茎流计

仪器信息网茎流计专题为您提供2024年最新茎流计价格报价、厂家品牌的相关信息, 包括茎流计参数、型号等,不管是国产,还是进口品牌的茎流计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合茎流计相关的耗材配件、试剂标物,还有茎流计相关的最新资讯、资料,以及茎流计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

茎流计相关的厂商

  • 南京恒流智能科技有限公司(范冰-13062555168/025-66772668)是由南邮物联网科技园、紫金创投及南京凡帝朗于2014年共同发起成立,总部位于南京邮电大学物联网科技园。 恒流智能依托南邮,致力于恒温槽智能控温仪表及控温软件的研发及制造,专业从事智能控温恒温槽制造及销售。
    留言咨询
  • 深圳市流数科技有限公司成立于2021年3月,是一家基于新型互联网模式的智能传感科技公司,专注于液体数智化产品的设计、研发和应用。秉承着“用技术做产品,以品德做服务”的理念,流数科技以产业和研究创新的发展模式引领液体数智化的发展。 同时,流数科技团队始终坚持践行“科技与创新,激情和敬业”的企业精神,创新地结合光学、电子、生化等领域,实现高性能低成本的液体数字化模板,致力于成为液体数字化行业领军者,做最懂液体的AI智能算法。 未来,流数科技将会持续研发与推动液体数字产品,将中国品牌的液体数字理念和高科技产品推向国际,让世界看到中国在液体数字领域的前沿技术与高速发展!
    留言咨询
  • 上海捷流阀门制造有限公司位于上海市闵行开发区.是一家集研发、生产、销售、服务于一体的高科技阀门制造企业。公司拥有铸造、锻造、热处理、焊接、金切、装配、试验、无损检测试、验检测设备等生产加工设备和多年来形成了一套颇具特色的生产工艺,具有较强的专业化阀门制造企业。捷流产品远销世界各地,广泛应用于石油、天然气、化工、电力、冶金、国防科技、矿山、船舶、食品、医药、供水、暖通、城建等重要领域。 公司产品严格执行国家、行业标准GB、JB,以及ANSI、API、DIN、JIS、BS等国际标准,研发生产的产品有蝶阀、球阀、闸阀、截止阀、止回阀、疏水阀、水力控制阀、低温阀、高温高压等608个系列,近5000个品种;规格为DN6-DN2000;工作压力范围:1.0MPa-50MPa、150Lb-3500Lb;使用温度:-135℃- 780℃;材质有铸铁、碳素钢、合金钢、耐热钢、不锈钢;操作方式有手动、齿轮传动、电动、气动、液压传动、自动等。在全体捷流员工的共同努力下,各类产品以一流的质量、周到的服务,使公司保持持续稳定的发展和品牌知名度连年攀升。 上海捷流阀门的核心发展观是:恪守诚信、积极图强、精优勤新、务实高效!捷流人坚信:我们的每一个阀门都能为客户经营好每一条管路!上海捷流阀门公司与您共享高科技产品,让您享受世界尖端的制造技术。竭诚欢迎广大客商来电咨询,与我们建立良好的合作关系。
    留言咨询

茎流计相关的仪器

  • 植物茎流/液流计 400-860-5168转4470
    SFM1植物茎流/液流计产品概述: SFM1x茎流/液流计具备独立数据采集能力,用于测量植物中的茎流或蒸腾。SFM1x物联网版茎流/液流仪主要是通过使用热比率法( HRM)原则来测量茎流速率。 SFM1x能够测量小型及大型树木的茎和根的高、低和反向茎流流速。同热场变形(HFD)原理一样,采用HRM法的SFM1茎流计也可以测量零茎流和反向茎流流量。 SFM1x物联网版通过物联网(IoT)技术,可以将数据传输到您办公室电脑的软件上,这样就可以实时的对植物水分利用进行监控,从而为植物的灌溉计划作出决策。 特点: 电源管理: 内置锂聚合物电池 电源开关 内部电压调节 光隔离防雷保护 记录: 独立记录 Micro SD扩展内存 无线数据传输 IP68等级防水外壳 免费Windows实用配置软件 应用: 测量低液流和零液流速率 测量反向液流速率 研究夜间水分损失 茎的大小10毫米 根液流 贫瘠生态系统及干旱 径向液体流速表 葡萄藤的液流 植物水分精确测量案例 茎流& 水分利用数据显示 SFM1x通过软件可以非常容易的进行编程来实时显示现场数据情况,从而进行随时的下载。葡萄树茎流速度和相应的日需水量的时间图; 南澳大利亚DATAVIEW软 件 以 升 / 小 时 和 升 / 天 为单 位 计 算 植 物 茎 流 流 量 。 可 以 在现 场 实 时 计 算 , 也 可 以 通 过 云 端A P I 实 时 计算显示。技术参数:测量输出选项原始温度:0℃(仅SD-Card采集)热脉冲速率: cm hr-1茎流速率: cm3 hr-1范围-70到 +70cm hr-1精度0.01 cm hr-1准确度0.5 cm hr-1采样间隔用户可调,最小10minutes数据计算机接口USB、2.4 GHz无线数据存储MicroSD Card 8GB(标准)内存容量可扩展到16GB,数据存储格式为CVS工作条件热脉冲用户可调:约20焦耳(默认)。功率内部电池18560:3450mAh Li-lon,4.2V外部电源设备8-30V DC,非极性尺寸传感器探针直径:1.3毫米探针长度:35毫米热电偶:每个探针有两个尺寸长度:170毫米宽度:80毫米深度:35毫米重量400克 SFM茎流/液流仪传感器配置: SFM1x共有3个根探针; 位于上部和下部的两个探针包含两套相匹配且经过标定的高精度热敏电阻,分别位于距离每个探头尖端的7.5毫米和22.5毫米处。第三个位于茎中部的探针是一个线状加热器,在茎部液流中传输均匀且精确的热脉冲。该热脉冲在加热器和热敏电阻之间传播所花费的时间可以计算出植物的用水量。
    留言咨询
  • 植物茎流计 400-860-5168转4275
    仪器介绍植物茎流测量仪采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。工作原理植物茎流测量仪采用法国学者Granier在20世纪80年代后发明的一种测定Sap Flow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测 定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不 加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。仪器特点双探针,配有相应的钻孔工具,容易插拔,可以反复使用采用热消散法,可恒温加热可以长期连续监测不锈钢探针,采用Teflon涂层,持久耐用采用高精度T型热电偶直接与数据分析仪连接采用大容量SD卡存储技术指标测量指标:瞬时液流密度测量通道:单通道存储容量:2GB采样时间间隔:1-99分钟可调显示:320×160液晶显示屏电源:8.4V可充电锂电池(也可选用太阳能电池供电)工作温度:10℃-60℃工作湿度:0-100%RH
    留言咨询
  • 产品概述:SFM1 茎流计具备独立数据采集能力,用于测量植物中的茎流或蒸腾。SFM1包含液流传感器,数据记录器和接口软件。利用热比法(HRM)原理,SFM1 Sap流量计能够测量小型及大型树木的茎和根的高、低和反向茎流流速。同热场变形(HFD)原理一样,采用HRM法的SFM1茎流计也可以测量零茎流和反向茎流流量。特点:电源管理:l 内置锂聚合物电池; l 电源开关;l 内部电压调节; l 光隔离防雷保护;记录:l 独立记录; l Micro SD扩展内存;l USB连接; l 无线数据传输;l IP68等级防水外壳;l 免费Windows实用配置软件;应用:l 测量低液流和零液流速率;l 测量反向液流速率; l 研究夜间水分损失;l 茎的大小 10毫米;l 根液流; l 贫瘠生态系统及干旱;l 径向液体流速表; l 葡萄藤的液流 技术规格:测量输出选项原始温度:0℃热脉冲速度: cm hr-1液体速度: cm hr-1 液流:升/小时范围-100到 +100cm hr-1分辨率0.01 cm hr-1精确度度0.5 cm hr-1响应时间120秒数据计算机接口USB、2.4 GHz无线数据存储Micro SD卡内存容量4GB扩展到16GB工作条件热脉冲用户可调:约20焦耳(默认)。相当于2.5秒热脉冲的持续时间,自动调整。用户可调:最小间隔3分钟,建议至少10分钟。功率电源960毫安锂聚合物电池电池寿命A.1天,有每小时记录间隔,20焦耳B.如有11瓦太阳能板,则为无限寿命充电电压8-30伏直流尺寸传感器探针直径:1.3毫米探针长度:35毫米 热电偶:每个探针有两个尺寸长度:170毫米宽度:80毫米深度:35毫米重量400克 产地:澳大利亚
    留言咨询

茎流计相关的资讯

  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA信号输出:SDI-12线缆:5m,最大60m茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397. [CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe, K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig. Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]41. Zhao, C.Y. Si, J.H. Qi, F. Yu, T.F. Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [CrossRef]42. Deng, Z. Guan, H. Hutson, J. Forster, M.A. Wang, Y. Simmons, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [CrossRef]43. Doronila, A.I. Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015, 17, 101–108. [CrossRef]44. López-Bernal, á. Alcántara, E. Villalobos, F.J. Thermal properties of sapwood fruit trees as affected byanatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees2014, 28, 1623–1634. [CrossRef]创新点:HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。HPV 植物茎流传感器/植物液流计
  • HPV-06 插针式植物茎流计应用于东北农业大学
    2020年10月份,我公司为东北农业大学提供6套HPV-06插针式植物茎流监测采集系统。

茎流计相关的方案

  • 测量植物茎流、水势传导的持续性方法
    首先要在一棵树木的茎上安装一对PSY1茎渗透势测量仪,并在他们之间的位置安装一个 SFM1液流计 。选择样点时应当避免树木直径或水力结构发生显著变化的地方(如主要的分支处等)。然后测量茎直径以及渗透势测量仪之间的距离。通过对茎水势(液流计上下部分)及两只渗透势测量仪之间的液流进行持续性监测,我们即可确定木质部的液流量及植物茎中的水势梯度。由此,可测量在给定水势梯度或导水率的条件下流经树木主干的质量流量。(算式为:kh= F/ΔP, g/s /MPa).如果我们能确保两台渗透势测量仪之间的距离为1米且不受到任何扰动,则对于水力传导率的测量即可标准化、常规化(算式为:Kh= F L / (ΔP), g/s m /MPa)这些测量将为深入研究以下问题提供依据: 干旱胁迫,树干空穴或日间组织补液的相关影响,植物水分胁迫及恢复。SFM1 植物茎流计 (热比率原理)这是一台用于测量植物液流或植物蒸发的自包含、独立设备。仪器采用热比率原理,可测量植物高液流、低液流、液流回流及零流量。仪器既适用于小型木质茎或根,也同样适用于大型树木。PSY1 植物茎渗透势测量仪对于测量植物水势来说,PSY1植物茎渗透势测量仪的功能是十分强大的,因为它能够对周边环境中,所有能够对植物产生影响的要素如:太阳辐射,温度,湿度,风速及水分供给量进行持续性的监测。
  • 茎瘤芥瘤茎质构分析
    质构是榨菜重要的品质特征,与榨菜原料(茎瘤芥瘤茎)的质构和加工工艺密切相关.采用质构分析(TPA)仪对茎瘤芥瘤茎及榨菜进行质构分析.
  • 易科泰EMS茎流监测系统应用于毛乌素沙地沙柳茎流观测研究
    EMS多通道植物茎流测量系统采用茎热平衡原理(SHB,stem heat balance)连续准确测量植物茎流量,是《中华人民共和国林业行业标准---森林生态系统长期定位观测方法》(LY/T1952-2011,2011年7月1日实施)中指定的茎流测量方法。

茎流计相关的资料

茎流计相关的试剂

茎流计相关的论坛

  • 有关孪晶面迹线的问题----六方孪晶的标定

    《材料结构的电子显微分析》刘文西 黄孝瑛 陈如玉 天津大学出版社P213页“如果事先对孪晶的参数一无所知,则需要通过下一章介绍的迹线分析,对孪晶面的指数作具体的测定”P258页 特征平面指数的测定 1.垂直面衍射法 “因此使用此种方法的先决条件是要求通过某些标志能够清楚判断平面是否处于竖立的位置。例如,有两条清晰的迹线;.................这样,当处于垂直位置时,上述各种像形成一条直线。这种迹线分析方法的操作步骤如图9-23,分为四步:(1)倾斜试样,使特征面处于竖立的位置,这时在电镜下观察,惯习面呈一直线;(2)拍摄照片,记录迹线的方位;(3)拍该视场选区的电子衍射照片........在衍射谱的照片上,通过透射斑画出迹线的平行线AB;(4)自透射斑点因出AB的垂线,垂线对应的倒易矢指数,即特征平面的晶面指数。我现在做的是镁合金样品(六方),需要对孪晶进行标定。我对上面的论述有几点不理解,请高人指点:(1)根据我看到的文献,对于六方晶系孪晶的标定一般都是通过迹线来确定孪晶面,可是我在电镜下观察只看到孪晶界,一条直线,没看到两条“迹线”啊,是不是我的判断和观察不够仔细?是不是要把孪晶带的两条晶界线当做两条“迹线”,旋转双倾台使这两条线平行于电子束的方向?(2)拍到迹线后,再拍选区电子衍射照片,在这个过程中需要旋转双倾台吗,转到什么位置?电镜照片见附件根据文献,上面的倒易矢量g是通过迹线来确定的,可是怎么判断两条迹线(看不到?)平行于电子束的入射方向?还有,对于较复杂的衍射谱如何判断是否有两套斑点,有什么简单易行的方法么? 请高人指点一二,如果我的理解有错误,请指教。谢谢! [em09] [img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603060856_14540_1850921_3.gif[/img]

  • 天然气净化脱硫剂、脱硫石膏

    [font=微软雅黑][size=16px][color=#161616]天然气净化脱硫剂、脱硫石膏属于固体废物,不属于危险废物。天然气脱硫剂主要成分为氧化铁,本身不具有危险特性,未纳入《国家危险废物名录》(2016版),但天然气脱硫剂往往含有二氧化硫或其他有机成分,部分省市在管理过程中将其参照危险废物进行管理,提高管理级别。[/color][/size][/font][font=微软雅黑][size=16px][color=#161616]普通烟气脱硫剂与脱硫石膏最后成分主要为硫酸钙,不属于危险废物。如果脱硫剂、脱硫石膏中混入了其他危险废物(如重金属、焚烧飞灰),按照危险废物混合原则,按照危险废物进行管理。[/color][/size][/font]

  • 生物显微镜下的子宫平滑肌瘤

    生物显微镜下的子宫平滑肌瘤

    人的一生健康很重要,关注生活,关注我们身边的事情,会让你的身体更健康,下面我们一起来了解在生物显微镜下的子宫平滑肌瘤是一种怎么样的状况。子宫平滑肌瘤简称子宫肌瘤,是女性生殖器官最常见的良性肿瘤,常见于30~50岁妇女,20岁以下少见。据统计,至少有20%的育龄妇女患有子宫肌瘤,因大多数子宫肌瘤没有或少有临床症状,因此,临床报道的发病率远低于肌瘤真实的发病率。由于子宫肌瘤主要是由子宫平滑肌细胞增生而成,其中有少量纤维结缔组织作为一种支持组织而存在,故称为子宫平滑肌瘤较为确切。简称子宫肌瘤。奥林巴斯CX31显微镜使用先进的UIS2光学系统在非常畅销的CH系列显微镜基础上更进一步提高光学品质UIS2无限远校正光学系统原本作为奥林巴斯高级显微镜的光学系统一直享负盛名。而在教学用途方面享誉全球的奥林巴斯CH系列生物显微镜与先进的UIS无限远校正光学系统完美结合,升级成新的CX2系列显微镜。作为奥林巴斯非常畅销的CH系列显微镜的升级产品,新推出的CX2系列显微镜全面地提升了光学性能,提供更好的性价比。http://ng1.17img.cn/bbsfiles/images/2016/06/201606071032_596211_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606071032_596213_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606071032_596214_1783654_3.jpg生物显微镜,生物荧光显微镜,这是我们观察生物的最有有效工具。

茎流计相关的耗材

  • Helium-Specific 三重捕集阱 | 22473
    产品特点:Helium-Specific 三重捕集阱Helium-Specific Replacement Triple Trap订货号:22473产品名称:氦专用三重捕集阱(去除氧气、水分和碳氢化合物) {Helium-Specific Replacement Triple Trap (removes oxygen, moisture and hydrocarbons)}
  • 1838逆流粘度计
    1838逆流粘度计1838逆流粘度计按SY2409-655“深色石油产品粘度测定法”所规定的标准制造。适用于深色石油产品粘度测定。产品全长约270mm。1838逆流粘度计技术参数毛细管内内径mm运动粘度范围mm2/S0.62-150.87-351.020-1001.250-2001.5100-5002.0300-12002.5500-25003.01000-60003.52000-100004.04000-200005.010000-400006.020000-80000
  • 安捷伦 硫发光检测器硫捕集阱G2933-85003
    硫化学发光检测器(SCD)备件安捷伦硫化学发光检测器(SCD)说明部件号预防性维护工具包,DP RV5油泵G6600-67007包括4个臭氧化学捕集阱、4个油凝聚过滤器元件和4个(1夸脱)盛装合成油的瓶子预防性维护工具包,干活塞泵G6600-67008包括4个臭氧破坏化学捕集阱和2个泵的维修工具包SCD DP燃烧头陶瓷管工具包G6600-60037包括密封垫圈、3个上层陶瓷管和1个下层陶瓷管Mobil 1合成油G6600-85001油雾过滤器,用于RV5泵G6600-80043油,Edwards Ultragrade,用于RV3和RV5泵G6600-85002O形环,内径1.301英寸G6600-80051臭氧破坏化学捕集阱G6600-85000用于油雾过滤器的备用油凝聚过滤器G6600-80044硫化学发光测试样品G2933-85001硫捕集阱G2933-85003对于H2和空气载气,每个钢瓶需要一个(共3个)备用色谱柱螺帽和密封垫工具包G6600-80018色谱柱螺帽,1/32英寸G6600-80072密封垫圈,色谱柱,1/32英寸x 0.5 mm熔融石英,Valco0100-2138密封垫圈,色谱柱,1/32英寸x 9 mm,聚酰亚胺/石墨0100-2430
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制