痕量硫

仪器信息网痕量硫专题为您整合痕量硫相关的最新文章,在痕量硫专题,您不仅可以免费浏览痕量硫的资讯, 同时您还可以浏览痕量硫的相关资料、解决方案,参与社区痕量硫话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

痕量硫相关的耗材

  • 超痕量电极头 6.1204.180
    超痕量电极头 订货号: 6.1204.180碳电极头,材料为玻璃超痕量石墨。 电极盘(electrode disk),直径2毫米。技术参数:外直径(mm)7长度(mm)52.5材料说明电极盘(electrode disk)材料 2 说明电极杆(Electrode shaft)材料graphite材料 2PEEK
  • VICI的痕量气体检测仪
    VICI痕量气体分析仪(TGA)是经过全面配置和测试的气相色谱仪,设计用于高纯度和超高纯度分析。每台仪器都根据用户要求进行了全面配置和测试。每台仪器随附的完整文档中包括方法验证报告、能力数据、材料清单和方法参数。 实验室、流程或移动设备 痕量气体分析仪可以设置为单次运行分析或批量采样,或连续运行,进行过程分析。这使得TGA成为实验室台式应用或过程应用的理想选择。通过阀、注射器端口或可选的采样系统进行采样的选项,该仪器可以从多通或分析过程中的各种采样点进行批量或单独分析。 MDQ 1ppb 具有合理相对标
  • 万通 超痕量石墨电极头 | 6.1204.180
    超痕量电极头 订货号:6.1204.180规格型号:Ultra-Trace Graphite electrode tip 碳电极头,材料为玻璃超痕量石墨。 电极盘(electrode disk),直径2毫米。技术参数外直径(mm)7材料graphite材料 2PEEK材料 2 说明电极杆(Electrode shaft)材料说明电极盘(electrode disk)长度(mm)52.5

痕量硫相关的仪器

  • Thermo Scientific PreCon痕量气体预浓缩装置是专门用于气体样品的前处理装置,可以将少量的气体样品收集并浓缩,大大减少了气体样品的进样量。例如大气中的痕量气体N2O 和CH4,已成为除了CO2之外的重要的温室气体,其含量正在逐年增加,对全球增温效应有深刻影响,而准确地监测这些气体的同位素比值,可以深入地理解它们的来源和分配(即源和汇)。对于大气痕量气体N2O 和CH4 的同位素比值的测定,过去一直受到采样体积和前处理方法的制约,人们通常需要采集和手动处理很大的样品量(例如,需要70升的空气样品才能测定CH4 的13C/12C)。使用Thermo Scientific PreCon 痕量气体预浓缩装置,可以将样品量减少3 个数量级,将样品通量提高至少1 个数量级。
    留言咨询
  • 痕量水分分析仪 水分分析是日常分析检测工作当中非常重要的组成部分,在很多领域当中水含的多少将直接影响到产品性能的好坏甚至是对反应过程带来影响。比如在石油化工领域,原材料当中过多的水分有可能导致管道和阀门产生冻结,甚至会引发催化剂中毒进而对生产过程产生影响。 目前比较常见方法是使用卡尔费休法进行水分检测。卡尔费休法具有很宽的检测范围,但是在进行低浓度检测时会有一定难度。另外受不同样品基质的不同所导致的副反应和背景干扰往往会对水分分析的检测结果带来重大影响。 针对这一情况,岛津公司凭借独有的通用型BID检测器,在待测样品中水分浓度低至ppm级以下时,可以得到比卡尔费休灵敏度更高更加准确的检测结果,且不会受到任何的基质干扰。岛津公司独有的介质阻挡放电等离子体检测器(BID)使水分分析可以降至ppm级以下。采用MilliporeSigma公司使用特殊填料的色谱柱Watercol,可以很好的将水分从有机化合物中分离出来。水分分析相比传统的卡尔费休法得到更好的检测结果。液化石油气当中的水分分析使用GC-BID法测定液化石油气中水含量的新标准试验方法。该方法比传统热导检测器(TCD)的灵敏度高一百倍以上。如图所示液化气中25ppm水分定量限和检出限分别降至0.66ppm和0.22ppm。五次进样重现性RSD小于2%。此外该样品中还含有硫醇等含硫成分,均未对水分测定结果造成影响。MilliporeSigma的Watercol分析柱,可以将水分从液化石油气中硫成分中很好的分离,岛津的BID检测器则可以对微量水分提供气相色谱级检测水平。
    留言咨询
  • 产品简介LTGA-200激光痕量气体分析仪结合半导体激光吸收光谱技术和长光程低吸附测量气室技术,实现了针对高吸附性痕量气体的稳定检测。产品采用标准机箱式设计,适配标准19英寸机柜,为环境大气、特定区域(如工业园区)大气的有毒有害气体和恶臭气体监测提供了解决方案。产品特点● 检测精度高● 稳定、可靠● 标定便捷,测量可靠● 直接测量应用领域工业园区、厂区边界
    留言咨询

痕量硫相关的试剂

痕量硫相关的方案

痕量硫相关的论坛

  • 【求助】痕量硫检测器

    对于轻烃和油品中痕量含硫化合物的分析目前比较好的检测器是Agilent的ECD,PE的ASD和Varain的PFPD,请问各位高手它们的优缺点都有哪些? 哪一家的检测器在国内使用较多? 谢谢!

痕量硫相关的资料

痕量硫相关的资讯

  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质方案应用详情请联系:fzhu@asdevices.cn
  • “起底”有毒有害痕量元素大气排放
    不管是资源利用还是污染控制,摸清家底都是基础且必须的工作。近日,北京师范大学教授田贺忠团队基于多源数据融合,评估了“大气十条”(《大气污染防治行动计划》)实施期间,不同排放控制措施对各部门有毒有害痕量元素大气排放变化的驱动。并利用大气传输模型及暴露风险评价模型,量化分析了典型行业(燃煤、冶金等)排放变化对有毒有害痕量元素大气暴露浓度及健康风险的影响。5月1日,相关论文在《一个地球》在线发表。痕量元素大气传输及暴露风险示意。受访者供图痕量元素关乎健康国际癌症研究机构(IARC)曾将砷、镍、镉、六价铬、铅、钴、锑及其化合物认定为致癌物质。这些重金属元素在大气中含量极少,但具有毒性、累积性和致癌性的特点,长期暴露在较高浓度有害痕量元素大气环境中,会对人体呼吸系统、心血管系统等构成严重威胁。2013年9月,国务院印发《大气污染防治行动计划》,多措并举展开大气污染防治。从重点行业整改关停,到全面整治小锅炉、控制机动车保有量、治理餐饮污染,再到大力发展清洁新能源。一系列举措很快显现成效,我国重点区域空气质量明显好转,重污染天气大幅度减少。2017年,第一次全国污染源普查对减排效果有了整体了解,但这些减排措施如何影响我国大气中有害痕量元素排放、其暴露浓度水平及相关健康风险仍不清楚。“‘大气十条’中的治理措施和围绕该措施进行的普查主要针对颗粒物、二氧化硫和氮氧化物等常规大气污染物,实际上我们还应该关注其中对人体健康危害较大的有毒有害微量元素,比如砷、铅、镉等。”田贺忠告诉《中国科学报》,“这项研究基于多源数据融合,建立了中国有毒有害痕量元素网格化大气排放清单模型,评估了不同排放控制措施对各部门、各省区有毒有害痕量元素排放变化的驱动,并利用大气传输模型及暴露风险评价模型,量化分析研究了典型行业排放变化对有害痕量元素暴露浓度及健康风险的影响。”“协同减排”效益明显“总体来讲,‘大气十条’实施期间有毒有害痕量元素的排放减少成效明显,但其风险依然值得关注。”田贺忠说。通过调查研究全国燃煤电厂、黑色金属冶炼、有色金属冶炼、水泥生产、垃圾焚烧电厂等典型工业排放源的点源排放量及各省煤炭消耗量和装机容量空间分布,研究人员发现,中国五大城市群(华北平原、长三角、珠三角、川—渝和汾渭平原)有害痕量元素排放量占全国总排放量的42%;五大城市群以外,湖南、内蒙古、云南、辽宁及河南省也是有害痕量元素排放量较高省份;“大气十条”期间,全国11种有害痕量元素年均暴露浓度约减少28.1%。其中,燃煤部门的排放削减对钴、砷、硒、铬和锌浓度减少的驱动最显著,贡献在50%以上;而黑色金属冶炼部门的排放变化则主导了镉和铅浓度的降低。“尽管如此,2017年中国有毒有害痕量元素污染依然严重。较高的痕量元素浓度主要集中在中国东部、华北和西南部分地区。”该论文第一作者、海南大学南海海洋资源利用国家重点实验室副研究员刘姝涵(北师大环境学院博士)说,“此外,六价铬的全国年均浓度比国家空气质量标准高出15倍,其中最大值出现在山东省。砷、镍元素浓度在山东省和上海市略高于标准限值。”研究发现,“大气十条”期间,7种致癌元素的全国年均致癌风险下降了约39.5%。其中钴、六价铬和砷元素下降幅度最大。然而,2017年,有害痕量元素年均致癌风险值仍超过阈值,较高致癌风险主要出现在中国东部。山东和上海砷和镍元素致癌风险分别达风险阈值的9倍和1.6倍。情景分析表明,2012年至2017年,燃煤部门排放变化主导了致癌风险降低,带来了1.5×10-6 致癌风险的下降。黑色金属冶炼和有色金属冶炼部门排放变化分别带来了0.8×10-6和0.3×10-6 致癌风险的下降。“‘大气十条’主要针对PM2.5等常规污染物展开,但对有害痕量元素起到了很好的‘协同减排效益’。”田贺忠解释说,“燃煤电厂超低排放改造等重点工业行业的除尘、脱硫、脱硝工艺升级改造同时减少了有害痕量元素排放。”多源数据融合显威力“‘大气十条’的施行,不但减排效果显著,还推动了各行业部门相关信息的公开,这为我们进行定量研究提供了很多基础数据。此外,地理信息技术、数字化和人工智能技术的发展,也让我们使用‘多源数据融合’,进行更精细的‘点源化’研究成为可能。”田贺忠说。进行污染物调查研究,过去的数据来源单一,通常统计年鉴等宏观数据不显示排放源的具体位置。近年来,随着各行业信息公开化程度不断提高,各省、区,各行业、企业,甚至一些协会、组织也会从不同的角度披露一些重点排放源的信息和数据。这些数据虽然源自不同部门,服务于不同对象,甚至数据侧重点、统计方法、呈现方式各不相同,但经过数据清洗和技术处理,这些不同来源的数据却可以相互补充验证。“比如,各省的统计年鉴和月度统计公报中有每年和每月水泥产量数据,我们会结合当地的经济数据,结合水、煤、电量等相关数据信息,排污许可证允许排量等,通过多渠道分析研究,弄清它的排放量。”田贺忠补充说,“了解一家企业使用什么生产工艺装备,掌握它的除尘、脱硫、脱硝技术路径,知道它消耗了多少煤和原材料等信息,就可以建立一套技术方法去核算它排放多少砷、铅、镉等元素,这就是‘多源数据融合’。”利用这些数据,研究人员将我国主要燃煤电厂、黑色冶炼、有色冶炼、水泥生产、垃圾焚烧等重点工业源进行精确经纬度定位,利用各种直接和间接的数据,结合当地GDP、人口、土地利用、交通流等数据,再通过实地调研和现场实测等抽样验证,利用数理统计分析方法精确核算出趋近实际的排放量,并将其精准定位在网格上。“重金属成分的健康风险是精细控制空气污染的先决条件。”该论文匿名审稿人评价说,“本文的创新贡献在于提供了最新的排放清单和健康风险估计。该研究基于对具体措施的效益评估,为减缓有毒有害痕量元素污染和相关健康风险提供了关键见解。为中国实施清洁空气和低碳政策下精准控制有毒痕量元素提供了科学依据,也为其他国家和地区量化痕量元素排放提供了参考。”
  • 有害痕量元素排放清单:为控污治污提供科学依据
    10月8日,国际烟草控制政策评估项目(ITC)组织公布的科研报告显示,我国13个卷烟品牌被检测出含有重金属(砷、镉、铅等),其含量与加拿大产香烟相比,最高超出三倍以上。   据《重庆商报》报道:香烟中的重金属可能来自烟草产区土壤中。相关研究表明:生物从环境中摄取重金属,可以经过食物链的生物放大作用逐级富集,并通过食物等形式进入人体,引发人体某些器官和组织产生病变。   有害痕量元素及其化合物排放已成为大气污染控制的一个新兴而前沿的研究领域。在国家自然科学基金的资助下,北京师范大学副教授田贺忠带领的研究小组对我国2005~2020年能源利用及有害痕量元素排放发展趋势进行了研究,为我国掌握典型有害痕量元素污染排放现状及空间、行业分布特征提供了基础数据,并为国家和地方政府制定相关痕量元素污染排放法规、标准及技术与经济政策等提供了科学依据。   痕量元素引关注   上世纪50年代,日本熊本县水俣湾附近发现了一种奇怪的病,这种病最初出现在猫身上,被称为“猫舞蹈症”。病猫步态不稳,抽搐、麻痹,甚至跳海死去,被称为“自杀猫”。随后不久,发现也有人患有这种病。患者由于脑中枢神经和末梢神经被侵害,口齿不清、步履蹒跚、面部痴呆、手足麻痹或变形、视觉丧失,严重者精神失常,或酣睡,或兴奋,身体弯弓高叫直至死亡。这种怪病就是日后轰动世界的“水俣病”。   “日本发生的水俣病(汞污染)和骨痛病(镉污染)等都和有害痕量元素污染有关。”田贺忠说,“尽管痕量元素在空气中含量很小,但它的浓度超过一定范围就会显示出极大的毒性。许多痕量元素毒性极大,而且化学稳定性好,具有迁徙性、沉积性。它们不仅会引发人体呼吸系统的严重疾病,而且会污染水资源、土壤,造成生态环境的破坏。”   1990年,美国在《清洁空气法(修正案)》中列出了189种有害空气污染物,其中包括11种痕量元素(空气中含量很少的元素,如锑、砷、铍、铬、铅、锰、汞、镍、硒等)。在这11种痕量元素中,汞、砷、硒三种挥发性有害痕量元素的排放污染尤其引人关注。   有研究者发现,近10年来北欧、北美内陆偏远地区无明显工业污染源的湖泊中,鱼体内汞浓度的升高是由于大气汞沉降造成的。   美国环境保护署的报告称:燃烧装置排放的大气污染物中主要是有害的有机成分如苯并芘(BaP)、硫化物、氮氧化物、未燃烬可燃物以及重金属元素,它们几乎是造成所有癌症的原因,其中尤其以亚微米级颗粒形式存在的重金属排放物具有最大的威胁性。   汞、砷、硒等属于挥发性有害痕量元素,在高温燃烧或热解过程中不会被分解,而是挥发成蒸气,进而在烟道下游温度降低时通过结核、凝结、冷凝等过程形成许多亚微米颗粒。研究表明,尽管亚微米颗粒仅占燃煤总飞灰质量的5%左右,却富集了总痕量元素质量的13%~61%。汞、砷、硒等痕量元素主要富集在这些亚微米颗粒表面,这些亚微米颗粒很难被各种常规的污染控制装置有效捕获。它们大部分会随同亚微米颗粒排放到大气中,而这些亚微米粒子在大气中主要以气溶胶形式存在,不易沉降,而且上面富集的大部分有毒痕量元素也难于被微生物降解,可长时间停留在大气中,不仅影响大气能见度,而且通过呼吸系统进入动植物和人体内并不断蓄积,并可转化为毒性很强的金属有机化合物,还会通过干湿沉降过程进入水体和土壤,从而对水和土壤生态环境产生污染危害。   因此,大气汞、砷、硒等挥发性有毒痕量元素污染排放、迁移、沉降及控制等,也成为国际学术界关心的大气污染防治新兴研究热点之一。   燃煤:排放痕量元素祸首   美国环保局(USEPA)科学家Linak曾指出:元素周期表中几乎没有什么元素不存在于煤中,它们都是煤的重要组分,根据其含量不同,通常可将煤的元素组分划分为主量元素、次量元素和痕量元素三大类。其中,包括多种有毒痕量元素,如硼、铍、锗、镉、钴、铜、锰、铅、镍、汞、铬等。其中,汞、砷、硒、铅、镉、铬等元素对环境的危害最大。   化石燃料和矿物中的痕量元素在高温燃烧或熔炼过程中因各痕量元素的浓度、赋存状态以及操作工况的差异所表现的热行为不同,其挥发性也表现不一。但在所有条件下,汞、砷、硒都具有挥发性。   “由于汞极易挥发, 在燃烧过程中极难控制,燃煤排放被认为是最大的人为大气汞污染源。大气中颗粒汞主要结合在细颗粒物上, 对人体的危害更大。特别是环境中任何形式的汞均可在一定条件下转化为剧毒的甲基汞。进入环境中的汞会产生长期的危害, 所以汞是煤中最主要的有害微量元素之一。”田贺忠说。   砷是一种蓄积性元素,是当前环境中使人致癌的最普遍、危害性最大的物质之一。砷可通过呼吸道、消化道和皮肤接触等进入人体,随血流分布于肝、肾、肺、脾、骨骼、肌肉等部位,特别易于在毛发、指甲中蓄积,从而引起慢性中毒。尽管砷在煤中的含量很低,但由于煤消耗量巨大,煤中砷长期排放的积累不仅对燃煤电厂附近产生污染,而且可通过远距离的传输对比较遥远的生物产生负面影响。   “我们的研究发现,抚顺、沈阳、兰州、贵阳、成都、重庆等城市的大气中砷含量高于其他地方就和燃煤有关。西南地区由于高砷煤的使用,曾造成3000多例砷中毒事件。”田贺忠说。   燃煤是大气中硒的主要来源。据估算,全球发电用煤所排放的硒量占人为硒排放量的50%以上。燃煤也是造成一些地区土壤、水、植物中硒含量过高的原因。硒对于动植物和人类来说是一种必需的微量元素,但硒含量过高同样会危害人体健康。在我国陕西安康、湖北恩施等地发生的人、畜硒中毒事件,就是由于开采和使用当地的富硒石煤所造成的。   弄清排放总量及时空分布   目前,我国正处于工业化社会的初期阶段,国民经济的快速发展和大规模基础设施建设,需要大量的电力、钢铁、水泥以及有色金属等材料,这就需要消耗大量的化石能源和矿物资源。   2008年我国用于直接燃烧的煤炭约27.4亿吨。另外,钢铁冶炼、有色金属冶炼、水泥生产、化工等行业对金属和非金属矿物的烧结熔炼过程也会使矿物中的有害痕量元素挥发,并富集在微细颗粒物上释放到大气中,从而对人体健康和生态环境产生危害。   “国外曾有学者指责中国燃煤对大气的影响。然而,由于种种原因,目前我国还缺乏对这些典型有害元素污染现状的全面认识,燃烧和工艺生产设施上缺少专门的污染控制措施,使得国家制定相关的法规、标准及污染控制对策缺乏有效依据。另外,有害痕量元素在大气中的传输扩散不仅与物理过程有关,还涉及更复杂的化学反应和二次污染,对有害痕量元素污染排放清单的研究是进一步开展有害痕量元素污染物传输、沉降、污染源排放标准、控制技术研究开发重点,也是制订控制对策的基础。因此,非常有必要开展我国有害痕量元素污染排放清单的研究。”田贺忠说。   据介绍,排放清单研究能定量得到各种源排放总量及其时空分布,是描述污染物排放特征的有效方法。田贺忠等人针对目前我国缺乏对汞、砷、硒等典型有害元素大气污染排放状况认识的现状,采用排放因子法,通过现场测试调查、文献调研、专家咨询等手段,进而根据国民经济活动水平、能源生产消费状况、有色冶金等各部门生产活动水平等,以及各种装置或工艺过程污染控制水平等因素,在国内首次比较全面系统地建立了1980~2007年我国典型有害痕量元素汞、砷、硒大气排放清单及历史趋势。   该小组以2005 年为基准年,利用部门分析法对2005年至2020年能源利用及有害元素排放发展趋势开展了情景分析。重点研究了各省区燃煤大气典型有害痕量元素(汞、砷、硒等)排放量。按经济部门、燃料类型、燃烧方式和污染控制技术对排放源进行分类,确定各类排放源的排放因子和能源消费量。研究各省区生产原煤、洗精煤、焦炭和型煤的痕量元素含量,建立各省区间原煤、洗精煤、焦炭和型煤的传输矩阵,从而确定各省区消费原煤、洗精煤、焦炭和型煤的有害元素含量。研究人员结合各省区内各类排放源的排放因子、燃料消费量和燃料中痕量元素含量,计算出其排放量,进而给出各省区和全国燃煤大气典型有害痕量元素污染排放清单。   此外,该小组还将对各地区的有色金属冶炼、钢铁、水泥生产、废物处置、生物质燃烧等非燃煤源导致的典型有害痕量元素排放情况进行估算,进而与燃煤源排放清单相加,即可获得中国人为源导致的大气典型有害痕量元素污染物排放清单,并进一步通过网格化处理,利用GIS技术得到中国有害痕量元素的空间分布特征。   该研究有助于了解和掌握我国典型有害元素排放现状、趋势、时空分布特征等,可作为进一步开展有害元素的环境空气质量模拟和生态环境及人体健康影响的基础,并可为国家和地方政府制定相关法律、法规及技术经济政策提供科学依据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制