乙二醇检测

仪器信息网乙二醇检测专题为您提供2024年最新乙二醇检测价格报价、厂家品牌的相关信息, 包括乙二醇检测参数、型号等,不管是国产,还是进口品牌的乙二醇检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙二醇检测相关的耗材配件、试剂标物,还有乙二醇检测相关的最新资讯、资料,以及乙二醇检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

乙二醇检测相关的仪器

  • 乙二醇型防冻液,其冰点随着乙二醇在水溶液中的浓度变化而变化。浓度在59%以下时,水溶液中乙二醇浓度升高,冰点降低。但浓度超过59%后,随着乙二醇浓度的升高,其冰点呈上升趋势,当浓度上升到100%时,其冰点上升至-13度,这就是浓缩型防冻液为什么不能直接用的原因,所以为了更好的控制发动机或者防冻设备冰点温度,必要配置相应不同浓度的二乙醇浓度。  ATAGO在线浓度计CM-800α-EG(乙二醇专用浓度计)能够精确控制防冻液的浓度值,量程控制0-90%EG,冰点温度可以测量范围在0—-50℃。  ATAGO在线浓度计以管道旁路安装形式,例如在地暖工程中防冻液输送管道的进出口,家电(冰箱、空调)的生产线管道,汽车制造工业的发动机和总装生产线,太阳能安调工程中的热交换工艺管道中等。  ACH-EG01检测系统能实现自动检测并且实时在线调配,具备报警输出可追溯性强;大幅度提高生产效率,节省大量的原材料;节省人力资源成本,提高企业管理水平和生产协调调度能力。使产品质量得到很高的保障。  ACH-EG01采用进口在线折光仪为检测核心原件,通过光的折射原理来间接反映液体浓度的变化,仪器输出4-20mA模拟信号输入高度集成的控制单元。控制单元通过分析数值来实现对执行元器件的动作。例如运行状态、阀门开度、加样加水泵的开关、报警输出系统控制、仪器自动清洗、数据保持输出等。真正实现全自动化生产调配。传感器参数:1、出厂校准和自动温度补偿,直接投入使用,无需现场校准;2、浓度范围:BRIX:0.00-35.00%;0.00-80.00% 0.00-100.00%(可选)3、浓度测量精度:±0.5%;±0.1%;±0.05%(可选)4、操作温度:最高100℃;压力最高:1.0MPa;5、温度测量范围:0-100℃;6、样品过程温度:-30-150℃7、自动温度补偿范围:5-100℃8、安装形式:管道式安装:卡箍;法兰;螺纹(可选);管径: 10mm/12mm/20mm/25mm/32mm/38mm/50mm(可选)9、检测界面:蓝宝石;10、传感器液体接触部分:SUS 316L不锈钢 系统参数:1、移动运输方便,使用简便;2、高分辨率触摸屏;3、集成PID控制,上下限控制,报警输出等;4、内置4-20Ma/0-10V模拟量输出或继电器输出用来控制执行机构;5、可以自定义控制方式,清洗方式,自动清洗时间以及清洗间隔时间;6、数据断电保存,内置自诊断功能,可能的故障一目了然;7、内置实时曲线,方便追溯历史数据8、RS485通讯输出,MODBUS RTU通讯协议; 9、环境温度 0--50℃;10、电源: 110/220VAC、50/60HZ ,功耗:≤100W;安装方式: 大管径安装现场图 小管径安装现场图
    留言咨询
  • 在线浓度计, CM-800α-EG 是以乙二醇为特殊标度的在线浓度计,又称乙二醇浓度计。在线浓度计,乙二醇浓度计CM-800α-EG适用于测量冷却剂,浓盐水,防冻液和 解冻液,并且显示冻结温度。防冻剂是防冻液的主要成分,约占防冻液原液的92%~98%,防冻液原液可以根据各地气温的高低,按一定比例与水混合,将冰点控制在适当范围内。有效的防冻剂是各种有机醇。各国从50年代以来几乎全部采用乙二醇作为防冻剂。乙二醇是一种无色、透明、稍有甜味和具有吸湿性的粘稠液体,它能以任何比例与水相溶。乙二醇的浓度不同时。冰点亦不同。乙二醇--水防冻液的冰点同乙二醇质量分数不成线性关系。它的水溶液的冰点并不完全是随浓度的增加而降低,当浓度超过70 %时,冰点反而上升。在配制过程中,应从实际出发加以合理选择,以达到防冻性及经济性的要求。在中国江南,一般采用乙二醇质量分数为40 %的配比,而在寒冷的北方,需取乙二醇质量分数50%左右的配比比较适宜。在线浓度计 CM-800α-EG ,乙二醇浓度计专业适用于乙二醇溶液的测量,并显示其溶液浓度及冷冻温度。其简单的操作,快捷的显示,稳定的重复性,能更好的帮助用户冷冻液的测量(名称:在线浓度计,又称乙二醇浓度计),保证汽车的正常运行和使用寿命。 CM-800α-EG 在线浓度计(乙二醇型)的技术参数:ModelCM-800α-EG型号3531测量标度E.G. (针对所测试样品,自动温度补偿)测量范围E.G. 0.0 至 90.0%冻结温度 0 至 -50℃ / 32 至 -60°F温度 5 至 100℃ / 41 至 212°F最小显示值E.G. 0.1%冻结温度 1℃ / 1°F温度 1℃ / 1°F测量精确度E.G. ±0.4%冻结温度 ±1℃ / ±1°F温度±1℃ / ±1°F测量温度5 至 100℃(自动温度补偿)环境温度5 至 40℃输出RS-232C ,DC 4 to 20mA与溶液相接触的材质棱镜 : 青玉 棱镜座 : SUS316L电源DC24V国际保护等级IP67无尘且对于泼溅的水有防护作用。尺寸重量16×17×11公分, 2.4千克 (不含零件的重量)选项*校准证 : 请直接与 ATAGO联络.其它零部件请见下方表格配件电源输入缆线 (1m) [*1] CM-800α-EG 在线浓度计(乙二醇型)的纯水验证:将CM-800α-EG 在线乙二醇浓度计的表头(光学系统垂直朝上)放入平稳桌面,取少量的纯净水滴入传感器凹槽棱镜处(覆盖棱镜即可),看表头是否显示 0.0或 0.00,重复上述步骤 3‐4次。CM-800α-EG 在线浓度计(乙二醇型)的注意事项:A:CM-800α-EG Z在线浓度计的棱镜清洗注意,避免使用粗纱布等物品将棱镜表面划伤,使用细棉布或者柔软的餐巾纸;B:若样品当中不定时有较大颗粒物是,要使用旁通过滤器过滤颗粒物,颗粒物会划伤棱镜表面同时还很大程度影响测量结果。C:CM-800α-EG Z在线浓度计从使用寿命角度来讲,如果安装的环境条件极端,应该有外加保护装置。D:CM-800α-EG Z在线浓度计样品管道或样品流通池清洁,纺织堵塞现象,使样品不流通。E:现场注意电源线和通讯线的保护。F:经常保持外观清洁,防尘,G:CM-800α-EG 在线浓度计维护方便清洗,建议旁路大管径安装, ATAGO连接件配件带有清洗回路,接入相同管径(Ф6或 Ф10)的水管即可,在装置停产维修后,重新生产时建议必须清洗,对于连续 24小时生产来说可以清洗不需要太频繁。
    留言咨询
  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm159四氢呋喃C4H8O20-800159L5-232161乙醚(C2H5)2O0.04-1.0%161L10-1200163环氧乙烷C2H4O0.05-3.0%163L0.4-350163LL0.1-10165L乙二醇HOCH2CH2OH10-100mg/m
    留言咨询

乙二醇检测相关的方案

乙二醇检测相关的论坛

  • 检测甘油乙二醇峰不见了?

    检测甘油乙二醇峰不见了?

    检测甘油,有对照乙二醇、二甘醇,内标正己醇,条件:DB-624(30m*0.53mm 3.um),进样量1ul,分流比10:1,进样口200°,FID250°,程序:起始100(维持4′),以50°/min升120°(维持10′),再以50°/min升220°(维持6′).后加设降温和平衡时间。样品处理:系统适用性性乙二醇、二甘醇,内标正己醇各100mg稀释至100ml(系统储备液),精取1ml+4g甘油样品至100容量瓶, 所 有 溶剂都是色谱甲醇。 对照液:乙二醇、二甘醇,内标正己醇各50mg至100ml(标储液),取5ml稀释至25ml。问题:6月份同样方法检测,一切正常(当时柱子新买来活化后检1批乙醇,) 这两天同一根柱子检测(中间检测了3批乙醇),结果系统适用性乙二醇出不来峰了。正己醇和二甘醇峰面积无论是储备液还是系统适用性都没什么差异。储备液中的乙二醇有峰面积,但与之前浓度相当情况下峰面积小1/3,系统适用性就出不来了,对照液要算校正因子f,之前差不多2-3左右,现在超过10了。乙二醇的安剖瓶色标5ml有之前开启后密封冷藏的,也有新开的,两种情况都差不多,批号都是081226。http://ng1.17img.cn/bbsfiles/images/2012/07/201207251613_379663_2481522_3.jpg6月份的对照液,峰依次是:乙二醇--正己醇--二甘醇。http://ng1.17img.cn/bbsfiles/images/2012/07/201207251616_379664_2481522_3.jpg6月的系统适用性,7.8′乙二醇峰还是不错的,但这次此峰消失了。后面的正己醇、二甘醇相当浓度峰面积也相当。请问问题可能在哪里呢?

  • 水性涂料中乙二醇单丁醚的检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗乙二醇单丁醚属于VOC吗?求助

  • 工作场所空气中乙二醇能力验证样检测总结

    工作场所空气中乙二醇能力验证样检测总结

    乙二醇能力验证考核时间为2018年6月初,新标准GBZ/T 300.86-2017于2018年5月1日正式实施,原GBZ/T 160.48-2007标准作废。因此,本次能力验证样应选择新标准作为检测依据。新旧标准主要区别为乙二醇的解吸溶液,GBZ/T 160.48-2007中乙二醇的解吸液为2%的异丙醇溶液,新标准则选用甲醇作为解吸液。乙二醇在醇类化合物中极性相对较大,在检测过程中正确度及精密度差。此前也尚未对新标准进行方法变更,作为新标准发布后的首次检测经历,现将经验分享以供参考:1.准备工作: 更换进样垫及衬管,用丙酮清洗进样针,避免色谱系统或进样针污染影响样品检测。2.色谱柱选择: 因没购买标准推荐使用的FFAP毛细管色谱柱,故选择同为极性柱的CD-624(60m×0.25mm×1.4μm)和HP-INNOWAX(30m×0.32mm×0.25μm)进行比较。甲醇溶剂峰较大,CD-624柱长为60m,乙二醇与甲醇的分离效果较好,但同一浓度响应值相对偏低,峰拖尾严重。HP-INNOWAX在灵敏度上明显优于CD-624,且峰型较好,定量相对比较准确,故选用HP-INNOWAX色谱柱进行检测(见图1、图2)。[align=center][img=,690,319]http://ng1.17img.cn/bbsfiles/images/2018/07/201807092025163101_7670_3435723_3.jpg!w690x319.jpg[/img][/align][align=center]图1 CD-624色谱柱测定乙二醇(40μg/ml)[/align][align=center][img=,690,333]http://ng1.17img.cn/bbsfiles/images/2018/07/201807092021490633_4214_3435723_3.jpg!w690x333.jpg[/img][/align][align=center]图2 HP-INNOWAX色谱柱测定乙二醇(40μg/ml)[/align]3.色谱条件选择: 因能力验证样品无干扰物,考虑升温程序会导致基线上移,对乙二醇定量准确性造成影响,故柱温:170℃恒温;气化室温度:250℃;检测器温度:300℃;载气(氮气)流量:4ml/min;分流比:10:1。测试结果发现,甲醇和乙二醇都出现峰拖尾现象。改用标准推荐的升温程序:柱温初温80℃,以20℃/min升至180℃,保持2min。峰型得到很大的改善,故采用新标准推荐的色谱条件。4.标准曲线配制及样品定量: 参照GBZ/T 300.86-2017推荐的标准曲线范围0-160μg/ml进行配制检测,在绘制标准曲线过程中发现,乙二醇的线性相关性与常规物质(如苯系物等)不同,一般而言,以目标物峰面积/目标物浓度作为校正因子,曲线过原点,不同浓度的目标物其校正因子相同。但乙二醇较大的极性导致不同浓度的峰面积响应值不成倍数关系增长,高浓度的校正因子明显大于低浓度的校正因子,在绘制一次曲线回归方程过程中出现较大的负截距,回归方程为y=ax-b。 利用上述标准曲线对能力验证样浓度进行初测预判,同时测定实验室内部质控样,其低浓度真值范围为41.4μg±3.8,高浓度真值范围为87.7μg±5.4。预测结果发现,能力验证样低浓度值20μg左右,高浓度约70μg。而实验室内部质控样低浓度测试结果偏高,高浓度测试结果在真值范围内,故重新配制两条高低浓度曲线,曲线范围为能力验证样初测浓度的1/2~2倍之间,并保证其中一个浓度点与能力验证样品浓度相近。 实验室内部质控样对应使用高低浓度曲线检测,均在真值范围内。能力验证样使用标准曲线检测结果和相近标准曲线浓度点单点校正结果相对偏差不超过5%,求算平均值,结果上报。 以上为本实验室硅胶管中乙二醇能力验证样检测总结。了解检测目标物的性质,参考相关标准,在实际操作中根据实验室自身条件及仪器设备状况,对色谱柱、色谱条件等进行优化,可有效提高检测数据的准确度。[align=left][/align]

乙二醇检测相关的耗材

  • 乙酸乙基乙二醇酯 检测管 6726801
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:乙酸乙基乙二醇酯 检测管检测管名称测量范围订货号乙酸乙基乙二醇酯 Ethyl Glycol Acetate 50/a50 to 700 ppm6726801
  • 乙二醇Ethylene Glycol 10 (5) 检测管
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:乙二醇Ethylene Glycol 10 (5) 检测管检测管名称测量范围订货号乙二醇Ethylene Glycol 10 (5)10 to 180 mg/m38101351
  • PEG-20M,HP-20M色谱柱,键合交联聚乙二醇为固定液毛细管色谱柱,常用于乙醇含量检测符合2010年药典规定
    PEG-20M,HP-20M色谱柱,键合交联聚乙二醇为固定液毛细管色谱柱,常用于乙醇含量检测符合2010年药典规定 说明:HP-20M柱是固定相不键合、不交联的常规柱。因为有一些已经建立的方法是使用不键合色谱柱完成的,安捷伦科技公司还保留了这类色谱柱的类型,支持这些已有方法。所有这些常规固定相色谱柱都严格地按键合及交联柱一样的QC标准要求制备。这类色谱柱不能用溶剂冲洗。 相似的固定相:Carbowax 20M,007CW,BP-20 温度范围:60至220℃ 应用:醇类、游离酸类、乙二醇类、溶剂 PEG-20M,HP-20M 25m, 0.20mm, 0.10um HP-20M 25m, 0.32mm, 0.30um PEG-20M,HP-20M 50m, 0.32mm, 0.30um HP-20M 30m, 0.53mm, 1.33um

乙二醇检测相关的资料

乙二醇检测相关的资讯

  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 电位循环策略优化乙二醇电化学转化!
    【研究背景】随着可再生能源需求的增加,乙二醇(EG)作为一种重要的有机化学品,其高效氧化反应(EGOR)引起了广泛关注。EG广泛用于聚酯和其他化学品的合成,但其氧化过程中的低反应效率和选择性成为了研究中的主要挑战。因此,开发高效、稳定的催化剂以提升EGOR性能显得尤为重要。在此背景下,研究者们探索了贵金属催化剂的潜力,尤其是钯(Pd)催化剂在电化学氧化反应中的应用。近期的研究表明,使用钯基催化剂(如Pd/NF)在电流和电位循环策略下,能够显著提高EG的转化率和选择性。为了解决催化剂在反应过程中的失活问题,上海交通大学物质科学原位中心陈立桅课题组以及化学化工学院徐鹏涛、Xi Liu等人携手采用了电位循环和原位表面增强拉曼光谱(SERS)等技术,深入探讨了催化剂表面的变化及其影响。实验结果显示,优化的电化学条件不仅改善了催化剂的稳定性,还增强了反应的法拉第效率。进一步的表征分析,如X射线光电子能谱(XPS)和X射线吸收精细结构(XAFS),揭示了催化剂在反应过程中结构和电子特性的演变。这些研究不仅为EG的高效氧化反应提供了新的理论基础和技术路径,也为其他有机化合物的电化学转化研究提供了借鉴,推动了绿色化学的进步。【表征解读】本文通过多种先进的表征手段对Pd/NF的结构特性及其在电化学氧化反应中的表现进行了深入分析,揭示了其在乙二醇氧化反应中的优异性能。具体而言,使用日立HF5000显微镜获取的扫描透射电子显微镜(STEM)图像,展现了Pd/NF的纳米结构特征,这为理解其高催化活性提供了重要依据。此外,利用克拉托斯Axis Ultra DLD进行的X射线光电子能谱(XPS)分析,确定了Pd/NF表面的化学状态和组成,进一步揭示了其催化反应中的反应位点。针对Pd/NF在电化学反应中表现出的优异催化特性,本文通过原位表征手段揭示了电化学氧化反应(EGOR)的微观机理。高效液相色谱(HPLC)分析了乙二醇的电化学氧化产物,提供了催化过程中的关键反应路径数据。这一过程的研究,揭示了Pd/NF在不同电位下催化反应的选择性和效率,为设计更高效的催化剂提供了理论基础。在此基础上,结合扫描电子显微镜(SEM)和能谱分析(EDS),对Pd/NF电极在不同电化学条件下的表面形态变化进行了观察。结果显示,在电位循环和持续电流的作用下,Pd的表面结构发生了显著变化,这与其催化性能的衰退密切相关。这一发现为理解贵金属催化剂的失活机制提供了新的视角,有助于开发更为稳定的电催化材料。【图文速递】图1:Pd/NF的结构特征及其在恒电位下的EGOR性能。图2:贵金属在CP-EGOR下的失活机制。图3:Pd/NF在电位循环策略下的EGOR性能。图4:EPC-EGOR下贵金属表面的演变。图5:EPC-EGOR的参数控制与稳定性。图6:流动池系统中CP模式与EPC模式下的EGOR比较。【科学启迪】本文的研究为电化学氧化反应(EGOR)提供了新的思路,展示了在催化剂设计与性能优化方面的重要进展。通过对Pd/NF电极的表征与性能评估,揭示了其在乙二醇氧化过程中的优越表现,并分析了不同电化学条件对催化活性的影响。这些发现不仅有助于理解贵金属催化剂的去活化机制,也为提高电催化效率提供了指导。特别是在采用循环电位策略(EPC)时,Pd/NF显示出显著的稳定性与可逆性,表明优化电化学条件能够有效延长催化剂的使用寿命。此外,本文通过高效液相色谱(HPLC)和原位表面增强拉曼光谱(SERS)等先进技术,实现了对反应产物的精准分析,进一步深化了对反应机制的认识。整体而言,研究不仅为贵金属催化剂在能源转化领域的应用提供了新思路,也为未来的催化剂设计与优化提供了理论基础,推动了电化学领域的进一步发展。参考文献:Zhao, G., Lin, J., Lu, M. et al. Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals. Nat Commun 15, 8463 (2024). https://doi.org/10.1038/s41467-024-52789-2
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制