技术的应用与仪器信息![/url][/font][/font][align=center][font='Times New Roman'][font=宋体]参考文献[/font][/font][/align][font='Segoe UI'][color=#222222]1. [/color][/font][font='Segoe UI'][color=#222222]Su, Y., Walker, J.R., Park, Y. [/color][/font][i][font='Segoe UI'][color=#222222]et al.[/color][/font][/i][font='Segoe UI'][color=#222222] Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. [/color][/font][i][font='Segoe UI'][color=#222222]Nat Methods[/color][/font][/i][font='Segoe UI'][color=#222222] [/color][/font][b][font='Segoe UI'][color=#222222]17, [/color][/font][/b][font='Segoe UI'][color=#222222]852–860 (2020). [/color][/font][font='Segoe UI'][color=#222222]2. [/color][/font][url=#!][font='Segoe UI'][color=#222222]M.Keyaerts[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]V.Caveliers[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]T.Lahoutte[/color][/font][/url][font='Segoe UI'][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780444536334][font='Segoe UI'][color=#222222]Comprehensive Biomedical Physics[/color][/font][/url][font=等线][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780128012383][font='Segoe UI'][color=#222222]Volume 4[/color][/font][/url][font='Segoe UI'][color=#222222], 2014, Pages 245-256.[/color][/font]

  • 如何用sCMOS相机优化显微成像

    [align=center][b][size=14.0pt]如何用sCMOS相机优化显微成像[/size][/b][/align][align=center][size=11.0pt]会议时间:2020年3月20日10:00[/size][/align][b][size=12.0pt]内容介绍:[/size][/b]本次报告从灵敏度、成像视野、成像速度、成像特性等参数方面全面解读来自牛津仪器Andor的全新背照式、高分辨sCMOS相机。首先,介绍相机的成像结构和数据读出原理;第二,重点介绍Andor背照式SCMOS相机,分析相机参数对显微成像的影响;第三,以单分子成像为例,比较背照式sCMOS相机和EMCCD相机,给出各自成像优势;最后,展示sCMOS相机在具体科研上的应用。[b][size=12.0pt]讲师介绍:[/size][size=11.0pt]王坤:[/size][/b][size=11.0pt]2009[/size][size=11.0pt]年中科院国家纳米科学中心获得凝聚态物理博士,目前在牛津仪器Andor公司担任应用科学家,近十年来一直从事高端显微成像系统的相关科研及应用工作,参与过科技部重大仪器专项、中科院仪器专项、中科院仪器功能开发项目、上海市自然科学基金等科研项目,熟悉各类高端显微成像系统的原理,在各类生物样本成像上具有丰富的经验。[/size][font=等线][size=10.5pt]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_12626.html[/url][/size][/font]

  • 高速荧光成像CMOS相机特点

    [url=http://www.f-lab.cn/vivo-imaging/micam02-cmos.html][b]高速荧光成像CMOS相机[/b][/url]是专业为[b]瞬态荧光成像[/b]需求而研发的[b]高速CMOS相机[/b],它具有比CCD相机更高的成像速度采样频率的更宽的动态范围,能够为[b]高速活体荧光成像[/b]提供亚毫秒级的高分辨率的高速图像,并在高速成像应用方面创造了显著的优势。[b]高速荧光成像CMOS相机特点[/b]百分之百自我研发,具有更高的帧速率(最大0.6msec /帧)和超低噪声专业为高速弱光成像和高速荧光成像需要研发,实现更高的成像速度和更低的噪声信号读出,具有0.6msec/frame在92x80像素帧速率和188x160像素1.2msec/frame成像能力。宽动态范围68db高度定制的CMOS传感器具有450000e -井深和68db或更宽的动态范围。从生物样品发出的足够的光线,让比 MiCAM02-HR 和 MiCAM02-HS更高信噪比的图像也能读出。兼容的micam02目前micam02用户可以轻松地利用新的micam02 CMOS摄像头通过简单的方式就可以连接相机的处理器和更新的软件版本。双波长同步双摄像机成像系统两个CMOS摄像机可以连接到micam02处理器做同步记录。这种双摄像机系统可以同时用于图像电压敏感染料和钙离子指示剂,以及在生物样品上执行多个位置的三维映射。样本数据:大鼠离体心脏动作电位传播的成像动作电位在大鼠海马脑片中的传播。切片染色di-4-anepss,1.2毫秒/帧(833hz)、188x160像素CMOS摄像头图像记录使用micam02。[img=高速荧光成像CMOS相机]http://www.f-lab.cn/Upload/micam02-imaging.jpg[/img]高速荧光成像CMOS相机:[url]http://www.f-lab.cn/vivo-imaging/micam02-cmos.html[/url][b][/b]

  • 这家光学显微仪器企业欲打造高端创新型组织病理成像仪器矩阵

    深圳明准医疗科技有限公司(简称:明准医疗)于2023年5月完成首轮融,苏州比邻星创投领投了天使轮融资,融资金额逾千万元。明准医疗以前沿光学显微成像技术的首次临床应用为核心使命的创新型医疗器械公司。明准团队有着丰富的生物光学技术及组织成像应用经验,通过突破性的新型光学显微成像技术,开发国际领先的新型数字病理技术平台,打造高端创新型组织病理成像仪器矩阵。明准医疗将在临床医疗器械、高通量药物筛选以及科研仪器领域布局,成为国内领先,国际一流的光学显微仪器企业。中国科学院深圳先进技术研究院副院长、国创中心主任郑海荣院长在签约仪式上曾表示明准医疗是国创中心成功孵化的最有潜力的优质企业之一,作为国家级制造业创新中心,国创中心将为明准医疗持续提供技术和资源支持,实现国产高端医疗器械的突破和成长。比邻星创投合伙人李喆指出,比邻星创投持续关注全球创新科技在医疗健康领域的应用。明准医疗是比邻星非常重视的交叉学科创新应用,其团队具有多学科交叉的复合经验,将世界领先前沿的生物医用光学成像技术首次应用于组织病理临床诊断领域,打造全球领先的创新医疗设备。比邻星坚定看好明准医疗在医疗器械领域的领先布局和突破进展,将为其提供充足的临床和产业资源,给与全面的支持和赋能。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    [font='Times New Roman'][font=宋体]引言[/font][/font][i][font='Times New Roman'][font=宋体]无数科学家的努力下,蛰居在水母的绿色荧光蛋白已经被导入到病毒、放线菌、酵母、植物、果蝇、线虫、小鼠、大鼠、人类细胞等几乎所有的模式生物,荧光蛋白的发现与应用被认为是点亮了生命科学,让黑暗中的生命活动被可视化的展示在科学家眼前。[/font][/font][/i][font='Times New Roman'][font=宋体]上期文章中,我们对比了活体光学成像的两种技术,生物发光和荧光成像的不同点。随着荧光标记技术的进一步发展,荧光成像的应用范围已经大大超过了生物发光,荧光成像已经可以满足绝大多数情况下的实验需求。[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像需要对检测的细胞或分子进行荧光标记[/font][/color][/font][font='Times New Roman'][font=宋体]。目前,主要有两种标记方法,第一种利用[/font][/font][font='Times New Roman'][color=#191919][font=Arial]内源荧光信号[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体],在细胞中表达荧光蛋白进行标记。第二种利用荧光分子对细胞、药物或纳米颗粒等分子进行标记。[/font][/color][/font][font='Times New Roman'][font=宋体]本期将为大家介绍荧光蛋白[/font][/font][font=宋体][font=宋体]的[/font][/font][font='Times New Roman'][font=宋体]选择方法![/font][/font][align=center][img=,581,228]https://ng1.17img.cn/bbsfiles/images/2020/09/202009271417587236_9957_1887_3.png!w581x228.jpg[/img][font='Times New Roman'][color=#191919] [/color][/font][/align][align=center][font='Times New Roman'][color=#191919]Rainbow of fluorescent proteins [Tsien lab][/color][/font][/align][align=center][font='Times New Roman'][color=#191919][font=Arial]选择荧光蛋白建议考虑的参数[/font][/color][/font][/align][font='Times New Roman'][color=#191919]1. [/color][/font][font='Times New Roman'][color=#191919][font=Arial]激发波长[/font]/[font=Arial]发射波长[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:每一种荧光蛋白都有其独特的激发波长和发射波长,因此,选择的荧光蛋白必须是使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]系统能够激发和检测到的。比如,使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像系统只有两个激发光源:[/font][/color][/font][font='Times New Roman'][color=#191919]488 nm[font=Arial]和[/font][font=Times New Roman]561 nm[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]那就不能够选择远红外荧光蛋白。[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]同时[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]使用超过一个荧光蛋白时,必须确保发射波长没有重叠。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光蛋白应用于活体成像实验时,尽量选择红色或近红外的荧光蛋白,这类荧光蛋白的发射波长较长,具有更好的[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]组织[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]穿透[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]能力。[/font][/color][/font][font='Times New Roman'][color=#191919]2. [font=Arial]寡聚反应[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]早期开发的[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]荧光蛋白易于寡聚化,[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]与[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]目的基因融合表达时可能会影响目的基因蛋白的生物学功能。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]建议使用单体的荧光蛋白,比如[/font]mCherry[font=Arial]。[/font][/color][/font][font='Times New Roman'][color=#191919]3[/color][/font][font='Times New Roman'][color=#191919]. [font=Arial]亮度[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:荧光蛋白的亮度值由消光系数与量子产率的乘积计算得出。在许多情况下,将荧光蛋白的亮度与[/font]EGFP([font=Arial]设定为[/font][font=Times New Roman]1)[/font][font=Arial]进行比较,有一些荧光蛋白非常暗淡(例如[/font][font=Times New Roman]TagRFP657[/font][font=Arial],其具有亮度只有[/font][font=Times New Roman]0.1[/font][font=Arial])[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]活体成像实验时,[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]亮度也需要考虑。[/font][/color][/font][font='Times New Roman'][color=#191919]4[/color][/font][font='Times New Roman'][color=#191919]. pH[font=Arial]稳定性[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:如果计划在酸性环境中表达荧光蛋白,则此参数非常重要,一些荧光蛋白具有不同的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]激发[/font]/[font=宋体]发射[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]光谱(例如[/font]mKeima[font=Arial])或在[/font][font=Times New Roman]pH[/font][font=Arial]变化时荧光强度会发生改变(例如[/font][font=Times New Roman]pHluorin[/font][font=Arial],[/font][font=Times New Roman]pHTomato[/font][font=Arial])。[/font][/color][/font][font=宋体][color=#191919]5.[font=宋体]避免自发荧光:[/font][/color][/font][font=宋体][color=#191919][font=宋体]生物体自身的很多物质具有较强的自发荧光,如指甲、毛发具有强烈的绿色背景信号,因此活体成像时需要对动物进行完全的脱毛处理或尽量避免绿色荧光蛋白,可选[/font][/color][/font][font='Times New Roman'][color=#191919]RFP[font=宋体]、[/font][font=Times New Roman]dsRed, mCherry, mTomato[/font][/color][/font][font=宋体][color=#191919][font=宋体]等荧光蛋白。[/font][/color][/font][b][font='Times New Roman'][color=#ff0000] [/color][/font][font='Times New Roman'][font=Arial]在选择好了荧光蛋白后,后续就是做实验、拿数据、发文章了![/font][/font][/b][font='Times New Roman'][font=Arial]可[/font][/font][font='Times New Roman'][color=#191919][font=Arial]是选用什么成像[/font][/color][/font][font=Arial][color=#191919][font=Arial]设备[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]好呢?[url=http://dwz.date/cwes]点击了解更多详情![/url][/font][/color][/font]

  • Nature:全球最快2D相机诞生 每秒一千亿帧画面

    由华盛顿大学生物医学工程系汪立宏(Lihong Wang)教授领导的一个生物医学工程师小组,开发出了世界上最快的只接收(receive-only)2D照相机,其每秒能够捕捉高达1000亿帧的画面。  这一数量级远远快于当前所有的只接收超高速成像技术,受到芯片储存量和电子读取速度的限制后者只能以大约1000万帧/秒的速度运行。汪立宏和同事们将这一技术命名为压缩超高速摄影术(compressed ultrafast photography,CUP)。这项研究被选作为封面文章发表在12月4日的《自然》(Nature)杂志上。  汪立宏说:“由于这一技术将成像帧速率提高了几个数量级,我们现在进入了一个新领域来开拓新的视野。每一种新技术,尤其是量的飞跃,总是有大量的新发现紧随其后。我们希望CUP将推动科学新发现——甚至是我们所无法预料的发现。”  汪立宏教授的照相机不同于柯达(Kodak)或佳能(Cannon)的照相机,这一系列的设备能够连接高倍显微镜和望远镜来捕获动态的自然和物理现象。一旦获得原始数据,可在个人计算机上形成实际图像;这种技术被称作为计算成像。  NIH下属美国国家生物医学成像和生物工程系研究所光学成像项目主任Richard Conroy说:“这是一项令人兴奋的研究进展和创新性研究工作。这些超高速相机有潜力大大推动我们对于一些极快速生物互作和化学过程的认识,使得我们能够构建出更好的复杂、动态系统模型。”  这项技术的一个直接应用领域就是生物医学。他们拍摄的一个影像显示,一束绿色激发光向右侧的荧光分子发射脉冲,在那里绿光转变为了红光,这即是荧光。通过追踪它,研究人员能够对荧光寿命进行单次评估,由此检测疾病或是反映如pH或氧分压等细胞环境条件。此外,汪立宏设想的其他应用领域还包括有天文学和法医学。  汪立宏的CUP研究工作突破了基础物理学的空间限制,也突破了对生物学组织深度成像的限制。  汪立宏说:“荧光是生物技术的一个重要方面。我们可以利用CUP以光速来成像各种荧光团的寿命,包括一些荧光蛋白。在天文学世界里,CUP则可能改变游戏的规则。”  原文检索:  Liang Gao, Jinyang Liang, Chiye Li& Lihong V. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 03 December 2014; doi:10.1038/nature14005

  • 活体光学成像技术专栏| 光学活体成像前动物脱毛的必要性与操作

    活体光学成像技术专栏| 光学活体成像前动物脱毛的必要性与操作

    [font=宋体]在[/font][font='Times New Roman'][font=宋体]上[/font][/font][font=宋体]几期的[/font][font='Times New Roman'][font=宋体]文章中,[/font][/font][font=宋体]我们[/font][font=宋体]分别[/font][font=宋体]介绍[/font][font=宋体]了荧光成像与生物发光成像的比较、荧光蛋白、荧光染料的挑选方法。当大家选择了合适的标记方法并建立成像模型(药物注射、肿瘤注射等)后,需要对实验动物进行活体成像观察。[/font][b][font=宋体][color=#ff0000]在成像前,对实验动物进行完全脱毛是非常重要的步骤,直接关系能否获得高质量的成像数据。[/color][/font][/b][font=宋体]今天将为大家详细介绍成像前动物脱毛处理的方法与注意事项。[/font][align=center][b][font=宋体]脱毛的必要性[/font][/b][/align][font=宋体]1[font=宋体]、[/font][/font][font=宋体][color=#ff0000]毛发会阻挡、吸收和散射光线。[/color][/font][font=宋体][font=宋体]特别是黑色毛发比其他颜色的毛发会吸收更多的光,即使是白色毛发也会吸收光线,导致很难检测到荧光信号。近红外波段([/font]NIR spectrum[font=宋体])的染料在组织中有最小的散射和吸收,但依然会被毛发显著的吸收和散射 [/font][font=Times New Roman][1-2][/font][font=宋体]。研究表明,毛发的存在使皮下注射部位的荧光强度降低了[/font][font=Times New Roman]50% [3][/font][font=宋体]。因此在使用活体成像系统检测前,有必要将实验动物进行完全脱毛以减少对成像信号的干扰。[/font][/font][font='Times New Roman']2[font=宋体]、[/font][/font][font=宋体][color=#ff0000]毛发会产生强烈的自发荧光。[/color][/font][font='Times New Roman'][font=宋体]动物组织特别是毛发和皮肤中存在内源性分子如弹性蛋白([/font][/font][font='Times New Roman']elastin[/font][font='Times New Roman'][font=宋体])、胶原蛋白([/font][/font][font='Times New Roman']collagen[/font][font='Times New Roman'][font=宋体])、色氨酸([/font][/font][font='Times New Roman']tryptophan[/font][font='Times New Roman'][font=宋体])、[/font][/font][font='Times New Roman']NADH[font=宋体]、[/font][/font][font='Times New Roman'][color=#333333][font=宋体]卟啉类化合物([/font][/color][/font][font='Times New Roman']porphyrins[font=宋体])[/font][/font][font='Times New Roman'][color=#333333][font=宋体]、[/font][/color][/font][font='Times New Roman'][color=#333333][font=宋体]黄素类([/font][/color][/font][font='Times New Roman']flavins[/font][font='Times New Roman'][color=#333333][font=宋体])[/font][/color][/font][font=宋体][color=#333333][font=宋体]在波长<[/font]600 nm[font=宋体]的激发光下会产生强烈的自发荧光[/font][font=Times New Roman][4][/font][font=宋体]。这些自发荧光物质非特异性地被激发光源激发,导致在成像时产生很强的背景信号,将毛发完全脱掉可以有效降低背景信号。[/font][/color][/font][align=center][b][font=宋体]脱毛的材料准备[/font][/b][/align][font=宋体]可以说,对实验动物完全脱毛是活体成像实验的必要步骤之一。首先我们需要准备以下材料备用:[/font][table][tr][td][font=宋体]物品[/font][/td][td][font=宋体]作用[/font][/td][/tr][tr][td][font=宋体]理发推剪[/font][/td][td][font=宋体]将大部分毛发进行去除[/font][/td][/tr][tr][td][font=宋体]脱毛膏[/font][/td][td][font=宋体]去除剩下的绒毛以完全脱毛[/font][/td][/tr][tr][td][font=宋体]棉签[/font][/td][td][font=宋体]用于涂抹和去除脱毛膏[/font][/td][/tr][tr][td][font=宋体]温水[/font][/td][td][font=宋体]用于清洗脱毛膏与绒毛[/font][/td][/tr][tr][td][font=宋体]纸巾或棉球[/font][/td][td][font=宋体]用于清洗脱毛膏和擦拭酒精[/font][/td][/tr][tr][td][font=宋体]75%[font=宋体]酒精[/font][/font][/td][td][font=宋体]用于皮肤消毒、消除脱毛膏的味道防止动物啃咬[/font][/td][/tr][tr][td][font=宋体]抗生素软膏(备选)[/font][/td][td][font=宋体]用于脱毛过程中偶尔的皮肤损伤消炎[/font][/td][/tr][/table][font=宋体][font=宋体]备注:脱毛膏可选进口品牌如[/font]Nair depilatory cream [font=宋体]、国产品牌如贞采源脱毛膏等均可。抗生素软膏可选进口的[/font][font=Times New Roman]Taro Pharmaceuticals[/font][font=宋体]三联抗生素、国产品牌如红霉素软膏均可。[/font][/font][align=center][b][font=宋体]脱毛的步骤[/font][/b][/align][font=宋体]在准备好材料后,按照以下步骤对实验动物进行完全的脱毛:[/font][font=宋体]1、[/font][font=宋体]动物麻醉,将实验动物使用麻醉机进行完全麻醉[/font][font=宋体]。[/font][font=宋体]2、[/font][font=宋体]理发推剪脱毛,将完全麻醉的动物使用理发推剪对感兴趣的成像区域进行脱毛,剔除大部分毛发。[/font][font=宋体]3、[/font][font=宋体][font=宋体]用棉签蘸取脱毛膏覆盖在脱毛区域,均匀涂抹后轻轻按摩数秒,等待[/font]30[font=宋体]秒[/font][font=Times New Roman]-1 [/font][font=宋体]分钟。[/font][/font][font=宋体]4、[/font][font=宋体][font=宋体]用纸巾或棉球用温水沾湿,将脱毛膏顺着毛发的生长方向进行清洗,完全去除绒毛。若此时仍有少量毛发残留,可重新蘸取少量脱毛膏涂抹在毛发上,等待[/font]30[font=宋体]秒后再清洗脱毛膏。[/font][/font][font=宋体]5、[/font][font=宋体][font=宋体]用纸巾或棉球蘸取[/font]75%[font=宋体]消毒酒精,对脱毛区域进行再次清洁,消除脱毛膏的味道。[/font][/font][font=宋体]6、[/font][font=宋体]若皮肤有受伤的部位,涂抹上抗生素软膏,将动物放置在加热垫上等待苏醒。[/font][align=center][b][font=宋体]其他注意事项[/font][/b][/align][font=宋体]1、[/font][font=宋体][font=宋体]脱毛膏已被证明是有效的、无创伤、无毒的,但是使用时依然需要注意时间,过长的涂抹时间会导致皮肤损伤。用[/font]75%[font=宋体]消毒酒精完全清洗脱毛膏的味道可以防止动物对脱毛部位的啃咬。[/font][/font][font=宋体]2、[/font][font=宋体]皮肤损伤会到导致成像时出现强烈的背景荧光,理发推剪要小心操作,尽量防止大面积的皮肤损伤。[/font][font=宋体]3、[/font][font=宋体]C57BL/6[font=宋体]小鼠[/font][font=宋体]脱毛后会扰乱正常的毛发生长周期,引起皮肤色素沉着,即皮肤变黑,导致成像信号被极大的衰减(可达到[/font]90%[font=宋体])[/font][font=Times New Roman][3][/font][font=宋体],因此脱毛步骤选择在成像前[/font][font=Times New Roman]1~2[/font][font=宋体]天进行最佳。此外,如果前期已经对[/font][font=Times New Roman]C57BL/6[/font][font=宋体]小鼠进行脱毛操作,则在成像前需要观察皮肤色素的沉着情况。[/font][/font][font=宋体]4[font=宋体]、可以用剃须刀片代替脱毛膏进行完全脱毛,但是需要练习和小心使用,否则容易割伤实验动物和实验人员。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font][align=center][b][font=宋体]毛发对成像质量的影响[/font][/b][/align][img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011100939207430_3462_1887_3.png!w690x517.jpg[/img][font=宋体][font=宋体]如图所示,[/font]C57BL/6[font=宋体]小鼠通过尾静脉注射[/font][font=Times New Roman]ICG[/font][font=宋体]染料后使用理发推剪进行脱毛[/font][/font][font=宋体][font=宋体]。黄色框为剃毛较为干净的区域,蓝色框为残留有绒毛的区域,成像结果清楚显示:[/font]1[font=宋体]、脱毛更加干净的区域信号更强(平均荧光强度[/font][font=Times New Roman]5060[/font][font=宋体]);[/font][font=Times New Roman]2[/font][font=宋体]、残留绒毛的区域荧光信号由于被大量吸收,信号更低(平均荧光强度[/font][font=Times New Roman]1050.82[/font][font=宋体]);[/font][font=Times New Roman]3[/font][font=宋体]、颈部未脱毛区域,基本无无荧光信号(平均荧光强度[/font][font=Times New Roman]27.99[/font][font=宋体])【FOBI整体荧光成像系统拍摄】。[/font][/font][font=宋体]以上简单的例子即可表明毛发对成像质量的影响!以对腹腔中各脏器进行活体成像为例,标准的脱毛应该如下所示:完全去除绒毛并且脱毛范围需要稍大且不损伤小鼠皮肤。[/font][font=宋体][img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011100939496128_1485_1887_3.png!w232x173.jpg[/img][/font][align=center][b][font=宋体]参考文献[/font][/b][/align][font='AdvTTe0754e31 \. B'][color=#131413]1[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][font='Times New Roman'][color=#131413]Quantitation[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Allison Curtis[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][i][font='AdvTTe0754e31 . B'][color=#131413]et.al[/color][/font][/i][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Mol Imaging Biol 13:1114Y1123[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].2011.[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]2[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Simple generation of hairless mice for in vivo imaging[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Yoshikazu Hoshino[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font][font='Times New Roman'][color=#131413]Exp. Anim. 66(4), 437–445, 2017[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]3[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Optical Imaging on the IVIS SpectrumCT System: General and Technical Considerations[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][font='Times New Roman'][color=#131413]for 2D and 3D Imaging[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Jen-Chieh Tseng[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][i][font='AdvTTe0754e31 . B'][color=#131413]et.al.[/color][/font][/i][font='AdvTTe0754e31 \. B'][color=#131413]4[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Hair Removal on Rodents[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Johns Hopkins University Animal Care and Use Committee[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font]

  • 活体光学成像技术专栏| 活体成像中荧光染料的选择与成像

    活体光学成像技术专栏| 活体成像中荧光染料的选择与成像

    [font='Times New Roman'][font=宋体]上期文章中,[/font][/font][font=宋体]我们介绍了活体成像实验中荧光蛋白的选择方法,荧光蛋白[/font][font=宋体]在[/font][font=宋体]肿瘤细胞株[/font][font=宋体]筛选[/font][font=宋体]、病毒载体[/font][font=宋体]表达[/font][font=宋体]、转基因小鼠[/font][font=宋体]构建[/font][font=宋体]等[/font][font=宋体]应用中被广泛使用[/font][font=宋体]([/font][font=宋体]链接[/font][font=宋体])[/font][font=宋体]。在药物分布、纳米颗粒示踪、干细胞追踪等实验中,往往需要使用荧光染料对材料或细胞进行标记。[/font][font=宋体]本期将为大家介绍[/font][font=宋体]活体成像实验中[/font][font=宋体]常用的荧光染料![/font][font=宋体][color=#ff0000]Cy5.5[/color][/font][font=宋体][color=#ff0000]([/color][/font][font=宋体][color=#ff0000]Ex/Em[font=宋体]:[/font][font=Times New Roman]678/701 nm[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000][font=宋体]和[/font]Cy7[/color][/font][font=宋体][color=#ff0000]([/color][/font][font=宋体][color=#ff0000]Ex/Em[font=宋体]:[/font][font=Times New Roman]749/776 nm[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]是[/color][/font][font=宋体][color=#ff0000]对分子标记的[/color][/font][font=宋体][color=#ff0000]最优选择[/color][/font][font=宋体][color=#ff0000]之一;[/color][/font][font=宋体][color=#ff0000][font=宋体]而[/font]DiD[/color][/font][font=宋体][color=#ff0000]([/color][/font][font=宋体][color=#ff0000]Ex/Em[font=宋体]:[/font][font=Times New Roman]644/663 nm[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000][font=宋体]、[/font]DiR[/color][/font][font=宋体][color=#ff0000]([/color][/font][font=宋体][color=#ff0000]Ex/Em[font=宋体]:[/font][font=Times New Roman]748/780[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]染料则常用于活体成像实验中对细胞进行标记。[/color][/font][font='Times New Roman'][color=#ff0000]Cy5.5 [/color][/font][font=宋体][color=#ff0000][font=宋体]、[/font]Cy7[/color][/font][font='Times New Roman'][font=宋体]避开[/font][/font][font=宋体]了[/font][font='Times New Roman'][font=宋体]可见光区[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]在生物组织中的穿透深度较大。水和血红蛋白[/font][/font][font=宋体]对[/font][font='Times New Roman']700[font=宋体]~[/font][font=Times New Roman]900 nm[/font][font=宋体]的[/font][/font][font=宋体]光[/font][font='Times New Roman'][font=宋体]吸收都很少,[/font][/font][font=宋体]使得[/font][font='Times New Roman'][font=宋体]近红外光可以[/font][/font][font=宋体]穿透[/font][font='Times New Roman'][font=宋体]组织内部多达[/font]15 cm[font=宋体]。同时,这类染料还拥有紫外光区染料和同位素标记无法具备的生物安全性。[/font][/font][font='Times New Roman'][font=宋体][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010261000471506_4987_1887_3.png!w575x363.jpg[/img][/font][/font][align=center][font=宋体]DiD[/font][font=宋体]、[/font][font=Times New Roman]DiR[/font][font=宋体]细胞膜荧光探针[/font][/align][font='Times New Roman'][/font][font='Times New Roman'][color=#191919]DiD[/color][/font][font=宋体][color=#191919][font=宋体](红色荧光染料)[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]是亲脂性荧光染料家族成员之一,它可以用来[/font][/color][/font][font=宋体][color=#191919][font=宋体]标记[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]细胞膜和其它脂溶性生物结构。当[/font]DiD[font=Arial]与细胞膜结合后其荧光强度大大增强,这类染料有着很高的淬灭常数和激发态寿命。一旦对细胞染色,这类染料在整个细胞膜上扩散,最佳浓度时可以使整个细胞膜染色。[/font][font=Times New Roman]DiD[/font][font=Arial]可以用来对活细胞进行成像和流式分析。[/font][/color][/font][font='Times New Roman'][color=#191919]DiR[/color][/font][font=宋体][color=#191919][font=宋体](近红外荧光染料)[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]是一个亲脂性[/font][/color][/font][font=宋体][color=#191919][font=宋体]的[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]花青[/font][/color][/font][font=宋体][color=#191919][font=宋体]染料[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]。常用于标记细胞质膜。[/font]DiR [font=Arial]的两个[/font][font=Times New Roman]18-[/font][font=Arial]碳链插入到细胞膜,从而进行特定的、稳定的细胞染色,几乎不会发生细胞间的染料转移。[/font][/color][/font][font=Arial][color=#191919]DiR[font=Arial]和其他细胞膜荧光染料如 [/font][font=Times New Roman]DiI[/font][font=Arial](橙色荧光),[/font][font=Times New Roman]DiO[/font][font=Arial](绿色荧光),[/font][font=Times New Roman]DiD[/font][font=Arial](红色荧光)配合使用,为多色成像和流式细胞分析提供了有效的工具。[/font][/color][/font][font=Arial][color=#191919][font=Arial][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010261001339140_6935_1887_3.png!w572x222.jpg[/img][/font][/color][/font][font=Arial][font=宋体][font=宋体]当我们对分子或细胞成功标记后,需要选择合适的仪器进行成像获取实验数据。[/font][/font][/font]

  • 光学显微成像技术在神经科学研究中的应用

    [align=left][font=宋体][color=#374151]摘要:光学显微成像技术在神经科学研究中发挥着不可或缺的作用。文章将深入探讨两种主要的光学显微成像技术,即荧光显微镜和多光子显微镜,在神经科学领域的应用案例。我们首先介绍了这些技术的基本原理和发展历程,然后详细描述了它们在神经细胞成像、突触可塑性研究和脑功能成像中的应用。通过这些案例,我们展示了光学显微成像技术在神经科学研究中的重要性,以及它们对我们深入理解神经系统的贡献。[/color][/font][/align][font=宋体][color=#374151]关键词:神经科学、荧光显微镜、多光子显微镜、神经细胞成像[/color][/font][font=宋体][color=#374151]光学显微成像技术自17世纪以来一直在科学研究中扮演着重要的角色。随着技术的不断发展,光学显微镜已经成为许多科学领域的核心工具之一,尤其在生命科学和神经科学领域。文章将深入探讨光学显微成像技术在神经科学研究中的应用案例,重点介绍荧光显微镜和多光子显微镜这两种主要技术的原理和应用。[/color][/font][font=宋体][color=#374151]一、光学显微成像技术应用[/color][/font][font=宋体][color=#374151]1.荧光显微镜的应用[/color][/font][font=宋体][color=#374151]荧光显微镜是一种广泛应用于神经科学研究的工具,它使用荧光染料或标记物来可视化和研究神经系统的结构和功能。以下是荧光显微镜在神经科学研究中的应用案例,包括神经细胞成像、突触可塑性研究、脑疾病研究等方面。[/color][/font][font=宋体][color=#374151](1)神经细胞成像[/color][/font][font=宋体][color=#374151]荧光显微镜在观察和研究神经细胞的结构和功能方面发挥了关键作用。通过使用荧光标记的抗体或分子探针,研究人员可以可视化神经元的不同结构,包括轴突、树突、细胞核等。这有助于研究神经细胞的形态特征以及它们在不同生理条件下的变化。[/color][/font][font=宋体][color=#374151](2)突触可塑性研究[/color][/font][font=宋体][color=#374151]荧光显微镜在突触可塑性研究中也具有重要应用。突触可塑性是指突触的结构和功能如何受到刺激和学习的影响。通过标记突触相关的蛋白质或分子,研究人员可以实时观察突触的变化,如突触增强或突触抑制,以深入理解学习和记忆的神经机制。[/color][/font][font=宋体][color=#374151](3)脑功能成像[/color][/font][font=宋体][color=#374151]荧光显微镜在脑功能成像方面也具有潜力。通过将钙指示剂或光遗传学标记物引入神经元,研究人员可以实时监测神经元的活动。这种技术使我们能够理解大脑不同区域的活动模式,以及不同刺激下神经元的响应。这对于研究认知过程、行为和神经疾病有着重要意义。[/color][/font][font=宋体][color=#374151](4)神经干细胞研究[/color][/font][font=宋体][color=#374151]荧光显微镜也被广泛用于研究神经干细胞。通过标记和追踪神经干细胞的命运和分化过程,研究人员可以理解神经系统的发育和再生机制。这对于神经系统修复和治疗神经系统疾病具有潜在应用。[/color][/font][font=宋体][color=#374151](5)荧光标记的蛋白表达[/color][/font][font=宋体][color=#374151]荧光显微镜也可用于研究不同蛋白质在神经系统中的表达和定位。通过使用荧光标记的蛋白表达技术,研究人员可以观察不同蛋白质的分布和相互作用,从而深入理解神经系统中的信号传导和调控。[/color][/font][font=宋体][color=#374151](6)脑疾病研究[/color][/font][font=宋体][color=#374151]荧光显微镜在研究脑疾病方面也发挥着关键作用。研究人员可以使用荧光显微镜来研究神经系统疾病的病理机制,如帕金森病、阿尔茨海默病和精神分裂症。这有助于发现潜在的治疗方法和药物筛选。[/color][/font][font=宋体][color=#374151]荧光显微镜在神经科学研究中的应用是多方面的,涵盖了神经细胞成像、突触可塑性研究、脑功能成像、神经干细胞研究、蛋白质表达和脑疾病研究等多个领域。这一技术为神经科学家提供了非常强大的工具,帮助他们深入理解神经系统的结构和功能,以及与神经相关的疾病的机制。未来,随着技术的不断发展,荧光显微镜将继续在神经科学领域中发挥关键作用,为我们揭示神经系统的奥秘提供更多的洞察力。[/color][/font][font=宋体][color=#374151]2.多光子显微镜的应用[/color][/font][font=宋体][color=#374151]多光子显微镜(Multi-Photon Microscopy)是一种先进的成像技术,它利用非线性光学效应,如多光子吸收,为神经科学家提供了强大的工具,用于研究神经系统的结构和功能。相比传统的荧光显微镜,多光子显微镜具有许多显著的优势,包括更深的成像深度、较少的光损伤、更少的荧光标记物和更高的空间分辨率。以下是多光子显微镜在神经科学研究中的应用领域:[/color][/font][font=宋体][color=#374151](1)脑功能成像[/color][/font][font=宋体][color=#374151]脑功能成像是多光子显微镜的一个主要应用领域。这种技术允许研究人员实时观察活体动物的脑活动,包括神经元的兴奋与抑制、突触传递和脑区之间的相互作用。多光子显微镜能够提供高分辨率的三维图像,而无需使用荧光标记物。这对于研究大脑的基本功能、学习和记忆等过程至关重要。[/color][/font][font=宋体][color=#374151](2)钙离子成像[/color][/font][font=宋体][color=#374151]钙离子在神经元内起着关键的信号传导作用。多光子显微镜可以用于监测神经元内的钙离子浓度变化,这对于理解神经元的兴奋性和突触传递至关重要。通过使用荧光钙染料,研究人员可以实时观察神经元内钙离子浓度的动态变化,以及不同神经元之间的协同作用。[/color][/font][font=宋体][color=#374151](3)神经元形态学研究[/color][/font][font=宋体][color=#374151]多光子显微镜在研究神经元的形态学和结构上也具有独特的优势。它可以提供高分辨率的三维成像,允许研究人员详细观察神经元的分支结构、突触连接和细胞器的分布。这对于理解神经元的连接方式、发展和退行性疾病的机制至关重要。[/color][/font][font=宋体][color=#374151](4)活体动物模型研究[/color][/font][font=宋体][color=#374151]多光子显微镜也在活体动物模型研究中发挥着关键作用。研究人员可以使用这种技术观察小鼠、果蝇等模型动物的脑活动,从而研究不同物种的神经系统功能和行为。这对于神经药理学、疾病建模和药物筛选具有重要意义。[/color][/font][font=宋体][color=#374151](5)细胞内成像[/color][/font][font=宋体][color=#374151]多光子显微镜也可用于单个神经元或突触的细胞内成像。这允许研究人员观察细胞内的亚细胞结构、蛋白质运输和突触形成等过程。这对于研究神经元的分子机制和突触可塑性非常有帮助。[/color][/font][font=宋体][color=#374151]多光子显微镜的应用领域不仅局限于神经科学,还扩展到其他生命科学领域,如细胞生物学、免疫学和生物医学研究。其高分辨率和深层成像能力使其成为许多领域中不可或缺的工具。[/color][/font][font=宋体][color=#374151]尽管多光子显微镜在神经科学研究中具有巨大的潜力,但它也面临着一些挑战。其中之一是成像速度,尤其在观察大脑活动时,需要高速成像以捕捉快速的神经事件。另一个挑战是数据处理和分析,因为高分辨率、三维和四维成像产生了大量的数据,需要强大的计算资源和分析工具。[/color][/font][font=宋体][color=#374151]未来,我们可以期待多光子显微镜技术的不断改进和发展,以应对这些挑战。新的激光技术、荧光标记物和成像算法将继续推动这一领域的进展,为我们深入理解神经系统的复杂性提供更多的洞察力。多光子显微镜将继续在神经科学领域中发挥关键作用,有望帮助我们解决一些最具挑战性的神经科学问题。[/color][/font][font=宋体][color=#374151]二、光学显微成像技术在神经科学研究中的应用存在问题[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用虽然具有众多优势,但也存在一些问题和挑战,这些问题需要科研人员不断努力来解决。以下是一些存在问题:[/color][/font][font=宋体][color=#374151]1.有限的成像深度[/color][/font][font=宋体][color=#374151]传统的光学显微成像技术受到光的折射和吸收的限制,导致成像深度受到限制。这在研究深层脑区时成为问题,因为光无法有效透过多层组织,导致深层神经元无法清晰成像。多光子显微镜已经在这一方面取得了进展,但仍然存在深度限制。[/color][/font][font=宋体][color=#374151]2.光损伤和毒性[/color][/font][font=宋体][color=#374151]荧光标记物和强光源在成像过程中可能对生物样本产生光损伤和毒性作用。这对于活体成像和长时间观察是一个挑战,因为它可能导致样本的退化和死亡。科研人员需要努力寻找更温和的成像方法和标记物,以减轻这些问题。[/color][/font][font=宋体][color=#374151]3.数据量庞大[/color][/font][font=宋体][color=#374151]高分辨率和多维成像技术产生大量的数据,需要强大的计算资源和复杂的数据分析工具。处理和管理这些数据可能是一个挑战,尤其是在长期实验和大规模成像项目中。[/color][/font][font=宋体][color=#374151]4.标记物的选择[/color][/font][font=宋体][color=#374151]合适的荧光标记物对于获得高质量的成像数据至关重要。然而,选择适当的标记物可能会受到限制,因为一些标记物可能会干扰样本的正常生理活动,或者不适合特定的实验条件。因此,需要不断开发新的标记物和成像方法。[/color][/font][font=宋体][color=#374151]5.解析度限制[/color][/font][font=宋体][color=#374151]光学显微成像的分辨率受到光的波长限制,通常受到绕射极限的限制。虽然一些超分辨率成像技术已经出现,但它们仍然无法突破光学分辨率极限。这可能会限制对神经系统微观结构的精确观察。[/color][/font][font=宋体][color=#374151]6.活体成像的挑战[/color][/font][font=宋体][color=#374151]对于活体成像,尤其是在大脑中,样本的运动和呼吸等因素可能导致成像失真。稳定和精确定位样本是一个技术挑战。[/color][/font][font=宋体][color=#374151]尽管存在这些问题,光学显微成像技术仍然是神经科学研究的不可或缺的工具,因为它们提供了独特的实时、高分辨率和非侵入性的成像能力。科研人员不断努力解决这些问题,通过技术创新和改进,光学显微成像技术有望继续为神经科学领域的研究提供更多洞察力。[/color][/font][font=宋体][color=#374151]三、下一步研究方向[/color][/font][font=宋体][color=#374151]基于上述问题,光学显微成像技术在神经科学研究中的应用仍然需要不断改进和发展。下面是可能的下一步研究方向,以解决这些问题:[/color][/font][font=宋体][color=#374151]1.改进成像深度[/color][/font][font=宋体][color=#374151]研究人员可以探索新的成像方法,如双光子显微镜和光学波前调制成像,以增加成像深度。此外,开发新的光学透明样本制备技术,如透明大脑样本技术,可以帮助克服深度限制问题。[/color][/font][font=宋体][color=#374151]2.减少光损伤和毒性[/color][/font][font=宋体][color=#374151]研究人员可以寻找更温和的成像条件,减少光损伤和荧光标记物的毒性。此外,使用先进的成像系统,如自适应光学成像,可以减小激光功率,同时保持高分辨率。[/color][/font][font=宋体][color=#374151]3.数据管理和分析工具[/color][/font][font=宋体][color=#374151]开发更强大的数据管理和分析工具,以处理庞大的成像数据。机器学习和深度学习方法可以帮助提高数据分析的效率,并自动检测和量化细胞和结构。[/color][/font][font=宋体][color=#374151]4.标记物的改进:寻找更多、更具选择性的标记物,以减少对样本的干扰。这可以包括荧光标记物的改进、发展新的基因表达标记和探测技术。[/color][/font][font=宋体][color=#374151]5.突破分辨率极限[/color][/font][font=宋体][color=#374151]进一步发展超分辨率成像技术,以突破传统光学分辨率极限,获得更高的细节分辨率。例如,结构光显微镜和单分子成像技术可以帮助提高分辨率。[/color][/font][font=宋体][color=#374151]6.活体成像技术改进:研究人员可以探索新的样本固定和稳定技术,以减小样本运动对成像的影响。另外,开发新的活体成像方法,如头部悬置成像和小型显微成像技术,可以帮助在动态活体条件下进行成像。[/color][/font][font=宋体][color=#374151]7.多模态成像[/color][/font][font=宋体][color=#374151]结合不同的成像技术,如光学显微镜与电生理记录、光学显微镜与功能磁共振成像(fMRI)等,以获得更全面的神经科学数据。[/color][/font][font=宋体][color=#374151]8.多尺度成像[/color][/font][font=宋体][color=#374151]开发多尺度成像方法,能够在微观和宏观水平上同时观察神经系统的活动,从神经元到整个脑区。[/color][/font][font=宋体][color=#374151]这些研究方向代表了改进和扩展光学显微成像技术在神经科学研究中的应用的可能途径。通过不断的技术创新和跨学科合作,神经科学家和工程师有望克服这些问题,提高光学显微成像技术的效能和应用广度,以更深入地理解神经系统的复杂性。[/color][/font][font=宋体][color=#374151]四、结论[/color][/font][font=宋体][color=#374151]光学显微成像技术在神经科学研究中的应用案例清楚地表明,这些技术在揭示神经系统的复杂性和功能中起到了关键作用。然而,这仅仅是一个开始,未来仍有许多挑战和机遇等待我们探索。例如,新的成像技术和荧光标记方法的不断发展将进一步扩展我们的研究领域。此外,将光学显微成像技术与其他分子生物学和生物化学技术相结合,可以更全面地理解神经系统的功能。[/color][/font][font=宋体][color=#374151]在未来,我们可以期待更高分辨率、更深层次的成像以及更多三维和四维成像的发展。这将有助于解决神经科学中的一些最具挑战性的问题,如神经网络的复杂性和神经退行性疾病的机制。光学显微成像技术将继续为神经科学研究提供有力的工具,推动我们对大脑和神经系统的理解不断深入。[/color][/font][font=宋体][color=#374151]参考文献:[/color][/font][font=宋体][color=#374151][1]高宇婷,潘安,姚保利等.二维高通量光学显微成像技术研究进展[J].液晶与显示,2023,38(06):691-711.[/color][/font][font=宋体][color=#374151][2]王义强,林方睿,胡睿等.大视场光学显微成像技术[J].中国光学(中英文),2022,15(06):1194-1210.[/color][/font][font=宋体][color=#374151][3]章辰,高玉峰,叶世蔚等.自适应光学在双光子显微成像技术中的应用[J].中国激光,2023,50(03):37-54.[/color][/font][font=宋体][color=#374151][4]曹怡涛,王雪,路鑫超等.无标记光学显微成像技术及其在生物医学的应用[J].激光与光电子学进展,2022,59(06):197-212.[/color][/font][font=宋体][color=#374151][5]关苑君,马显才.光学显微成像技术在液-[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分离研究中的应用[J].中山大学学报(医学科学版),2022,43(03):504-510.DOI:10.13471/j.cnki.j.sun.yat-sen.Univ (med.sci).2022.0319.[/color][/font][font=宋体][color=#374151][6]陈廷爱,陈龙超,李慧等.结构光照明超分辨光学显微成像技术与展望[J].中国光学,2018,11(03):307-328.[/color][/font][font=宋体][color=#374151][7]安莎. 轴平面光学显微成像技术及其应用研究[D].中国科学院大学(中国科学院西安光学精密机械研究所),2021.DOI:10.27605/d.cnki.gkxgs.2021.000055.[/color][/font][font=宋体][color=#374151][8]杜艳丽,马凤英,弓巧侠等.基于空间光调制器的光学显微成像技术[J].激光与光电子学进展,2014,51(02):13-22.[/color][/font][font=宋体][color=#374151][9]莫驰,陈诗源,翟慕岳等.脑神经活动光学显微成像技术[J].科学通报,2018,63(36):3945-3960.[/color][/font][font=宋体][color=#374151][10]张财华,赵志伟,陈良怡等.自适应光学在生物荧光显微成像技术中的应用[J].中国科学:物理学 力学 天文学,2017,47(08):26-39.[/color][/font]

  • 【原创】显微镜CCD相机的采购常识

    【原创】显微镜CCD相机的采购常识

    有用到光学显微镜的人一定都有使用过显微镜CCD相机,作为重要的光学成像设备,显微CCD相机将目镜下的视野范围通过数字图片的方式记录下来,便于大家交流分享。http://ng1.17img.cn/bbsfiles/images/2010/12/201012221204_269031_2043_3.jpg由图森TCC-3.3ICE-N冷CCD相机拍摄如何选择一款专业的显微CCD相机,首先,您应该对如下参数有所了解1、像素:这个是常见的参数。在芯片确定的情况下,像素越高,灵敏度越低,两者是反比关系,所以像素不是越高越好,在像素够用的情况下应尽量优先确保灵敏度。2、动态范围:实际上这个参数取决于另外2个参数。动态范围=20Xlog10(满井电子/总噪音)这个参数越高也表征CCD的灵敏度越高 3、满井电子:从动态范围的计算看的出来,满井电子数越大越好; 4、噪音:简单理解就是杂信号,有读出噪声和暗噪声,读出噪声相机电子元件处理图象时的额外噪音,与电子效率有关。图森相机通过相关双采样的方法,能显著降低CCD读出噪声。 5、制冷:CCD工作时温度会升高,这会产生噪音,尤其是长时间曝光(若荧光拍摄等情况需要较长的曝光时间),如果把温度降低,可以减少这类噪音,所以大家看到有冷CCD。制冷方式有很多,比如装风扇、半导体制冷、水循环制冷,还有用液氮制冷的,制冷越低,降噪越好,但是成本也就越高。图森二级半导体制冷CCD,可制冷至室温下-45℃。 6、灰阶:一般是写的多少bit,这个值高点好些,这样在一些层次比较多或者不容易区分的图片的拍摄上会有帮助,常见的是医院血液科的血涂片拍摄:红血球非常薄而且多,经常在镜下观察时会发现有不少是有重叠的,人眼还比较好区分重叠的部分,但是换到CCD上面的话,基本需要12bit以上了,最好是14bit的。对于做灰度分析或者荧光定量分析的,灰阶还是高点好; 7、芯片尺寸:因为像素和灵敏度的反比关系,所以芯片尺寸自然是大的好些;8、速度:这个自然是越快越好,不过要注意区分:速度分为读出速度,预览速度,采集速度;读出速度高不一定预览、采集就快,因为它还受后面接口、电脑等的影响;预览速度受分辨率影响,采集速度相对好点,因为他的变动基本上就只有电脑配置高低影响了; 9、接口:最常用的是 USB接口,1394其次,还有就是串口; 10、binning:这是提高CCD预览、采集的常见方法,支持的binning越高,速度也就能提的更高,不过会牺牲分辨率——其实它就是把几个像素当作一个像素计算,比如2X2,就是把4个像素当作一个像素; 11、曝光时间:支持的时间越长,在拍摄弱光的时候会好些;至于说最小曝光时间,原理上可以侧面反应CCD的灵敏度,但是需要参考的条件比较多 12、GAIN:一个信号放大的参数,GAIN越大,所需要的曝光时间也就越短,但是相应的噪音也就会增加;显微拍摄的目的,是要将视野下看得的范围真实的展现出来,因此,专业的显微摄影拍摄,还是要用到专业的显微摄影相机。

  • 长期供应显微镜各种数码相机、CCD接口

    一、相机接口:显微数码摄影的必备工具,采用平像场摄像目镜,成像清晰。数码接口使用方便、设计美观、成像清晰、性价比高、是连接微观世界的高性能摄影摄像装置。二、种类较全:数码相机接口、单反数码相机转接口、CCD接口等,适用于尼康、佳能、奥林巴斯、索尼、蔡司等品牌相机。三、显微镜数码相机接口特点:1、适用性广:适用任何品牌的显微镜。2、中心对焦技术:使用中心对焦工艺和光学技术,使更快,更容易地对焦。3、图像质量高:使系统摄像更加固定,不会产生振动而影响图像质量。4、外型设计小巧:外型小巧、美观

  • 三维光学分子成像技术及其应用研究

    光学分子成像技术由于其具有灵敏度高,响应速度快,操作方便且能实时直观等优异性能引起广泛关注。穿透性荧光三维成像技术(FLIT)凭借其特有的底部透射荧光成像模式能够精确获取体内荧光标记靶点的深度、体积、细胞

  • 【转帖】如何挑选数码相机

    首先我们要明确有效像素、CCD 尺寸大小、图像分辩率是什么?相互之间的关系? 1.什么是有效像素? 答:数码相机在成像时,感光元件边缘部分会因为光线的衍射而导致成像模糊,为保证成像的质量,感光元件上这部分的成像会被舍弃,所以感光单元不能 100% 被利用,而被利用起来的,即得到最终图像的这部分像素就被称为有效像素。 2.什么是CCD 尺寸,它有什么作用? 答:数码相机的关键元件 CCD 或 CMOS 又称为 “影像传感器” ,其作用相当于感光胶片。CCD 尺寸是指感光元件对角线的长度,常用单位为英寸。常见的有 1/1.8 英寸、 1/2.5 英寸、2/3英寸。CCD 尺寸越大,采集光线的效果越好,画面记录的信息就越多,保留的细节也就越丰富,所以图像更完美漂亮。 3.CCD 尺寸与像素之间有什么关系? 答:CCD 尺寸的大小与像素的多少有一定的联系,但是也不尽然。专业数码单反尼康的 d70 ,别看它像素只有 600 万,可 CCD 的尺寸却是 23.7×15.6mm ;而尼康 coolpix P3 数码相机虽拥有 810 万像素,但 CCD 尺寸只有 5.38×4.39mm ( 1/1.8 英寸 ) ( 现在市场主流大小 ) , 两块 CCD 面积相差近 10 倍。可以肯定地说, D70 拍出的图像质量要比尼康 coolpix P3 拍出的画面要好得多,而且图像越放大越能证明这一点。所以购买数码相机时,千万不要盲目追求高像素,还要看看它的 CCD 尺寸有多大!目前 CCD、CMOS 最大尺寸(除 120 专用的数码后背)与 35 毫米传统胶片的底片一致,即 24×36mm 。所以又称为“全画幅”CCD。 4.什么是图像分辨率? 答:图像分辨率为数码相机可选择的图像大小及尺寸,单位为 dpi 。常见的有 640 x 480 ;1024 x 768 ;1600 x 1200 ;2048 x 1536 。在成像的两组数字中,前者为图片长度,后者为图片的宽度,两者相乘得出的是图片的像素。长宽比一般为 4:3 。分辨率越大,图片的面积越大。 5.影像分辨率和像素有什么关系? 答:说完了像素和分辨率的定义,让我们来看看两者的关系。细心的朋友也许已经发现,像素和分辨率是成正比的,像素越大,分辨率也越高。让我们来举例说明!前文已经提到,像素分有效像素和 CCD 像素。 通常来说 500 万像素的数码相机,最大影像分辨率是 2592×1944 = 504 万像素 通常所说的 800 万像素的数码相机,最大影像分辨率是 3264×2448 = 799 万像素 可以看出,像素越高,最大输出的影像分辨率也越高。 综上说讲,像素只跟照片输出的影像大小有关,跟影像的质量关系并不大,像素越高能够洗印的照片越大,而不是照出来的照片越清晰。 500万像素的相机是现在的主流机型,完全能够满足家庭摄影的需要,更高像素的产品,只给你提供了更大的放大尺寸。 据个人的经验,家庭使用数码相机 300万像素就足够使用,2048 x 1538 的分辨率可以冲洗 8 寸高质量的照片,冲印店的冲印精度一般是 180 DPI,那么 300万的相机理论上就可以冲 11.3 寸照片,现在你知道自己买多少像素的相机合适了吧!(计算公式是图像的分辨率的长边/冲洗店的冲洗精度=所得最大照片的尺寸),而在网上交流,通常只需要 800 x 600 的分辨率就足以保证照片的清晰度,另外,使用低分辨率的数码相机在后期存储卡上面的投资也比较小。如果对于拍摄的照片有参赛或者印刷等其它用途的话,其实 500 万像素就可以满足需求。 6.什么是数码变焦,什么是光学变焦?有什么区别?是不是越远越好? 答:光学变焦——数码相机依靠光学镜头结构来实现变焦。数码相机的光学变焦方式与传统 35mm 相机差不多,就是通过镜片移动来放大与缩小需要拍摄的景物,光学变焦倍数越大,能拍摄的景物就越远。当成像面在水平方向运动的时候,视觉和焦距就会发生变化,更远的景物变得更清晰,让人感觉像物体递进的感觉。 数码变焦——它是利用数码相机内置的程序以软件方式来对影像进行放大, 实际上数码变焦并没有改变镜头的焦距。(原理:利用软件对已有像素周边的色彩进行判断,并根据周边的色彩情况插入经特殊算法加入的像素。) 光学变焦是真实的像素,它可以原汁原味地还原远处的景物而不会有什么质量损失,而数码变焦是以牺牲照片质量为代价的。用得越多,损失越大,所以在实际使用过程中,数码变焦几乎不用。 很多经销商都喜欢把大变焦和专业数码相机联系在一起,甚至把大变焦的相机和精品数码相机挂钩,这个观点有点太过于片面。 虽然对于数码相机爱好者来说,大变焦的吸引力绝对不小,但是有一点要明白,焦距大小并不是最终追求目的,最重要的是镜头涵盖的焦距范围,通常来说, 拍摄人物时用中等焦距( 85-135mm )较为适合,而拍摄风景和建筑物时,用广角镜头效果就更好( 18-40mm ) 。 而大变焦数码相机往往都是鱼和熊掌都得不到,原因是,大变焦相机景深短,虽然能突出处于主体,但对焦的速度比较慢和对焦精确度不高。稍微相机对焦不精确,就会造成拍摄主体模糊(也就是常说的跑焦),此外由于拍摄的景物空间范围较小,在相同的距离,所拍的影像比标准镜头要窄。大变焦相机广角端容易出现严重的色散和图像畸变。由于民用大变焦相机的成本比较低,所以镜头素质差,很难将各种色光聚焦于一点,因而产生副光谱的问题也时有发生。如果再没有防抖功能的配合,那么只要光线稍微不足,采用手持拍摄,就非常难保证手不抖动,造成的直接后果就是画面模糊。 7.全手动真的那么有用吗? 答:曾几何时,在低端数码相机市场也开始流行全手动数码相机,特别是此前被炒的如火如荼的佳能 A 系列,它们共有的特点就是价格便宜、功能全面,很多 6000元以上高端数码相机的功能都配备其中,厂商就是抓住消费者“功能多总比功能少强,反正花钱一样多”这个心理,在功能方面大肆宣传。 其实真正买了这一类型数码相机的消费者应该最有发言权,购买之前就冲着全手动这个功能去的,可是买了之后,在好奇的尝试那么几次之后,就发现拍出来的照片惨目人睹,不是曝光过度就是黑漆漆的一片,在失败 N 次之后还是乖乖的把模式转盘拨到 P 档次或是自动档,最后就是后悔 …… 其实家庭用户完全没必要选择全手动功能的数码相机,因为在实战中使用的机会非常小,加上现在很多相机都配备了使用更人性化情景模式功能,一旦锁定了全手动功能,挑选相机器的余地就非常的小。 关键:买手动相机首先你了解多少摄影知识?想学吗?不想就买自动相机。 8.屏幕是不是越大越好? 答:如果说,要罗列 2005-2006 年数码相机市场的关键词,那么 “大屏幕” 肯定必不可免,随着数码相机时尚化、轻薄化的趋势越发明显,大屏幕已经成为衡量数码相机精品的标准,也成了厂商宣传相机的一把宝剑。 其实大屏幕背后也隐藏了很多不可告人秘密,比如 液晶屏像素 ,很多品牌数码相机在 2004 年年底经过升级推出了新款型号,它们和旧款相比, 屏幕尺寸变大了,但是像素却没有发生变化 ,这些改进以后的数码相机显示屏显示效果看上去比较粗糙,颗粒感强,感觉上都不入改进之前的小屏幕。另外,大屏幕耗电量也随之变大,如果电池容量不发生变化,电路没有进行优化,仅仅是换了一块屏,对于相机续航时间会有很大的影响。 有些大屏幕的相机有托影,选购时注意!这点上,希望消费者在购买的时候一定要看清参数,不要被 “大屏幕” 三个字迷晕了。

  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展

    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。[align=center][img=,600,174]https://img1.17img.cn/17img/images/202403/uepic/18c3b2c4-6d3d-4349-b5d2-5c096ac0f32f.jpg[/img][/align]单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。[align=center][img=,500,508]https://img1.17img.cn/17img/images/202403/uepic/b5f63213-6cee-41d0-8519-3a9bc7fc69aa.jpg[/img][/align]作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 深圳先进院压缩感知光声断层成像技术研究取得新进展

    中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究室宋亮研究团队与影像中心梁栋博士合作,在基于压缩感知理论的光声成像技术方面取得新进展。7月10日,相关研究成果发表在美国光学学会期刊Optics Express上。 光声成像兼具光学成像对比度与超声成像深度的优点,是当前生物医学光学领域发展最迅速的方向。光声成像的速度和系统成本是其获得广泛临床应用的两个关键因素。压缩感知技术可以利用很少的测量数据恢复信号,该研究首次将最新提出的带有部分已知支撑信息的压缩感知重建理论应用于阵列式活体光声断层图像重建中,成像系统成本大约降低了3倍,同时大规模缩减了数据采集量。 本工作对于推进该成像技术在疾病诊断和监测方面的临床应用具有重要的意义。http://www.cas.cn/ky/kyjz/201207/W020120711491013931474.jpg

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • 高速相机有么有了解的

    高速相机有么有了解的

    高速摄像机系统利用CMOS图像传感器进行图像的采集,其工作原理:高速运动目标受到自然光或人工辅助照明灯光的照射产生反射光,或者运动目标本身发光,这些光的一部分透过高速成像系统的成像物镜。经物镜成像后,落在CMOS图像传感器的像敏面上,受驱动电路控制的光电器件,会对像敏面上的目标像快速响应,即根据像敏面上目标像光能量的分布,在各采样点即像素点产生响应大小的电荷包,完成图像的光电转换。带有图像信息的各个电荷包被迅速转移到读出寄存器中。读出信号经信号处理后传输至电脑中,由电脑对图像进行读出显示和判读,并将结果输出。因此,一套完整的高速成像系统由光学成像、光电成像、信号传输、控制、图像存储与处理等几部分组成。[img=,690,460]http://ng1.17img.cn/bbsfiles/images/2017/07/201707200949_01_3251781_3.jpg[/img][b]应用领域:1 军事领域:火药爆破分析.弹道分析.炸药爆炸 出膛 火箭发射[/b][table][tr][td] [/td][td]2 生物医学领:高分辨率高速显微镜成像.细胞高速成像 生物力学 生物运动分析[/td][/tr][tr][td] [/td][td]3 体育运动领域:仿真设备测试 运动动作姿态分析 冲线瞬间拍摄 [/td][/tr][tr][td] [/td][td]4 影视制作领域:动画制作 广告摄影 电视电影 动画特效[/td][/tr][tr][td] [/td][td]5 能源化工领域:[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]流 粒子测速系统 化学结晶过程 喷流 喷雾流体分析[/td][/tr][tr][td] [/td][td]6 其他专业领域:跌落试验 振动分析 冲击分析 焊接 绕线 切削 压膜成型[/td][/tr][tr][td] [/td][td]7 高速粒子成像测速 瞬间物理现象 高速碰撞研究 显微高速成像;汽车碰撞测试 材料测试 张力测试 显微镜学 气囊膨胀实验 [/td][/tr][/table][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2017/07/201707200953_02_3251781_3.jpg[/img]汽车碰撞实验[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707200954_01_3251781_3.jpg[/img]

  • 高速脑皮层成像仪介绍

    [url=http://www.f-lab.cn/vivo-imaging/celox.html][b]高速脑皮层成像仪3001CELOX[/b][/url]采用以色列optical-imaging公司的[b]电压敏感染料成像[/b]技术,配合高达10000Hz的VSD成像技术,广泛用于活体成像或体外成像,[b]VSD成像[/b]![b]高速脑皮层成像仪[/b]应用(体内和体外):在体内或体外的皮质功能架构VSD成像。同时有optogenetics VSD成像。固有的光学成像的皮层功能架构。电压敏感染料的心脏成像。微血管系统的探索。灵活的数据获取这台[b]高速脑皮层成像仪[/b]主要用于电压敏感染料信号的探测。它有一个比较大的可以达到脉宽108赫兹的感应器,而且有1000赫兹和多行扫描达到10000赫兹的操作。灵活的在线归档功能让你可以进行高速成像。[img=高速脑皮层成像仪]http://www.f-lab.cn/Upload/brain-imager3001.JPG[/img]高速脑皮层成像仪:[url]http://www.f-lab.cn/vivo-imaging/celox.html[/url]

  • 【转帖】如何挑选凝胶成像要诀

    Introduction  过去,研究人员为了确保凝胶结果完美需要进行辛苦的工作:通过不断重复进行保存凝胶,或者凝胶存档(a record of the gel)的工作,在记录他们辛辛苦苦得来的凝胶结果上花费了许多时间和精力。然而今天的我们已经不再需要如此手工化的操作了,我们可以利用许多商品化的凝胶成像系统快速而准确的记录下实验结果,并且可以方便地获得分析和组织实验的数据。而且凝胶成像系统也已经不仅仅是作为一种凝胶记录的手段,普遍应用于蛋白、DNA的凝胶记录中了,更是一种印迹分析,数据获得的方式。  不管是什么用途,刚开始的时候凝胶成像系统的组件都是相似的。Alpha Innotech的产品经理Hanh Lee就曾说,“表面上看来,所有的凝胶成像系统看上去和操作起来很相似:它们都有一个相机、一个黑暗的‘围栏’与获取和分析凝胶图片的软件。”但是,更深入的进行了解,你就会发现大部分凝胶成像系统提供了不同的产品特性来满足不同科学研究的需要。  要挑选一个合适的凝胶成像系统,各人需要根据目前的预算和将来研究需要来决定,市场上有众多的类型和型号可供选择,但是大家要务必记住经常留意最新的产品动向——快速发展的光学技术和成像分析软件也许能实现你以前想都不敢想的方便操作。    A range of specifications for far-ranging needs  首先值得一提的当然是分别在在2004年和2006年获得凝胶成像分析系统生命科学产业奖的Bio-Rad公司的产品,Bio-Rad公司提供了各种不同的产品特性满足客户的不同科学研究需要。例如,Bio-Rad公司的ChemiDoc XRS系统就是为高分辨率的化学发光和荧光成像用途设计的。该系统的特点包括:1.3兆的超级冷却CCD照相机、一个紧密不透光的暗室、一个滑行的透射仪、一个的由软件控制变焦、聚焦、光圈、实时成像和动态平场处理的伸缩镜头。该公司还提供另外一种更基础用途的型号Gel Doc XR,主要用于快速高分辨率成像,但没有化学发光成像功能。该系统包含一个暗室、一个1.4兆像素的CCD照相机、UV和白光照明、琥珀色滤光玻片和UV防护罩。Gel Doc XR系统也可以升级为ChemiDoc XRS系统,两种系统都包含了图像获取和分析软件 ——Quantity One。虽然像ChemiDoc XRS等系统的高科技特性对于新用户来说听起来有点不习惯,但是Bio-Rad公司的CCD成像技术产品经理Jill Raymond表示,“Bio-Rad的凝胶成像系统的关键特点就是设计的简易性——几乎能满足所有顾客的需要。”  Bio-Rad公司还提供两种分辨率更高和灵敏度更好的凝胶成像系统型号:VersaDoc Model 4000和VersaDoc Model 5000。VersaDoc Model 4000系统具备一个3.2兆像素的CCD相机,提供了最佳的分辨率。该系统尤其适用于蛋白组分析,例如可以利用Quantity One 1-D分析软件来估计蛋白样品的分子量和数量,也可以利用PDQuest 2-D分析软件来分析蛋白表达产物的差异。  VersaDoc Model 5000系统则运用了高级的量子效应、蓝光增强的CCD相机,该相机通过过冷光源(supercooled)来优化低亮度情况下的图片成像。通过Quantity One 1-D分析软件就能轻松估计样品的丰度差异。  知名的Alpha Innotech公司在科学研究和预算要求方面也提供了广泛的,可供选择的产品,比如目前相对新型和高端的产品——FluorChem SP,这是一种可以用于化学发光、荧光、和可见光应用的产品。  Alpha Innotech公司宣称通过FluorChem SP,希望能设定近期发展起来的电子致冷型CCD(cooled CCD camera)相机技术的行业标准,包括分辨率、灵敏度、动态范围和性能等方面的标准。而且Alpha Innotech也相信他们公司提供的相机产品的规格有着其他公司不能比拟之处:高分辨率(科学研究级的CCD)、4兆象素、低信噪比、低暗电流(dark current)、绝对的和可调的制冷温度(用于更高端的系统)。  除了4兆象素的分辨率外,FluorChem SP还提供了Alpha Innotech公司的AlphaEaseFC软件。其特有的算法通过三维图像轮廓成像、图像锐化和降低信噪比等技术改进了成像分辨率。AlphaEaseFC软件提供了可以简单易用的单击完成1D泳道分析、2D点密度、MW/Rf(分子量/迁移率)计算、克隆和细胞计数、微量滴定盘分析、芯片分析、物距测量和凝胶评分等功能。  另一方面,Alpha Innotech公司也提供给用户一种经济实惠的选择——入门级的AlphaDigiDocRT 2产品,这是一种实时的凝胶成像系统,只要具备一台电脑(通过USB连接)、一台UV透射仪就能使用。当然这是一种stand-alone版的成像产品,也就意味着它不具备一些昂贵的系统提供的许多图像分析选项。  AlphaDigiDocRT 2具有高达8兆的分辨率(8位灰度或者24位彩色成像)、在软件控制下具有4倍的光学变焦和自动聚焦等性能。该系统还包含了AlphaEaseFC图像获取软件,用于控制变焦、自动聚焦、分辨率和曝光时间,含有自动图像增强和数据管理工具,除此之外AlphaDigiDocRT 2外形小巧,经济实惠,是小型和拥挤的实验室的理想选择之一。  The importance of upgradeability  假如你现在就需要一台凝胶成像系统,虽然目前你们实验室很小并且预算很紧,或者你不需要很多花俏的凝胶成像系统的功能,但是预知将来可能会需要更多复杂的性能的时候,最好购买一台能允许你升级到满足你将来需要的凝胶成像系统。  有一些公司提供了这种服务,比如Alpha Innotech公司——任何顾客购买了带有DE-500操作室的入门级凝胶成像系统,就对系统进行升级而不需要买一套全新的系统。另外以上提到的Bio-Rad公司的GelDoc XR 和ChemiDoc XRS也是可升级的系统。  除此之外,Kodak公司的分子成像系统就其高级市场专员Allison Sova的表述:“Kodak公司的Gel Logic的凝胶成像系统家族使得研究者能选择目前所需要的性能,并且可以将来可以经济而简易的升级系统以满足将来的需要。简单的来说,Kodak公司提供给研究者更大的灵活性来满足他们实验室对成像能力不断增加的要求”,也是一种可以升级的系统。  Kodak’s Gel Logic 100是Kodak公司的基础型成像系统,它包含一个1兆象素的数码CCD相机、一个Gel Logic成像操作室、一个溴化乙锭带通滤波器。并且Kodak公司award-winning Molecular Imaging软件提供了其他成像系统所没有的特性,该软件可以在Mac操作系统或者Windows操作系统中使用。假如Gel Logic 100系统还不能满足你的需要,Kodak公司还提供了完整系列的数码凝胶成像和印迹成像系统——DNA 和 RNA凝胶成像,或者蛋白凝胶、印迹、或者平板成像等。  比如Gel Logic 2200数码成像系统,Gel Logic 2200数码成像系统是Kodak公司顶级的凝胶成像系统。 Gel Logic 2200运用了2.2兆像素致冷型CCD相机,适用于更高灵敏度的化学发光和低亮度荧光检测,该系统还整合了白光和紫外光光源。Kodak公司称,该系统能检测皮摩尔至飞摩尔水平的荧光信号,达到与放射性自显影胶卷一样的灵敏度。  另外,大范围生产凝胶成像系统的厂商还有Syngene——Synoptics公司的一个分公司。Synoptics公司的Paru Oatey说“基本上你可以根据研究需要和经费预算来选择相机、光源和滤光镜等配置,这将确保不会在一个系统中不需要的部件上花费多余的钱。”  InGenius是Syngene公司的低预算型凝胶成像产品,可以根据选择不同的相机达到不同的分辨率。InGenius系统小巧易用,包括一个暗室,一个0.3-2兆像素的CCD相机(视型号而定)。  G Box是该公司的另一个高端产品,一个更先进的凝胶成像和分析系统。该系统可以根据不同的应用选择三种不同分辨率的CCD相机,可以选择自动伸缩镜头或者手工镜头,电脑驱动或者手动滤光选择器,根据不同用途的光源选择,符合人体工程学外形设计的暗室。Syngene公司最近推出了一款高分辨率的G Box型凝胶成像产品——G Box Chemi XT16,该系统具有一个超致冷型、低噪音、高分辨率的4兆像素的CCD相机,适合灵敏的化学发光用途。除了自带的暗箱外,系统还包括安置在头顶的白光和紫外光透射光源。每一台G Box系统都提供了GeneTools分析软件,该程序能使许多单调乏味的工作自动完成,例如分子量分析和点带匹配等。

  • 【分享】最新医学成像技术透视奇妙人体构造---科学见证美丽(图)

    [center]最新医学成像技术透视奇妙人体构造 [/center] 据美国《探索》杂志报道,医学成像技术在过去几年取得了突飞猛进的发展,如今,这些新技术可以甄别人体任何结构以及许多重要生物过程,比如不同的血流速度。以下这组图片不仅揭示了患病后的人体构造,还在视觉上给人以冲击。 1.精神分裂症患者大脑图像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141239928.jpg[/img]精神分裂症患者大脑弥散张量成像(DTI) 一种描述大脑结构的新方法被称为弥散张量成像(DTI)。这张图便是医疗人员在研究精神分裂症患者时,利用弥散张量成像技术制作出来的。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141213834.jpg[/img]像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。 弥散张量成像其实是核磁共振成像(MRI)的特殊形式。举例来说,如果说核磁共振成像是追踪水分子中的氢原子,那么弥散张量成像便是依据水分子移动方向制图。神经细胞纤维长而薄,分子通常会沿着神经细胞纤维扩散。研究人员可以突出水分子和一组组神经细胞纤维以相同方向运行的部位。像这样的弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。它还可以揭示同中风、多发性硬化症、精神分裂症、阅读障碍有关的细微反常变化。 2. 核磁共振成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614120194.jpg[/img]核磁共振成像 在核磁共振成像仪器下,患者躺在圆柱形磁体内,暴露于强大的磁场。一旦暴露在磁场中,水分子的质子会排成一行,要是遭到无线电波的攻击,它们会立即乱作一团,不成直线。在质子重新排列过程中,电脑会收集它们的信号,并加工成图像。富含水的组织会发出更强烈的信号,在生成的图像中看上去更亮,而骨骼相对较暗。这项技术用在此处是来描述大脑和颈部动脉的。在注射了用于对比的成像剂以后,放射线专家重复扫描,这时,成像剂在血管中移动,使他们可以看清楚造成中风、脑动脉瘤和各种外伤的堵塞物。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141138944.jpg[/img]脊椎管和大脑处的明亮区域表示脑脊髓液。 核磁共振成像技术还经常用在神经成像方面。脊椎管和大脑处的明亮区域表示脑脊髓液;向下延伸至身体的长条状体则是脊髓。 3.X光血管成像术 [img]http://www.sciencenet.cn/upload/news/images/2009/10/20091016141124647.jpg[/img]X光血管成像术 X光血管成像术让手上如此细小的血管都呈现出来。由这种最新数码探测仪生成的图像质量可以让放射科医师不用使用高剂量辐射物,也能看清楚器官的细微之处。这张照片显示了手外伤的直接影响——没有血液流向第四根手指,而其他手指的小血管却清晰可见。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/200910161410206.jpg[/img]X光血管成像术 制作有用的医学图像涉及两个主要步骤:一是搜集数据,二是将这些数据转换为可快速、准确解读的图像。这张图像由一种称为X射线断层成像(简称CT)的先进X光技术生成,突出了上述两个方面的进步。体绘制软件(Volume-rendering software)结合CT血管成像技术,可以识别心脏附近主动脉(从图像顶端延伸至身体下部、心脏周围的大片粉色血管)的异常情况。再往下,可以清楚看到肝脏(紫色)和肾脏(鲜红色)。准确测定主动脉直径至关重要,因为外科医生可以借此判断主动脉是否存在破裂的风险。 4.CT血管成像 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614104491.jpg[/img]CT血管成像 对于此处用以显现骨盆的CT血管成像来说,成像剂会注射到静脉,使血管同软组织形成鲜明对比。电脑软件可以进一步凸显骨骼和血管之间的差别,让医生可以做出更明确、更快速地诊断。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614948897.jpg[/img]此图中的两只手是尸检扫描的结果 通常情况下,CT使用一个X光源,但研究人员可以将两个不同能量的X光源结合起来,更清晰地呈现软组织。根据特定组织(比如图中两只手的腱和韧带)吸收不同能量的事实,仪器可以突出展示它们的图像。为检验这种呈现方式的准确性,研究人员对尸体进行了扫描,将扫描结果同他们的“虚拟”发现相比较。此图中的两只手就是尸检扫描的结果。当然,CT技术的主要目标是改善健康,但也存在用于虚拟尸检的可能性。作为法医检查的一部分,像这样的CT扫描可以揭示小刀等物体的路径。 5.正电子放射层扫描术(PET) [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614932866.jpg[/img]正电子放射层扫描术(PET) 很多医学成像技术主要集中在解剖构造方面,正电子放射层扫描术(PET)有所不同:这种技术生成的图像突出了细胞活动。医生先给患者注射放射性示踪剂,接着,吸收示踪剂最多的细胞会发出亮光。此图中的示踪剂是葡萄糖。癌细胞会快速生长并分裂,因此会消耗大量能量,吸收葡萄糖。红色表示患者肝脏和肩部有问题。大脑和心脏(C形红块是心脏肌肉壁,即心肌层)同样会大量消耗能量,所以也会呈现出来。PET扫描和CT扫描二者结合,能够突出图中的人体构造。图一是PET扫描,图二是CT扫描,图三是PET扫描和CT扫描的结合,这使得医生可以更准确地看清楚问题所在。同核磁共振成像仪一样,正电子放射层扫描仪可以采集多个平面的数据。在这三张图中,分别只有一个“切片”显示出来,只要结合所有这些切片,就能生成三维图。 [img]http://www.sciencenet.cn/upload/news/images/2009/10/2009101614916850.jpg[/img]在这张图中,PET扫描确认的癌组织是蔚蓝色圆团状物体,而CT扫描锁定了它在结肠的位置。 根据CT扫描,肾脏(红色)、骨骼和血管的结构也都清晰可见。PET技术最常用于肿瘤学检查,也应用于心脏病学和神经病学领域。生成此图的仪器制造商“GE Healthcare”日前引进了两种系统,帮助研究人员探索新的临床应用。据美国放射学学院的布鲁斯希尔曼(Bruce Hillman)介绍,由于可以监测细胞功能,PET就是一系列用以监控人体细胞和亚细胞新工具的典型代表。 更多阅读 美国《探索》杂志相关报道(英文)http://discovermagazine.com/photos/07-brain-saving-mind-blowing-hi-tech--medical-imaging

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制