织物克重测试

仪器信息网织物克重测试专题为您提供2024年最新织物克重测试价格报价、厂家品牌的相关信息, 包括织物克重测试参数、型号等,不管是国产,还是进口品牌的织物克重测试您都可以在这里找到。 除此之外,仪器信息网还免费为您整合织物克重测试相关的耗材配件、试剂标物,还有织物克重测试相关的最新资讯、资料,以及织物克重测试相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

织物克重测试相关的仪器

  • M236/1配有适用100cm2× 厚5mm裁切厚度的圆形裁切器,裁切垫及12片备用刀片,电子天平(电池驱动,预编程),可准确测定织物克重(g/m2或oz/yd2)。裁样器可裁出100cm2样,并于天平上称重,其读数可选为g/m2或oz/yd2。 M236/2配有通用手柄试样压片仪,直径68.35mm(2.698英寸)冲模、顶杆及100块裁切垫、电子天平(电池驱动,预编程),可准确测定织物克重(g/m2或oz/yd2)。在织物幅宽方向上裁切8块试样并于天平上称重,其读数可选为g/m2或oz/yd2。
    留言咨询
  • 织物克重指的是每平方米的重量克数,是衡量织物特性的一个重要指标,某些玻纤织物,例如短切毡,缝边毡,湿法毡等,在织造过程中,由于各种因素的影响,导致克重会发生变化,降低织物的物理特性,直接影响产品的质量。 传统织物的克重检测都采用离线的方式对织物的克重测量,人工抽检即每隔一段时间对生产的织物裁剪下来,切割成小块,在电子克重仪上称量其重量,以此来判断织物的克重均匀性。这种人工抽检的方式有一定的缺陷: (1)抽检发现质量问题不及时,易造成较大损失; (2)抽检合格也不能保证产品整体质量,容易引起客户投诉; (3)抽检频繁,浪费人力、物力。 其次,织物克重在线检测,有些进口设备上,采用放射性元素,产生α,β,γ射线,穿透织物后,射线强度发生变化,以此来测量织物的厚度,间接测量织物的克重,但这些设备都非常昂贵,并且放射性强,保护要求严格,不能得到大量的推广使用。针对此问题,西安获德利用机器视觉原理,成功研发了玻纤织物在线克重检测装置,经过现场使用,取得良好效果。主要功能及指标 1.可适应各种玻纤织物,从80 g/m2~900 g/m2,也可应用在其它织物; 2.实时检测克重变化; 3.全幅面检测:检测幅面3.3米; 4.检测精度; ◆对200g/m2以下的薄毡,平均检测精度可以达到5%以内; ◆对200g/m2以上的的毡,平均检测精度可以达到3%以内; 5.可设定克重变化的上下限; 6.自动记录毎卷织物的克重曲线; 7.可查看克重的历史曲线; 8.可导出数据到EXCLE表格; 9.环境温度0-50℃,可连续24小时运行。 a)减少不合格品。人工定时抽检是在发现克重不合格时,才去调整,此时已有很多不良品生产出来,这不仅降低了售价严重时还将引发客户投诉。这一损失每年每台车有几十万!采用玻纤织物在线克重检测装置,在生产过程中实时监测克重的变化,彻底改变了现有的事后检测方法,一旦出现偏差,及时报警、调整,使产品质量得到稳定控制。大幅度的提升产品优良率、竞争力,减少了客户投诉。 b)提高效率。人工测克重在每次调整品种时,都需要一个较长的时间来调整克重,严重降低了生产效率。玻纤织物在线克重检测装置能有效提高产量,增加产值。例如: 以上这些计算是合格品的价格,如果人工测克重,将会导致废品或不合格,售价降低,若降低一半,也可增加40万元的效益; c)减少浪费。人工测量必须裁剪下来一块进行测量。在更换品种时,将会测反复测量很多次,因此在调整期间,生产出的自然是不合格品,造成浪费。如果采用玻纤织物在线克重检测装置,则每年可直接节省这笔费用: d)节省人力。一般现场都有专门的克重检测人员,有了这套装置,就可节省一个人,3班就是3个人,按照每人每年5万元计算,可节约成本15万; 按照以上计算,每条生产线每年可节省费用近100万!
    留言咨询
  • DRK308A 织物表面沾水性测试仪 织物抗湿性能测试仪,适用于测定各种已经或未经抗水、拒水整理织物表面抗湿性的沾水试验。仪器满足GB19082-2009医用一次防护服技术要求;GB/T4745表面抗湿性测试 沾水试验等标准。DRK308A 织物表面沾水性测试仪 织物抗湿性能测试仪 沾水试验仪,是将试样安装在试样夹持器上并与水平成45°角,试样中心位于喷嘴下面规定的距离,用规定体积的蒸馏水或去离子水喷淋试样。通过试样外观与评定标准及图片的比较,来确定其沾水等级,适用于测定各种已经或未经抗水、拒水整理织物表面抗湿性的沾水试验。本仪器不适应测定织物的渗水率,故不能用来预测织物的防雨渗透性。仪器的主要技术指标:玻璃漏斗:φ150mm量杯:500ml试样支座角度:45°仪器配置:1、主机一台2、玻璃漏斗一个3、500ml量杯一个德瑞克目前拥有完整的试验机产品线,主营产品分为塑料软包装检测器、防护服检测仪器、纸品包装检测仪器、药包材检测仪器、橡胶塑料检测仪器、纺织品检测仪器、工业品检测仪器、印刷品检测仪器、环境检测仪器、IDM进口检测设备、光电检测仪器、辅助器材、试验台等。产品主要有:简支梁冲击试验机、悬臂梁冲击试验机、热变形维卡软化点测定仪、熔融指数测定仪、落锤冲击试验机、管材静液压试验机、粘数测定仪、接触角测定仪、表界面张力仪、落球冲击试验机、电子多功能试验机、电子拉力试验机、电子压力试验机、疲劳试验机、弯曲试验机、扭转试验机、磨耗试验机缺口制样机、哑铃制样机、硫化仪、门尼粘度仪、减震器双动试验机、刨片机、冲片机、双头磨片机、双头切片机、数显可塑度仪、阿克隆磨耗机、辊筒磨耗机、硬度计、普通V带疲劳试验机、普通V带测长机、橡胶密度计、硬度计、压缩应力松弛仪、塑料管弯曲试验机、耐寒系数测定仪、老化箱、自动油封修边机、橡胶剪切机、缺口制样机、管材耐压试验机、橡胶密封圈性能试验机、低温脆性测定仪、平板硫化机、炼胶机、分条机、测厚仪、橡胶疲劳龟裂机等。
    留言咨询

织物克重测试相关的方案

织物克重测试相关的论坛

  • 【我们不一YOUNG】+耐洗色牢度测试中单纤维贴衬织物和多纤维贴衬织物的选择?

    在一些色牢度的测试标准中比如耐洗色牢度测试标准中往往会规定两种贴衬织物可供实验室选择,单纤维贴衬织物也行,多纤维贴衬织物也可,这是从标准的选择角度来看。但是从实验室的角度来说,因为单纤维贴衬织物和多纤维贴衬织物的价格不同,所以在满足检测标准要求的基础上,还是尽量选择价格低的,那么什么情况下选择单纤维贴衬织物什么时候选择多纤维贴衬织物哪?下面给大家简单介绍一下几个原则:1. 从试样成分上把握: 1.1 对于单纤维贴衬织物来说,可以根据标准中的要求,选择试样本身的纤维成分作为第一块贴衬织物,而根据标准中选择的试样条件及温度合理选择对二块单纤维贴衬织物即可。这种情况下是比较节省成本的。 1.2 对于混合织物来说,两种组分的试样可以选择占大部分成分的第一块单纤维贴衬织物进行试验,而第二块单纤维贴衬织物可以选择试样中的第二种成分进行测试。 1.3 对于多种成分的混合织物来说实验室只能选择多纤维贴衬织物来进行测试了。2. 根据不同要求进行区分 2.1 对于研究性的试验尤其是对比性试验,实验室可以有针对性的选择需要对比成分的单纤维贴衬织物。而对于全方位的研究则可以选择多纤维贴衬织物来进行;对于多纤维贴衬织物和单纤维贴衬织物的对比试验当然两种贴衬织物都得用了。 2.2 根据有客户要求的单独制定哪种纤维的沾色情况,实验室尽量选择单纤维贴衬织物。而对于投诉性的验证则需要选择多纤维贴衬织物。总之 贴衬织物的选择首先应该保证检测结果的准确性,然后在此基础上以降低成本为目的选择贴衬织物。

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

织物克重测试相关的耗材

  • 织物垂直方向多功能燃烧测试仪
    产品介绍:泰思泰克垂直方向多功能燃烧测试仪整合国际国内多项纺织品垂直燃烧测试标准而设计研发及生产;该测试仪可实现垂直方向底部点火燃烧及侧面表面点火等点火方式;适用于通过对垂直竖向纺织品及组件边缘及底边点火检测其易燃性能、还可检测睡衣用面料和面料组合,帷幕及窗帘、防护服织物的阻燃性能; 产品型号:TTech-ISO6940-M 符合标准:ISO 6940:2004 垂直竖向试样易燃性能 ISO 6941:2003 垂直竖向试样火焰蔓延性能 ISO 10047:1993 织物表面燃烧时间确定 BS 5438:1989 垂直竖向纺织品及组件底边及边缘点火阻燃性能 BS 5722:1991 睡衣用面料和面料组合的阻燃性能 BS EN1103:2005 服用面料燃烧性能 BS EN 13772:2003 帷幕及窗帘火焰蔓延性能 ISO 15025:2002 防护服隔热及阻燃性能 AS 2755.1、2、3 澳大利亚及新西兰垂直竖向试样易燃性能 GB/T 8745、GB/T 8746、GB/T 5456 等中国国家标准技术参数:1、 不锈钢箱体结构,美观大方,耐腐蚀;2、 结构设计融入人体工学,各种实验方便操作;3、 试样夹持方式柔性设计,可自由安装各种标准测试试样,并配有各标准规定试样夹;4、 各种实验时间自由设定;焰燃时间、续燃时间、引燃时间等系统自动保存;5、 高压自动点火;打火时间自由设定;6、 配备各种实验火焰高度尺;7、 燃烧器电机驱动自动进退;8、 进口流量计,精确控制气体流量;9、 进口压力表及调压阀精确控制燃气压力;10、 精密针阀精确控制燃气流量及火焰高度;11、 进口燃烧器高度可调;燃气流量可调;空气流量可调;12、 火焰角度指示盘可显示操作角度 13、 喷灯角度可自动调整,精确定位;14、 PLC及触摸屏智能 控制系统,实验方便、简捷;15、 实验数据自动存储,自由调取;16、 实验数据自由打印; 织物垂直方向多功能燃烧测试仪主要功能特色: 1、落地式机座,无须置于操作台上,方便操作人员使用 2、大型燃烧机架,可悬挂多种测试针框,满足不同测试标准所需 3、配备7种测试针框以及1套不锈钢试样夹,满足各国测试标准 4、滚轴丝杆调节燃烧器前进及后退,燃烧器高度可通过旋钮调节 5、一键式点火方式,采用电火花点火 6、丁烷及丙烷燃烧气体可程序切换 7、火焰角度指示盘可显示操作角度 8、主机自带火焰高度量尺,探测垂直火焰高度 9、步进电机驱动方式,可驱动燃烧器运动 10、点火装置角度精度为0.18度,精准定位 13、触摸屏操作方式,便于操作人员使用 14、人机界面及PLC控制模式,预制各国测试标准
  • 科德诺思 植物源性食品中草铵膦检测净化管(多壁碳纳米管)
    科德诺思提供的多壁碳纳米管(MWCNTs)基础参数外径:10 nm-20 nm尺寸:5 μm , average length, TEM 15 nm , average diameter, HRTEM比表面积:225±25 m2/g 订购信息:货号产品名称描述包装规格OD65192草铵膦净化管符合《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》,适用于蔬菜、水果、食用菌类。5mg50/盒OD65193草铵膦净化管符合《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》,适用于谷物类、油料作物和植物油、坚果、茶叶、香辛料。55mg50/盒KSCL012多壁碳纳米管 填料填料,《GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法》10g/瓶北京科德诺思(KNORTH)技术有限公司(简称:科德诺思)2020 年在北京成立。公司自主创新研发、生产、销售及技术服务为一体创新型综合服务企业,目前公司拥有三项专利技术。公司研发团队拥有博士后 1 名,博士 2 名,研究生4 名,具有丰富色谱分离技术,实验经验丰富。 公司主要提供:标准物质、标准品、对照品、实验室常规耗材、快检耗材及前处理设备、检测服务、质量控制相关技术服务。 服务对象: 科研机构、农业、市场监管、高校、第三方检测、企业及质谱公司提供优质完善的前处理解决方案。 科德诺思(KNORTH)将不断持续提升产品性能,检测能力、标准物质制备能力及服务能力,为广大分析测试工作者提供前处理整体解决方案。我们期待与更多伙伴合作,实现共赢!
  • 袖套,由经特别配制的透气微孔织物制成
    在ISO 8级洁净室(100000级/ M3.5)生产和包装。由经特别配制的透气微孔织物制成,防液体和防尘。带有松紧袖口和超声焊接接缝。? γ射线灭菌,无菌保证水平(SAL)10-6? 发尘率:符合Helmke滚筒测试一级要求? 耐用的织物具有优良的透气性和水蒸气透过率? 阻碍流体和颗粒效果显著:99,9%的细菌过滤效率? 柔软的布状织物颜色:白色在ISO认证的工厂测试和生产,过程控制严格,以确保每一个产品满足严格的质量标准,并在性能方面符合规范。产品通过独立的实验室测试验证。长度(MM)颜色包装数量货号495白色300414004-510

织物克重测试相关的资料

织物克重测试相关的资讯

  • 织物起毛起球测试实验分析
    标准集团专业提供织物起毛起球测试仪以及相关检测仪器,标准集团是一家专业研发生产销售耐磨测试仪的企业,拥有国际认证,是世界500强合作伙伴,买织物起毛起球测试仪首先标准集团,性价比高,售后服务好。1 织物起毛起球研究的发展过程1. 1 起毛起球过程织物在服用过程中, 不断受到多种外力的摩擦作用, 在明显损坏前, 产生起毛起球现象。织物的起毛起球过程可分为 3个阶段: 起毛、纠缠成球、毛球脱落。有些资料认为分 4 个阶段: 毛茸的形成, 毛茸的纠缠, 毛球形成以及由于摩擦、洗涤等作用使毛球脱落。1. 2 起毛起球机理织物表面的纤维受外部的摩擦作用, 首先被拉出形成圈环和绒毛, 即起毛阶段。对短纤维而言, 当外部摩擦力大于纤维在纱内的抱合力时, 绒毛被拉出, 绒毛达到一定长度后, 相互纠缠成球, 随着绒毛的进一步缠结, 球体逐渐变紧, 当球体所受的摩擦负荷大于绒毛受到的来自纱线中的摩擦阻力时, 绒毛从纱线中抽拔出来, 球体脱落。1. 3 起毛起球的影响因素1. 3. 1 纤维性能与纱线结构主要包括纤维的卷曲性、纤维细度、纤维长度、纱线捻度、纱线表面光洁度、纱线强力、抗弯性及耐磨性等对织成织物起球性能的影响, 目前以上因素对织物起球的影响已有大量的报道, 研究已经比较充分。1. 3. 2 织物的组织结构到目前为止, 主要是研究织物的紧密性、表面平整性以及其他因素对织物起球的影响。织物组织不同对织物的起毛起球影响很大, 比如平纹织物的交织点较多, 因此较斜纹织物不易起毛起球, 缎纹的抗起毛起球性最差, 针织物比机织物易起球。1. 3. 3后整理提高织物抗起毛起球性的后整理措施主要表现在以下几方面。( 1)染整工艺: 纱线或织物经染色及整理以后, 抗起毛起球性将产生较大的变化, 这与染料、助剂、染整工艺条件有关。( 2)用有机胺或无机强碱对涤纶进行腐蚀, 降低纤维强力, 此法虽有效但不易控制。( 3)强化烧毛工艺和热定形工艺, 其缺点是容易使织物失去丰满特性, 从而引起手感板硬粗糙。( 4) 采用生物酶整理。用纤维素酶改善棉织物表面, 以达到持久的抗起毛起球性, 并增加织物的光洁度和柔软度。生物抛光只适用于纤维素纤维。( 5)采用树脂整理。利用树脂较强的黏合力将纤维进行点粘结, 以限制其移动而达到减少起毛起球的目的。树脂整理适用于各种纤维与织物,尤其是涤纶织物。( 6)氧化剂整理。氧化剂的作用是将二硫键氧化, 使含高硫蛋白的鳞片变软, 易于变形, 摩擦因数增大, 不易形成绒毛, 也可以完全脱掉鳞片, 防止纤维纠缠形成毛球, 同时降低强力, 加速毛球脱落。该种方法的缺点是若控制不当, 纤维强力损失过多, 因此主要应用于羊毛纤维。( 7)丝蛋白整理, 此法主要用于羊毛。丝蛋白处理羊毛织物时, 主要分布在不平或间隙处, 填补了羊毛纤维表面由于鳞片而造成的凹凸不平, 降低了羊毛纤维表面的顺逆摩擦数之间差异, 且丝蛋白膜可以使纤维之间产生交联或者使纤维表面交织点发生黏接,减少了纤维间的滑移。纤维纠缠后, 由于顺逆摩擦因数差异减弱, 纤维也易解缠, 因此改变了羊毛织物的抗起毛起球性。( 8)抗起球剂 ATP整理。ATP具有优良的成膜性和渗透性, 能在织物表面成膜的同时渗入到纤维内部,使纤维与毛绒交联黏结形成网状膜结构, 从而起到良好的抗起毛起球效果。( 9)低温等离子体处理。等离子体只触及纤维表面, 对纤维损伤小, 处理机理是: 通过活化成等离子态的激发气体分子的氧化反应, 以及被加速的气体粒子的溅射作用, 使羊毛表面的杂质甚至鳞片层破坏, 反应生成 H2O、CO、CO2 等离子气体而从纤维表面除去, 从而改善防缩性和抗起球性。此法适于羊毛针织物。( 10)氯化法又称为氯氧化法, 它的理论基础是A llow ed 反应。而 A llow ed现象实质上是氯化与氧化反应共同作用的结果, 其中氧化反应起关键作用。氯化法是对羊毛纤维进行重度氯化处理, 以剥蚀羊毛纤维表面的鳞片。氯化处理后的羊毛纤维表面形状发生了一定的变化, 大多数羊毛鳞片的边缘变钝, 使羊毛纤维的摩擦因数降低, 从而降低羊毛纤维的起球性。此法适于羊毛针织物。( 11)纳米级溶胶 - 凝胶法, 是一种新型的抗起球整理技术。使用溶胶 - 凝胶法将蛋白质制膜, 涂层在山羊绒针织物表面, 起到抗起球效果。这种方法有利于生态环保, 会越来越受到人们的重视。此法适于羊毛针织物。( 12)其他。可以通过摩擦、熨烫、洗涤等方法研究织物的起毛起球情况。但目前主要是通过摩擦来研究织物的起球性能, 而在熨烫、洗涤方面的研究甚少。2 织物起球机理的动力学模型织物起球机理的动力学模型可描述为: 织物上存在一端自由的纤维和两端都受到握持作用的线圈, 在摩擦的过程中, 两端都受到握持作用的线圈比较松的一端从纱线中滑移出来成为一端握持的纤维。一端自由的纤维和两端都受到握持作用的线圈中一部分直接参与成球, 另一部分或继续保留在织物上或者被磨断成为脱落的绒毛。形成的球粒在摩擦的过程中由于固定纤维被磨断, 或者变小, 或者脱落, 球中的绒毛有的继续被卷入球体中参与成球, 有的成为脱落绒毛。织物的起球过程可以被描述为类似于化学反应动力学过程, 纤维可以看作是起球过程中的连续步骤的反应物。目前有两种基本的模型, 一个是 B rand和 Bohm falkt' 01 关于起球的数学模型, 另一个是 Conti和Tassinaril的简化的动力学模型。3 毛球的测试和评价方法3. 1 测试方法基本上所有的评价起球性能的测试方法都是在一定的时间里对织物表面进行摩擦, 然后评价起球程度。以下为几种测量起毛起球性能的方法: 随机翻滚毛球测试法 箱式起毛起球法 弹性衬垫法 马丁代尔起毛起球及耐磨法 毛刷海绵型耐磨试验法 加速型耐磨试验法 充气模式耐磨试验法 外观保持性试验法 往复式试验法 HATRA起球测试法。目前国内的实验室及工厂主要用随机翻滚毛球测试仪、箱式起毛起球仪、马丁代尔起毛起球和圆轨迹起球仪法。3. 1. 1 随机翻滚起球仪法织物试样在装有搅拌棒的圆筒内翻滚, 与另一试样或与圆筒壁摩擦, 产生起毛起球现象。织物的运动方式是随机、无规则的, 织物表面受到的外来压力很大。由于织物试样有时会被卡在搅拌棒后面, 这种起球测试可重复性较差。3. 1. 2 箱式起毛起球法将织物试样套在橡胶试样管上, 放进衬有橡胶软木的方形木箱内, 在转动的木箱内翻滚, 使试样起球。织物的运动是随机的, 所受到的压力很小, 这种起球测试的可重复性较好, 但影响起球测试的因素较多, 如橡胶软木和橡胶管的表面情况等。这种测试方法适用于毛织物和其他易起球织物。3. 1. 3 马丁代尔起毛起球法织物试样装在夹头上, 在规定的压力下与装在磨台上的同种织物进行摩擦起毛起球。试样能绕轴心转动, 夹头与磨台的相对运动轨迹是预先设定的李沙茹( L issa jous)图形。后来又有改进的马丁代尔起磨仪。这种测试方法适用于毛织物及其他易起球织物, 特别是机织物。3. 1. 4 圆轨迹起球仪法在一定压力下以圆周运动的轨迹使织物试样先与尼龙毛刷起毛, 再与标准织物作相对摩擦起球, 或将织物在织物磨料上直接起球。这种测试方法适用于化纤长丝织物和化纤短纤织物, 只用织物作磨料时, 可用于毛织物和其他易起球织物。3. 2 对织物起球的主要评价方法3. 2. 1 与标准样照对照评级即在标准光照条件下, 由评估者将起球试样与标准等级样照加以比较后进行等级评定。这是目前应用最为广泛的主观评定方法, 虽然快速, 但是需要比较有经验的试验人员, 受主观影响较大。另外由于织物种类不同, 起球方法不同, 各个机构制定的标准等级样照不同也会引起评定结果的差异。且标准中要求摩擦一定时间后再来评级, 这与消费者的要求相矛盾。3. 2. 2 文字描述起球特征用文字描述是一个相对模糊的概念, 不同的人对于织物起球的描述可能会有很大的差别, 无法定量分析。此外, 文字描述一般只考虑到起球形成过程的顶峰, 而没有考虑到在越过起球顶峰后毛球的脱落过程。不同的织物起球落球的速度和时间是不同的, 它对织物的抗起球性有较大的影响。3. 2. 3 计算单位面积上的毛球数量和毛球质量N aik和 Lopez- Am 认为将毛球数和毛球质量结合起来考虑, 将起球试样表面的毛球剪下, 数毛球个数并称重, 以它们的乘积来衡量织物的起球程度, 这样既考虑了毛球的数量又考虑了毛球大小。3. 2. 4 起球曲线为了了解整个起毛 - 起球 - 毛球脱落的全过程,可以用起球曲线来评定织物的起球程度。起球曲线反映了试样所承受的摩擦作用时间 (一般以摩擦次数表示 )和试样单位面积上起球的关系。这种方法可以克服上述评价方法的某些不足, 在科研工作中有一定的价值, 但是花费的时间比较多。3. 2. 5 激光测试评价方法H . S. K im 等人提出使用激光与 X - Y 坐标来测量光束到织物表面的距离, 进而生成表面的高度图像。这种方法的优点是不取决于光照, 能测试织物真正的表面特征。缺点是速度较慢并且比现今采用的视觉系统昂贵。3. 2. 6 利用织物表面光照的反射性不同的方法[ 8]物体表面越粗糙光泽度越小, 在微米和数十微米范围内呈负相关关系。这种方法的局限性在于织物的组织结构不同, 其反射情况也不同, 而且粗糙度大时,粗糙度与光泽度的负线形关系会改变, 给测试带来误差, 且外界环境如光照条件的改变也会影响测试结果的精确性。3. 2. 7 利用人工神经网络采用神经网络技术建立和训练反映纱线、织物结构参数与织物起毛起球性之间关系的三层神经网络模型, 对比预测值和实验值, 表明用神经网络方法预测织物起毛起球性有相当的准确性。神经网络预测模型在直接用于织物的起毛起球性时还不完善, 输入和隐含结点数对网络训练速度和预测精度产生一定的影响,但能较准确地预测出织物的起毛起球性。3. 2. 8 图像处理方法图像处理方法评价织物起毛起球的方法有两类,一类是基于起球织物灰度图像的织物起球等级的计算机视觉评估, 另一类是基于起球织物表面形态高低起伏信息的织物起球等级的计算视觉评估。4 起毛起球研究现状分析与展望从上世纪 50年代起到现在, 对织物起毛起球的研究主要集中在起毛起球的影响因素和后处理方面, 通过比较分析找出减少起球性能的最佳设计与生产方案来指导生产。且都是在干摩状态下评判织物的起毛起球性能, 而这与消费者的实际穿着过程不符, 在现代化的生活中, 随着人们生活节奏的加快, 衣物脱换频繁,且由于人们健康及卫生意识的提高, 洗涤次数也在增加, 因此日常的磨损、洗涤及熨烫造成了生产厂家与消费者对织物起球评级不一致。目前我国的起毛起球评价标准中尚未涉及到水洗、熨烫等对织物起毛起球的测试方法, 因而需要找到一种与消费者的实际穿着过程一致的评判织物起毛起球的方法, 即在洗涤后评价织物的起毛起球性能。目前国内几乎没有这种评判方法, 国外虽有一些, 也只是关于洗涤对织物起球的影响程度, 并没有在洗涤后来判断织物起球性能的方法。更多关于 起毛起球测试资料,请访问标准集团(香港)有限公司
  • 织物起起毛起球测试实验评价及检测方法分类
    纺织品起毛起球测试方法很多,不同的标准对织物起毛起球测试的要求都不尽相同,部分标准能用一台设备满足但是也存在同一个类测试不同的标准需要用到不同都测试仪器,所以对于织物起毛起球测试实验和评价方法存在一些差异,本文就目前国内市场上常用的检测标准差异的不同做出如下汇总:    1.与标准样照对照评级  即在标准光照条件下, 由评估者将起球试样与标准等级样照加以比较后进行等级评定。这是目前应用最为广泛的主观评定方法, 虽然快速,但是需要比较有经验的试验人员, 受主观影响较大。另外由于织物种类不同,起球方法不同,各个机构制定的标准等级样照不同也会引起评定结果的差异。且标准中要求摩擦一定时间后再来评级,这与消费者的要求相矛盾。    2.文字描述起球特征  用文字描述是一个相对模糊的概念, 不同的人对于织物起球的描述可能会有很大的差别, 无法定量分析。此外,文字描述一般只考虑到起球形成过程的顶峰,而没有考虑到在越过起球顶峰后毛球的脱落过程。不同的织物起球落球的速度和时间是不同的, 它对织物的抗起球性有较大的影响。    3.计算单位面积上的毛球数量和毛球质量  N aik和 Lopez -Am 认为将毛球数和毛球质量结合起来考虑,将起球试样表面的毛球剪下,数毛球个数并称重,以它们的乘积来衡量织物的起球程度,这样既考虑了毛球的数量又考虑了毛球大小。    4.起球曲线  为了了解整个起毛 -起球 -毛球脱落的全过程 ,可以用起球曲线来评定织物的起球程度。起球曲线反映了试样所承受的摩擦作用时间 (一般以摩擦次数表示)和试样单位面积上起球的关系。这种方法可以克服上述评价方法的某些不足, 在科研工作中有一定的价值, 但是花费的时间比较多。    5.激光测试评价方法  H . S. K i m 等人提出使用激光与 X - Y 坐标来测量光束到织物表面的距离, 进而生成表面的高度图像。这种方法的优点是不取决于光照,能测试织物真正的表面特征。缺点是速度较慢并且比现今采用的视觉系统昂贵。    6.利用织物表面光照的反射性不同的方法  物体表面越粗糙光泽度越小, 在微米和数十微米范围内呈负相关关系。这种方法的局限性在于织物的组织结构不同, 其反射情况也不同, 而且粗糙度大时,粗糙度与光泽度的负线形关系会改变, 给测试带来误差,且外界环境如光照条件的改变也会影响测试结果的精确性。    7.利用人工神经网络  采用神经网络技术建立和训练反映纱线、织物结构参数与织物起毛起球性之间关系的三层神经网络模型,对比预测值和实验值,表明用神经网络方法预测织物起毛起球性有相当的准确性。神经网络预测模型在直接用于织物的起毛起球性时还不完善, 输入和隐含结点数对网络训练速度和预测精度产生一定的影响,但能较准确地预测出织物的起毛起球性。    8.图像处理方法  图像处理方法评价织物起毛起球的方法有两类,一类是基于起球织物灰度图像的织物起球等级的计算机视觉评估, 另一类是基于起球织物表面形态高低起伏信息的织物起球等级的计算视觉评估。 更多关于 起毛起球测试仪:http://www.qmqqy.com/productlist/list-5-1.html
  • 织物热湿舒适性测试现状
    水分测试仪︱MMT水分测试仪︱液态水分管理测试仪︱询价电话:136718439661、织物的热湿舒适性研究概述 织物的热湿舒适性是指织物在人与环境的热湿传递之间维持人体体温恒定,为人体正常生理机能提供创造良好条件,从而使人体保持舒适的感觉。人体的舒适感觉取决于人体本身产生热量和周围环境散失热量之间能量交换的平衡。热湿性作为服装舒适性最为重要的指标,在近十几年来颇受纺织服装界研究重视。 目前,世界范围内,纺织品和服装的热湿舒适性主要集中在以下几个方面:纺织品和服装的热湿传递性能及其对舒适性的影响;织物动态湿传递性能的研究;运动衣、内衣用舒适织物的研究开发;新的试验方法和装置的研究。现将就现阶段织物热湿舒适性的测试方法和运动衣、内衣用舒适性织物的研究开发两个方面展开讨论,以大体展现织物热湿舒适性的现状。2、测试方法 现阶段,通过许多学者的研究,已建立起了各种各样的评价体系和测试指标,其中一类是分项单纯测热和测湿的,测热的主要有圆筒法、平板法、暖体假人法、热脉冲法等,测湿的主要有透湿杯法、湿度梯度法、敏感器件法等,另一类是测定热湿综合传递性能的。单纯性热湿传递或湿传递研究方法仅考虑了织物两侧形成的温差或水汽浓度差,而织物两侧的温差是同时存在的,在织物中热流和质流是同时传递着的并且相互作用。为了更好的模拟实际穿着情形,尤其是像夏季服装人体出汗更是不能忽略,应当采用热湿同时传递的方法,这已成为近年来研究的重点,这方面的仪器有纺织品微气候仪(包括一些带有模拟皮肤的热湿传递性能测定装置)和出汗暖体假人。常用的评价织物热湿舒适性的方法主要有物理学的、生理学的和心理学的方法。 影响人体感知衣物是否舒适的三个主要参数是:热湿舒适度、手感舒适度和压力舒适度。其中,热湿舒适度占整体感觉的50%,所以衣物的液态水分管理能力显著影响人们对衣物舒适度的感知。 热湿舒适性是人体对服装舒适程度主观判断的最重要的因素之一。人体的一个重要的散热作用是靠分泌汗液及其蒸发来进行的,水蒸气将身体或是面料表面的热量通过蒸发带走。经研究发现,在服装的微气候环境下,服装的吸汗性、面料对汗液的传递性及其在面料上蒸发的地点都与穿着的舒适度有关系。目前,具备良好的液态水分管理能力的功能性面料被广泛地应用于运动及户外服装、高级休闲服和制服。这些面料所具备的性能如:速干性,优良的透湿性能以及排汗性(能迅速地导出皮肤上的汗液,保持皮肤的干爽)。一些传统的标准和测试方法可以被用到对这些功能面料的检测,如吸水扩散性、芯吸高度、滴水穿透时间、透湿率和干燥速率等。然而,这些测试方法并不能测量出液态水在面料上的三维传递状况。 随着纺织行业的发展,具有液态水分管理性能的纺织品逐渐受到生产厂家的青睐。自20世纪90年代末期,在美国Under Armour公司的领导下,众多的公司开始大力宣传舒适性产品,并以此作为卖点。舒适性服装最基本的特性之一就是出色的液态水分管理性能。然而,人们却很难比较不同产品之间的液态水分管理性能。因为当时的测试仅仅局限于毛效测试或水滴测试,即测试织物转移液体的能力。测试时,将织物垂直放入水槽中或将水滴在织物上,然后测试水浸入织物的程度。这些测试方法的不足在于,只能测量在织物的一侧水滴一次。3. 液态水分管理测试仪(水分测试仪)织物的液态管理特性取决于它们的阻水性、拒水性、水吸收能力,以及纤维与纱的毛细效应、几何状态和内部构造。虽然目前有些测试方法可以简单测量织物的吸水性、穿透性与渗透时间,但无法测量面料中水分的动态转移特性。液态水分管理测试仪可提供一种新的测试纺织产品的水分管理能力的方法,能帮助我们准确地评估和开发吸湿排汗速干服装产品。2009年6月,《GB/T 21655.2 纺织品吸湿速干性的评定第二部分:动态水分传递法》顺利通过了国标委的审批,并将于2010年2月1日生效。几乎与此同时,美国纺织化学家和印染家协会AATCC也通过了《AATCC 195织物液态水分管理特性》。这标志着MMT液态水分管理测试仪最终获得了中美两国主要标准的认可。尽管在标准通过前,MMT液态水分管理测试仪就已经被美国棉花公司、NIKE、Adidas、迪卡侬、WL Gore、Polar Tec、安踏Anta、P&G、ITS、东华大学、广东溢达、山东鲁泰等六十多家行业领先企业和研究机构采用,但新标准的通过仍然会对该测试技术的普及起到推动的作用。3.1 测试原理织物试样水平放置,液态水与其浸水面(通常是指与皮肤接触层)接触后,会发生液态水沿织物的浸水面扩散,从织物的浸水面向渗透面(通常是指服装的外层)传递,同时在织物的渗透面扩散。此水含量的变化过程是时间的函数。当试样浸水面被注入测试液后,利用与试样紧密接触的上下传感器,测定测试液在织物中的动态传递状况,用一系列指标如浸湿时间、吸水速率、最大浸湿半径、液态水扩散速度、单向传递指数、液态水动态传递综合指数综合评估纺织品的吸湿、速干、排汗等性能。3.2 试验方法将试样放入仪器中,接触皮肤的一面向上,将一定量的量的生理盐水倒在织物接触皮肤一侧的中心位置,模拟人体排出汗液的过程。试样两面的传感器分别测量它们在各个环形内(直径分别为5mm,10mm,15mm,20mm,25mm及30mm)的导水性能。在测试进行2分钟的循环后,织物的润湿度及导水性增加。通过一系列的计算,测试者可以得到接触皮肤侧织物的润湿时间、吸水速率、浸湿半径及扩散速度等的精确读数,以及累积单向传递能力与织物的整体液态水分管理能力(OMMC)。3.3 测试仪器仪器设计的原理基于当水分在面料上进行转移时,面料的接触电阻会发生改变,此电阻值的变化主要由以下两个因素决定。水分的组成成分和面料的含水量。当我们确定了水分的组成或分所带来的影响后,电阻的测试就与面料上的含水量具有直接相关性。3.4 测试指标(1) 浸湿时间(wetting time)从液体接触到织物表面,到织物开始吸收水分所需的时间。织物开始吸收水分所需的时间定义为在织物表面含水量与时间的关系曲线上出现斜率大于或等于tan15°时的第一时间值。包括浸水面浸湿时间WTr和渗透面浸湿时间WTB。(2) 吸水速率(absorption rate)在注水时间内,织物表面含水率变化曲线斜率变化的平均值。表示织物单位时间含水量变化率。包括浸水面平均吸水速率ARr和渗透面平均吸水速率ARB。(3) 最大浸湿半径(maximum wetting radius)织物开始浸湿到规定时间结束时润湿区域最大半径。在含水率曲线中,从曲线的斜率第一次出现大于或等于tan15°。到测试时间结束时润湿区域的最大半径。包括浸水面最大浸湿半径MWRT和渗透面最大浸湿半径MWRB。(4) 液态水扩散速度(spreading speed)织物表面浸湿后扩散到最大浸湿半径时沿半径方向液态水的累积传递速度。包括浸水面液态水扩散速度ST和渗透面液态水扩散速度SB。(5) 单向传递指数(Accumulative one-way transport capacity)(R)液态水从织物浸水面传递到渗透面的能力。以织物两面吸水量的差值与测试时间之比表示。(6) 液态水动态传递综合指数(overall moisture management capability)(OMMC)是指液态水在织物中动态传递综合性能的表征。以织物的渗透面的吸水速率ARB,织物的单向传递指数R和渗透面的液态水扩散速度SSB的加权值表示。3.5 测试评级(1) 测试性能指标分级(2) 吸湿排汗速干性能技术要求(参考GB/T 21655.2)(3) 织物评级分类研究表明,使用液态水分管理测试仪测试得到的这些数据,用户可将织物分为7个级别:防水织物拒水织物慢速吸收且慢速干燥的织物快速吸收且慢速干燥的织物快速吸收且快速干燥的织物高渗水织物液态水分管理织物 根据织物的最终应用将织物进行分类后,用户可以通过由液态水分管理测试仪测得的指数对不同的织物进行比较,然后得出哪种织物是最终使用环境要求的最佳织物的结果。4、结语 MMT液态水分管理测试仪是一种用于测试纺织品的水分管理能力的全新的测试方法及仪器。通过这台新的仪器,我们可以快速地测量液态水在纺织品内三个方向的动态水传递性能。通过对不同面料所进行的实验室测试,测试结果表明不同的面料间的测量数据有着明显的差异。 更多测试技术关注标准集团(香港)有限公司:http://www.standard-groups.com/

织物克重测试相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制