等离子体检测

仪器信息网等离子体检测专题为您提供2024年最新等离子体检测价格报价、厂家品牌的相关信息, 包括等离子体检测参数、型号等,不管是国产,还是进口品牌的等离子体检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体检测相关的耗材配件、试剂标物,还有等离子体检测相关的最新资讯、资料,以及等离子体检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

等离子体检测相关的仪器

  • 珀金埃尔默全新Avio® 500 ICP-OES:专为高通量检测实验室打造的多元素无机分析设备,完美应对复杂的环境、化学和工业样品 作为原子光谱领域的领导者和创新者,珀金埃尔默公司于2017年7月6日发布全新Avio 500电感耦合等离子体发射光谱仪(ICP-OES)。这款ICP-OES是专为高通量检测实验室打造的多元素无机分析设备,可以应对各个领域的多种类型样品。 作为一款真正的同步检测ICP-OES,Avio 500具备同步背景校正功能,可提供更高的样品通量和数据可靠性;超群的基体耐受性;以及业内最低的氩气消耗量。无论待测元素的种类和浓度范围再宽,Avio 500都可以有效应对,使用户的检测工作符合行业规范。Avio 500的可兼容多个应用领域,包括环境、石化(尤其是润滑油服役情况分析)、地矿、食品、制药、制造业(包括电池制造)等。 以下关键功能使得Avio 500具备卓越的性能:为提升样品通量而设计的同步数据采集功能、为节约使用成本设计的业内最低的氩气消耗量、为缩短样品前处理流程设计的超宽线性范围。无论样品多么复杂,这些功能都可确保检测数据的准确性。 带有快速拆装炬管座的垂直炬焰设计:带来强悍基体耐受性,有效缩短样品预处理时间;平板等离子体™ 技术:仅消耗同类产品一半的氩气就可以生成稳定的等离子体炬,无论样品基体多么复杂;双向观测技术:可同时对等离子体进行全波长轴向和径向观测,高低含量元素一次进样同时分析;全谱全读技术:对全波长进行同步数据采集,无需重复进样就可以获得全部光谱数据;空气刀(PlasmaShear™ )技术:无需氩气,即可消除等离子体冷尾焰产生的基体干扰,而且完全无需维护;全彩等离子体观测(PlasmaCam™ )技术:提供全彩色的等离子体实时影像,简化方法开发工作,并使远程诊断成为可能。 此外,Avio 500配备跨平台的Syngistix™ 操作软件,AA、ICP、ICP-MS操作无缝对接。更多有关Avio 500的信息请请访问PerkinElmer官方网站。
    留言咨询
  • SePdd(可扩展的增强型等离子体放电检测器)不仅仅是一个检测器,还是在增强型等离子体放电技术专利基础上,为OEM和系统集成商设计的可充分扩展的开发套件。用这个扩展平台可以针对目标应用的简单或复杂程度来选择所需要的模块和检测方式(发 散,示踪,能量平衡),从而配置一个定制化,低成本的检测器解决方案。检测器由光波长测量模块、增强等离子体放电发生器模块、数字信号处理器(DSP)组成。 “用氩做载气替代用氦气做载气的氦离子色谱”【产品特点】1、能够在载气是氩,氦,氮,氧,氢的载气情况下运行2、用于本底校正的差异化检测模式3、等离子体可以随时开/关,允许反应背景气流过而没有任何负面影响4、替代DID,PDID,ECD,FPD,FID和TCD检测器,多种检测模式5、ppb 到百分比检测范围6、简单而且容易和任何过程或实验室色谱集成在一起7、即插即用理念,RS-485 和USB 数字通讯8、以太网通讯端口 9、物联网
    留言咨询
  • 氦等离子体色谱检测器THA2700-H仪器功能 氦等离子体色谱检测器THA2700-H可以安装于气相色谱分析仪,作为色谱分析的检测器,用于定量分析各种气体成分浓度。由于分析模块具有很高的灵敏度,因此适合不同浓度范围的分析,尤其适合微量或痕量气体分析,并使得色谱分析更加简便,分析结果更加准确。工作原理氦等离子体发射光谱分析模块采用高频高压电源电离气体,产生正电荷离子和自由电子,形成等离子体环境。正电荷离子、自由电子在电场的作用下分别加速移向负极、正极。由于碰撞,离子和电子将自身能量传递给原子,使得气态原子被激发。原子被激发后,其外层电子发生能级跃迁,在返回基态时发射特征光谱。通过对特征光谱的检测,分析出各种气体成分的浓度。技术参数 工作环境温度: (5~40)℃;输出信号:-2.5V~+2.5V;24V直流电源:≥10W,纹波电流≤120mVp-p;气路接口:1/16英寸;流量范围:10mL/min~100mL/min;常规流量:20mL/min。技术指标分析成分:H2,O2,N2,CH4,CO,CO2,H2S,N2O,CNHM等;载气:高纯氦气;检出限:≤10×10-9;含尘量:≤0.1um;重量:约1.5kg;主体尺寸:约170*111*90mm。技术优势u 原子发射光谱,灵敏度高,准确度高。u 高频高压电离源,稳定性好,无辐射、放射性问题。u 无消耗性部件,仪器使用寿命长。典型工程应用领域u 空分氦气分析u 高纯气体分析u 科学实验室气相色谱u 工业在线气相色谱氦等离子体色谱检测器THA2700-H,价格仅供参考,具体以实际沟通为准~
    留言咨询

等离子体检测相关的方案

等离子体检测相关的论坛

  • 等离子体检测器放空管不能背压!

    前段时间就K2001流量问题探讨过,这两天我在LD8000手册上发现了更详细的提示,非常有用,与大家分享。中文部分是我加了,也请各位斧正。Remove all plugs from the gas connections on the rear panel. Don’t forget to remove the plug on the detector vent connection and make sure to never pressurized the instrument. It will damage the detector. This instrument is made to work on atmospheric pressure.从后面板上拆除全部气路连接的塞子。不要忘记拆除检测器放空口连接的塞子,并确保仪器永远不受压。它会损坏检测器。此设备用于工作在大气压力下。Any back pressure to the detector vent connection will cause damage and replacement of the plasma detector module.检测器放空连接的任何背压将导致损坏,和等离子体检测器模块的更换。

等离子体检测相关的耗材

  • 等离子体主动热探头
    等离子体主动热探头是耐高温的等离子探头,用于高温等离子体过程中流入到目标表面的能量,也可作为离子流探头使用。由于等离子体主动热探头的灵敏度非常高,特别适合用于工业生产过程或研究中的有效质量控制。有一个特殊的版本,该版本有一个更多可选的可调参数,可以用来解决等离子体工艺的研发。等离子体主动热探头特点在生产高品质涂层或研究材料属性过程中,对等离子体工艺的表征,控制和监测是至关重要的。最重要的一个参数是通到基底的实际能量流入和总能量流入—主动热探头是测量这个决定性的量数的唯一工具。增殖的粒子影响基底的表面工艺和反应。这种能量与其他如热辐射能或化学能合成总流入能量。主动热探头连续定向测量流入的能量,保持层和表面性质很好的相关性。等离子体主动热探头产品概述适用于真空 耐温高达450°C 能量流入可多达(2±0,001)W/cm2 可衡量 可变长度和几何图形 包括系统控制和评估的软件包 提供安装服务和流程优化咨询
  • 激光诱导等离子体光谱仪配件
    激光诱导等离子体光谱仪配件是一款欧洲进口的高度安全的激光诱导等离子体光谱仪,采用高度模块化设计,专业为样品分析而研发,是实验室科研和现场检测的理想工具。广泛用于材料分析,元素检测,工业检测,安全检测,反恐和国防等领域。孚光精仪还有更多激光仪可供选择,欢迎前来咨询。激光诱导击穿光谱仪配件特点安全型模块化设计具有世界上最为安全的配置,这套仪器对操作人员的危害几乎为零。特别对于样品室使用防激光辐射的高档光学窗口玻璃,不仅可以让您观看样品的测量,同时又保证您的安全。具有高度的使用灵活性,您可以手持着它进行测量,也可以放置到样品室上测量。中国最大的进口精密光学器件和科学仪器供应商!激光诱导等离子体光谱仪配件特色* 高度模块化和多功能设计,适合实验室和现场多种应用;* 高效率的等离子体采集光学,可配备6通道或8通道光谱采集系统;* 具有多种激光器选项,50mJ@1064nm, 355nm, 266nm, 100mJ@1064nm,355nm,266nm, 还有更多激光器供选择 * 可配备样品室(具有I级激光安全标准)或不配备样品室直接测量(IV级激光安全) * 激光头和样品方室可以多向安装工作;* 具有其他清洗功能(与外界气源连接,可供氩,氮,氦,空气等气体);* 可安装高达8个光谱仪模块覆盖185-1000nm * 激光器电源小型化,非常方便拆卸,搬运;* 软件两年免费升级。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括光谱仪,激光诱导等离子体光谱仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于激光诱导等离子体光谱仪参数,光谱仪价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 微波等离子体源
    微波等离子体源是具有着高度灵活性微波等离子体发生器,可有效应用在各种精密复杂的科研实验中。微波等离子体源创造性地使用分子气体混合物补充的纯氩气,氦气,确保了将化学工艺与具体应用的要求相匹配。微波等离子体源特点对于表面净化、超细清洗和表面活化以及实时样品制备的形态分析方法这些多样化应用,广泛的操作范围内的气体流量和微波功率,以及固有的高等离子体温度是必不可少的先决条件。具有上述性能,成为了工业和研究领域里生产和分析应用的强大工具。等离子体作为一种高新技术,广泛用于科学研究和工业应用,是表面处理中不可或缺的工具。等离子技术运用广泛,主要用于那些质量,生产力,环境的可持续性,精密度和灵活性很重要的应用。微波等离子体源MiniMIP特征 紧凑和移动型 灵活性高 微波等离子体源应用广泛 激活 精洗 净化 形态分析(如有机汞,铅,锡化合物) 化学反应器? 处理 技术和生物材料 复杂的几何形状 很难接近的位置 精确和逐点操作 惰性和分子气体提供能源 多功能加工一体化微波等离子体源规格 用于表面处理的紧凑型常压等离子体源装置 手持装置尺寸 80x 65X 50mm(1.50米电缆接头) 手持装置重量 0.5kg 基本单元尺寸 110x 230x 375mm (高x宽x深) 基本单元重量 6.5公斤 电源 110-230VAC, 50/60 Hz 功耗<200W 在230 V, 50 Hz 运输和储存条件 温度 - 40°C - 70°C 相对湿度 10% - 100% 工作条件 温度15°C - 40°C 相对湿度 15% - 75% 气压 800 hPa -1060 hPa资源工艺气体氩* *根据要求,提供其他气体和混合物微波频率 2.45GHz正向功率 10 W至60 W(可选)气体流量 0.6- 6升/分钟等离子量 约10mm3电子密度 高达2 x1021m-3气体温度 高达1700°C*取决于工艺气体和功率 交付内容 等离子体源装置 微波发生器 微波连接器电缆线

等离子体检测相关的资料

等离子体检测相关的资讯

  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 125万!电感耦合等离子体质谱仪检测仪器采购项目
    项目编号:GZHY22ZZ01A0126项目名称:电感耦合等离子体质谱仪检测仪器采购项目采购方式:竞争性磋商预算金额:1,250,000.00元采购需求:合同包1(电感耦合等离子体质谱仪检测仪器采购项目):合同包预算金额:1,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物电感耦合等离子体质谱仪1(套)详见采购文件1,250,000.00-本合同包不接受联合体投标合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。

等离子体检测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制