毕托管风速仪工作原理

仪器信息网毕托管风速仪工作原理专题为您提供2024年最新毕托管风速仪工作原理价格报价、厂家品牌的相关信息, 包括毕托管风速仪工作原理参数、型号等,不管是国产,还是进口品牌的毕托管风速仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合毕托管风速仪工作原理相关的耗材配件、试剂标物,还有毕托管风速仪工作原理相关的最新资讯、资料,以及毕托管风速仪工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

毕托管风速仪工作原理相关的仪器

  • 日本加野麦克斯面风速仪6720-DP grid、皮托管风速仪超大触摸液晶屏、应用便捷匹配风量罩、皮托管、风速矩阵,实现风速、差压检测 蓝牙通讯、智能终端连接蓝牙打印机,实时打印测试数据手机等智能终端安装APP程序,操控仪器:参数设置、同步测试数据处理(最大值、最小值、平均值、累计值)单位切换、K系数调节、多种语言选择 主机、风速矩阵、皮托管组合使用差压计:主机连接差压管直接测试差压面风速仪:主机连接风速矩阵测试风速 大容量存储主机和APP可分别存储8000组、10000组测试数据 功耗低4节5号电池可持续工作14h,长时间无操作进入省电模式 广泛应用生物安全柜面风速测试风机性能试验、洁净室认证暖通空调的维护调试、故障排除、新风测试及平衡日本加野麦克斯面风速仪6720-DP grid、皮托管风速仪型 号6720-DP grid风量范 围40~4300 m3 /h精 度读数的 ±3%± 8m3 /h(>85m3 /h)分 辨 率1 m3 /h风速范 围0.15~40 m/s(皮托管*)0.15~15 m/s(风速矩阵*)精 度读数的±3%±0.05m/s(>0.25m/s)分 辨 率0.01m/s差压范 围-2500~2500Pa精 度读数的±1.5% ±0.25Pa分 辨 率0.001Pa本体显 示4.3英寸真彩触摸屏蓝牙通讯具备K系数调节具备数据存储8,000组(APP:10,000组)其他功能时钟、电池电量、数据存储/删除、数据输出(USB)、打印电源4节5号电池(约14h)、DC5V操作温度0~60℃(无结露)存储温度-20~70℃(无结露)重 量约3.6kg标准附件手提箱、电池、操作说明书、通讯电缆及测试软件可选附件伸缩杆、打印机(蓝牙/通讯线缆)、AC适配器、仪表挂带、皮托管、风速矩阵、气路管日本加野麦克斯面风速仪6720-DP grid、皮托管风速仪
    留言咨询
  • 面风速仪GTI620-DP grid皮托管风速仪产品介绍面风速仪GTI620-DP grid是一款可以同时测量风速、风量、压差、温湿度的便携式测试仪器。面风速仪GTI620-DP grid采用16个点位同时测试,能够实时计算出平均数值并显示,适用于生物安全柜、高效出风口、洁净室检测等行业的风速测量。该仪器可测量空气速度范围为0.15到40米/秒,温度范围为0到60℃,湿度范围为0到100%,可实现多种测量模式切换以满足不同应用需求。面风速仪GTI620-DP grid配有触摸液晶屏,方便操作。此外,该产品还支持数据记录、存储和导出,可通过APP与计算机进行数据传输和分析,也可以连接蓝牙打印机进行实时数据打印,方便数据记录与存储。 产品应用生物安全柜出风口测试轴流风机性能测试洁净室认证测试及优化暖通空调系统HVAC系统维护及改善 超大真彩屏,应用便捷风量、风速、温度、湿度、同时检测并显示。 蓝牙通信、智能终端安装APP程序,实现设置、 数据处理、同步测试。 16点平均分布16个压力测试孔均匀分布,并自动计算出平均风速值。 无线打印,方便快捷可选购蓝牙打印机,实时打印测试数据,方便快捷 产品特点4.3英寸触摸液晶屏风速、风量、温湿度同时检测超大存储容量,高达8000组,可打印或传输到电脑蓝牙通讯,实现远程监控和数据传输 可连接蓝牙打印机,实时打印测试数据功耗低,电池供电可持续工作14小时,长时间无操作,可进入省电模式 面风速仪GTI620-DP grid皮托管风速仪规格参数功 能规 格风速测试范围0.15~40 m/s(皮托管)、0.15~15 m/s(速度矩阵)精度读数的±3%±0.05m/s(>0.25m/s)分辨率0.01m/s风量测试范围40~4300 m3 /h精度读数的 ±3%± 8m3 /h(>85m3 /h)分辨率1 m3 /h差压测试范围-2500~2500Pa精度读数的±1.5% ±0.25Pa分辨率0.001Pa温度测试范围0~60℃精度±0.5℃分辨率0.1℃湿度测试范围0~100%RH精度±3%RH(10~90%RH)分辨率0.1%RH操作温度0~60℃(无结露)存储温度-20~70℃(无结露)电源4节5号电池(约14小时)或 DC5V适配器重量约3.6kg注:如遇产品设计、规格、参数变更、均以我公司提供的最新数据为准、恕不另行通知。 面风速仪GTI620-DP grid皮托管风速仪
    留言咨询
  • Kanomax皮托管风速仪6720-DP grid4.3英寸超大触摸液晶屏、应用便捷 风量、风速、差压同时检测 蓝牙通讯、智能终端 可连接蓝牙打印机,实时打印测试数据 主机、风速矩阵、皮托管组合使用 主机和APP可分别存储8000组、10000组测试数 4节5号电池可持续工作14h,长时间无操作进入省电模式Kanomax皮托管风速仪6720-DP grid型 号6720-DP grid风量范 围40~4300 m3 /h精 度读数的 ±3%± 8m3 /h(>85m3 /h)分 辨 率1 m3 /h风速范 围0.15~40 m/s(皮托管*)0.15~15 m/s(风速矩阵*)精 度读数的±3%±0.05m/s(>0.25m/s)分 辨 率0.01m/s差压范 围-2500~2500Pa精 度读数的±1.5% ±0.25Pa分 辨 率0.001Pa本体显 示4.3英寸真彩触摸屏蓝牙通讯具备K系数调节具备数据存储8,000组(APP:10,000组)其他功能时钟、电池电量、数据存储/删除、数据输出(USB)、打印电源4节5号电池(约14h)、DC5V操作温度0~60℃(无结露)存储温度-20~70℃(无结露)重 量约3.6kg标准附件手提箱、电池、操作说明书、通讯电缆及测试软件可选附件伸缩杆、打印机(蓝牙/通讯线缆)、AC适配器、仪表挂带、皮托管、风速矩阵、气路管Kanomax皮托管风速仪6720-DP grid
    留言咨询

毕托管风速仪工作原理相关的方案

毕托管风速仪工作原理相关的论坛

  • 热线风速仪 风洞 皮托管 微压差计相关问题

    建立了风洞环境,使用皮托管+补偿微压差计 来校准热线式风速仪 请问几个名词:实测风速是指的哪个测出来的风速? 指示风速是指哪个测出来的风速?还有风速表的实际风速与指示风速的关系式:是怎么计算出来的

  • 风速仪知识小结

    风速仪的探头选择  0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。风速仪的热敏式探头用于0至5m/s的精确测量;风速仪的转轮式探头测量5至40m/s的流速效果最理想;而利用皮托管则可在高速范围内得到最佳结果。正确选择风速仪的流速探头的一个附加标准是温度,通常风速仪的热敏式传感器的使用温度约达+-70C。特制风速仪的转轮探头可达350C。皮托管用于+350C以上。  风速仪的热敏式探头  风速仪的热敏式探头的工作原理是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。以上现象可以在管道测量过程中观察到。根据管理管道紊流的不同设计,甚至在低速时也会出现。因此,风速仪测量过程应在管道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面不得有任何遮挡。(棱角,重悬,物等)  风速仪的转轮式探  风速仪的转轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对转轮的转动进行“计数”并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。风速计的大口径探头(60mm,100mm)适合于测量中、小流速的紊流(如在管道出口)。风速仪的小口径探头更适于测量管道横截面大于探险头横截面貌一新100倍以上的气流。  风速仪在空气流中的定位  风速仪的转轮式探头的正确调整位置,是气流流向平行于转轮轴。在气流中轻轻转动探头时,示值会随之发生变化。当读数达到最大值时,即表明探头处于正确测量位置。在管道中测量时,管道平直部分的起点到测量点的距离应大于是0XD,紊流对风速仪的热敏式探头和皮托管的影响相对较小。  风速仪在抽气排气中的测量  通气口会极大的变管道内气流相对均衡的分布状态:在自由通气口表面产生高速区,其余部位为低速区,并在栅格上产生旋涡。根据栅格的不同设计方式,在栅格前一定距离处(约20cm ),气流截面较为稳定。在这种情况下,通常采用大风速仪的口径转轮进行测量。因为较大的口径能够对不均衡的流速进行平均,并在较大范围内计算其平均值。  风速仪在抽气孔采用容积流量漏斗进行测量:  既使在抽气处没有栅格的干扰,空气流动的路线也没有方向,并且其气流截面极不均匀。其原因是管道内的局部真空,以漏斗状把空气中抽出在气室中,既使是在距离抽气很近的区域内,也没有一个满足测量条件的位置,可供进行测量操作。如采用带有平均值计算功能的栅极测量法进行测量,并借以确定容积流量法进行测量,并借以确定容积流量等,只有管道或漏斗测量法能够提供可重复测量结果。在这种情况下,不同尺寸的测量漏斗可以满足使用要求。利用测量漏斗可以在片状阀前一定距离处生成一个满足流速测量条件的固定截面,测出定位该截面中心并固定截面,测出定位该截面中心并固定截面,测出定位该截面中心并固定于此。流速测头得到的测量值乘以漏斗系数,即可计算出抽出的容积流量。(如漏斗系数20)

  • 【分享】风速仪的使用方法

    风速仪的探头选择  0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。风速仪的热敏式探头用于0至5m/s的精确测量;风速仪的转轮式探头测量5至40m/s的流速效果最理想;而利用皮托管则可在高速范围内得到最佳结果。准确选择风速仪的流速探头的一个附加尺度是温度,通常风速仪的热敏式传感器的使用温度约达+-70C。特制风速仪的转轮探头可达350C。皮托管用于+350C以上。  风速仪的热敏式探头  风速仪的热敏式探头的工作原理是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的正确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。以上现象可以在管道测量过程中观察到。根据治理管道紊流的不同设计,甚至在低速时也会泛起。因此,风速仪测量过程应在管道的直线部门进行。直线部门的出发点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面不得有任何遮挡。(棱角,重悬,物等)  风速仪的转轮式探头  风速仪的转轮式探头的工作原理是基于把滚动转换成电信号,先经由一个邻近感应开头,对转轮的滚动进行“计数”并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。风速计的大口径探头(60mm,100mm)适合于测量中、小流速的紊流(如在管道出口)。风速仪的小口径探头更适于测量管道横截面大于探险头横截面貌一新100倍以上的气流。  风速仪在空气流中的定位  风速仪的转轮式探头的准确调整位置,是气流流向平行于转轮轴。在气流中轻轻滚动探头时,示值会随之发生变化。当读数达到最大值时,即表明探头处于准确测量位置。在管道中测量时,管道平直部门的出发点到测量点的间隔应大于是0XD,紊流对风速仪的热敏式探头和皮托管的影响相对较小。  风速仪在抽气排气中的测量  通气口会极大的变管道内气流相对均衡的分布状态:在自由通气口表面产生高速区,其余部位为低速区,并在栅格上产生旋涡。根据栅格的不同设计方式,在栅格前一定间隔处(约20cm ),气流截面较为不乱。在这种情况下,通常采用大风速仪的口径转轮进行测量。由于较大的口径能够对不均衡的流速进行均匀,并在较大范围内计算其均匀值。  风速仪在抽气孔采用容积流量漏斗进行测量:  既使在抽气处没有栅格的干扰,空气活动的路线也没有方向,并且其气流截面极不平均。其原因是管道内的局部真空,以漏斗状把空气中抽出在气室中,既使是在间隔抽气很近的区域内,也没有一个知足测量前提的位置,可供进行测量操纵。如采用带有均匀值计算功能的栅极测量法进行测量,并借以确定容积流量法进行测量,并借以确定容积流量等,只有管道或漏斗测量法能够提供可重复测量结果。在这种情况下,不同尺寸的测量漏斗可以知足使用要求。利用测量漏斗可以在片状阀前一定间隔处天生一个知足流速测量前提的固定截面,测出定位该截面中央并固定截面,测出定位该截面中央并固定截面,测出定位该截面中央并固定于此。流速测头得到的测量值乘以漏斗系数,即可计算出抽出的容积流量。(如漏斗系数20)

毕托管风速仪工作原理相关的耗材

  • QDF-6型 数字风速仪
    QDF-6型 数字风速仪产品参数:测量范围:0.05~30m/s 工作环境:温度-10~40℃湿度≤85%RH 大气压970~1040hPa 测量精度:≤3%(满量程) 反应时间:≤3s 显示:四位数字显示 分辨率:0.01m/s 电源:直流5~6V(可充电) 外形尺寸:190*90*40(㎜) 重量:380gQDF-6型 数字风速仪
  • QDF-6风速仪
    QDF-6风速仪 QDF-6型数字风速仪 · 测量范围:0~30m/s · 工作环境:温度-10~40℃湿度&le 85%RH 大气压 970~1040hPa · 测量精度:&le 3%(满量程) · 反应时间:&le 3s · 显示:四位数字显示 · 分辨率: 0.01m/s · 电源:直流5~6V(可充电) · 外形尺寸:190× 90× 40(㎜) · 重量: 380g
  • 风速仪替换叶轮
    所有Kestrel系列手持式气象仪的叶轮都可更换。当叶轮使用超过400小时后,或者使用环境风速在超过30m/s后,风速的精度就会降低。 您可以通过更换风速仪叶轮来重新校准风速仪精度。用你的2个大拇指同时轻轻推动叶轮的边缘,可把叶轮取出。把新的叶轮按照如下位置推进去,注意将下图剪头朝向数据显示屏这一面,并朝向风速仪的上方。注意:按叶轮的周围而不是中间。

毕托管风速仪工作原理相关的资料

毕托管风速仪工作原理相关的资讯

  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 全新热式风速仪6006跃然上市
    过去,手持式热式风速仪6004是加野Kanomax家族成员中最为精致小巧的一款产品,品质优良经济耐用。如今加野推出了6004升级版产品&mdash 全新热式风速仪6006,这款在任何领域内都能灵活运用的风速仪将再次绽放光彩。 下面让我们一起来了解全新热式风速仪6006: 操作简单,单一按钮即可进行风速和温度的测量。测试范围广:风速精确至0.01~20米/秒,温度范围扩展至-20~70℃。风速传感元件采用稳定性很好的白金绕线,仪器内部设有温度补偿回路,在可测试的温度范围内能保持很高的精度。探头互换,高性价比。 加野Kanomax作为全球知名的测试仪器制造者,凭借多年自身积累的前沿科技再次推陈出新,相信经典热式风速仪升级版6006凭借其性能和价格上的优势势必在环境测试领域掀起一股浪潮。
  • 加野热式风速仪65系列全新上线
    加野Kanomax公司的A5系列智能型环境测试仪自推出以来好评不断,同时,也为环境测试领域留下了一个华丽的身影。如今,价儿公司发布全新热式智能风速仪65系列产品,不仅将经典品质传承,而且全面实现技术、性能的革新与升级。 热式智能风速仪65系列深入解析: &bull 测量精度的提升&mdash 普通热式风速仪精度难以企及的读数的2%:校对时,分别对0.05~3米/秒的微风速域和3~50米/秒的高风速区域进行验证,风洞的速度误差达到最小以此确保精度的可靠性。&bull 扩展了低温区域的测试范围:温度测试可达到-20~70℃。&bull 使用USB通讯测量保证数据传输的简单化,检测数据以CSV形式保存。&bull 全新探头配备满足不同场景的测试需求:8种型号的探头可根据使用目的进行互换。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制