化学药氨基比林

仪器信息网化学药氨基比林专题为您整合化学药氨基比林相关的最新文章,在化学药氨基比林专题,您不仅可以免费浏览化学药氨基比林的资讯, 同时您还可以浏览化学药氨基比林的相关资料、解决方案,参与社区化学药氨基比林话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

化学药氨基比林相关的耗材

  • 氨基甲酸酯类农药分析方法包
    产品特点: 氨基甲酸酯类农药分析方法包&mdash 用于环境样品分析 包括沃特世氨基甲酸酯专用分析柱,Oasis HLB前处理小柱,样品瓶和氨基甲酸酯标样。适用于EPA 531.2方法,这个分析方法包能帮助您简化分析工作流程,并得到准确可靠的分析结果。 订货信息: 氨基甲酸酯类农药分析方法包   产品描述 货号 氨基甲酸酯类农药分析方法包(用于环境样品分析),包括 176001740 氨基甲酸酯类农药分析专用色谱柱 WAT035577 Oasis HLB 6cc/200mg WAT106202 经LCGC认证的样品瓶 186000307C 标准品(氨基甲酸酯农药-废水) 186004409 标准品(氨基甲酸酯农药-饮用水) 186004278 应用光盘(EPA 531.2方法)
  • 北京绿百草科技现货供应三菱化学氨基酸专用树脂WA-2
    北京绿百草科技现货供应三菱化学氨基酸专用树脂WA-2 关键词:三菱化学,氨基酸专用树脂,WA-2,赖氨酸 北京绿百草科技专业提供三菱氨基酸专用树脂WA-2。WA-2是采用全新的"一次致孔的二次聚合"工艺开发的专门用于提取赖氨酸的新型特种树脂。由于WA-2骨架结构合理、孔径分布均匀,并同时拥有特定的微孔构造,因而树脂交换容量大、抗渗透能力强、机械强度好。WA-2对赖氨酸的吸附表现为吸咐量大、吸附和洗脱速度快、抗污染能力强、使用寿命长等特点。洗脱剂用量1.5-2倍树脂体积,树脂WA-2主要应用于氨基酸的提取,如赖氨酸、谷氨酸、谷氨酰胺等的提取。北京绿百草科技可以提供三菱氨基酸专用树脂WA-2的详细信息。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息:www.greenherbs.com.cn
  • 氨基甲酸酯类农药分析方法包—用于食品检测
    产品特点: 氨基甲酸酯类农药分析方法包&mdash 用于食品检测 包括沃特世氨基甲酸酯专用分析柱,Oasis HLB 前处理小柱,样品瓶和标样。这个kit能帮助您简化分析工作流程,并得到准确可靠的分析结果。 订货信息: 氨基甲酸酯类农药分析方法包&mdash 用于食品检测 产品描述 货号 氨基甲酸酯类农药分析方法包(用于食品检测),包括 186004719 氨基甲酸酯类农药分析专用色谱柱 WAT035577 Oasis HLB 6cc/200mg WAT106202 经LCGC认证的样品瓶 186000307C 标准品(氨基甲酸酯农药-饮用水) 186004278 应用光盘(EPA 531.2方法)

化学药氨基比林相关的仪器

  • Essentia LC-16氨基甲酸酯柱后衍生分析系统是基于岛津公司30余载氨基酸甲酸酯农残分析经验,与客户的实际使用需求相结合,不断迭代优化。本次升级的分析系统采用整体性设计:将液相色谱系统-柱后衍生系统-专用软件三者有机整合,提供更高效便捷的全自动样品分析。特点:(1)高性能配置 采用高精度反应液输液系统基础上,搭配高灵敏度的荧光检测器,高性能化学反应器,锁定更小的脉冲、更高的灵敏度、更精确的混合精度和反应温度,是实现准确柱后衍生结果的关键。 荧光检测器温控池技术提高结果重现性 化学反应器具有优异的温度稳定性(2)高便捷性软件为氨基甲酸酯柱后分析体系专门定制的分析系统软件,分析与衍生全过程图形化监控,便于理解和操作,内置分析方法包,全自动样品分析一键开启。 (3)高安全性设计应对氨基甲酸酯柱后衍生法“碱性水解,高温衍生”的特性,安全性设计非常重要。所有模块都配制漏液传感器,化学反应器更是配备了过热保护、防漏传感、气敏传感的三重全方位保护。符合标准食品安全• GB 23200.112-2018 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定• GB 23200.105-2016 肉及肉制品中甲萘威残留量的测定液相色谱-柱后衍生荧光检测法• NY/T 761-2008 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定• SN/T 1017.7-2014 出口粮谷中涕灭威、甲萘威、杀线威、恶虫威、抗蚜威残留量的测定环境• HJ 960-2018土壤和沉积物 氨基甲酸酯类农药的测定柱后衍生-高效液相色谱法• HJ 1025-2019固体废物 氨基甲酸酯类农药的测定柱后衍生-高效液相色谱法饮用水• GBT 5750.9-2006 生活饮用水标准检验方法 农药指标(呋喃丹、甲萘威)应用同时测定七种氨基甲酸酯类农药优异的线性测试结果(n=5)色谱柱:Shim-pack Gis,4.6mm I.D.×250 mm, 5μm,流动相:水-甲醇,梯度洗脱流动相流速:0.8 mL/min柱温:42℃水解试剂:0.05mol/L氢氧化钠溶液水解试剂流速:0.2 mL/min水解反应温度:100℃衍生试剂:OPA试剂衍生试剂流速:0.2 mL/min衍生反应温度:42℃RF检测器:Ex.330nm, Em.465nm
    留言咨询
  • 仪器简介:是戴安公司最新推出的最高端研究级色谱系统,其功能整合了离子色谱、生物液相、氨基酸分析的全部应用,全新的模块设计具有极大的灵活性、功能更全面,操作更简便,其完美卓越的性能将色谱分析带入一个新的更高境界。该型号产品因此而荣获2005年度美国匹兹堡展览编辑部银奖。技术参数:构造:泵头和管路均为化学惰性非金属的PEEK材料,兼容pH: 0-14的水相淋洗液以及各种反相淋洗液体系类型:串联双活塞,恒定冲程流速范围:0.001-10 mL/min流速精确度: 1.0 mL/min时,精确度:0.1 %流速精密度:1.0 mL/min时,精密度:0.1 %压力范围:50-5000 psi压力脉动:1 %梯度比例精确度: 2.0 mL/min时,精确度在 ± 0.5 %梯度比例精密度: 2.0 mL/min时,精密度在 ± 0.5 %可选择淋洗液数量:等度泵:1种,梯度泵:4种梯度泵延迟体积:400&mu LEG 淋洗液自动发生装置技术参数淋洗液浓度范围:0.01-100 mM淋洗液种类:KOH、LiOH、NaOH、CO32-/HCO3-、CO32-、MSA(甲基磺酸)浓度增量:0.01 mM流速范围:0.1-3.0 mL/min最高操作压力:3000 psi(21 MPa)有机物最大浓度:阴离子系统:25 %甲醇阳离子系统:不允许有有机溶剂存在操作温度范围:4-40 ℃操作湿度范围:5-95 %相对湿度(无冷凝)尺寸(高× 宽× 深):41× 23× 56 cm (16.05× 8.75× 21.58 英寸)重量:25公斤 (40磅)电源条件:90-265 V,47-63 Hz 交流电离子储备罐:尺寸(高× 宽× 深)23× 7× 10 cm(9× 2.75× 4 英寸)重量:1.6公斤(3.5磅)Cr-TC捕获柱:尺寸(高× 宽× 深)3.8× 3.8× 5.8 cm(1.5× 1.5× 2.3 英寸)重量:60 g (0.13磅)流动相组织器(EO):可放置4个1 L或2 L或2个4 L的半透明抗腐蚀聚乙烯和环氧乙烯材料塑料瓶;在DC模块上可同时放置两个流动相组织器;带有清晰的刻度线可以随时监测流动相液面高度;淋洗液管入口处安装有5&mu m的聚乙烯过滤器;可以进行压力校准。详细参数请见样本。主要特点:ICS-3000是戴安公司最新推出的最高端研究级色谱系统,其功能整合了离子色谱、生物液相、氨基酸分析的全部应用,全新的模块设计具有极大的灵活性、功能更全面,操作更简便,其完美卓越的性能将色谱分析带入一个新的更高境界。该型号产品因此而荣获2005年度美国匹兹堡展览编辑部银奖。扩展工作能力生物样品分析-生物液相功能氨基酸直接分析-氨基酸分析功能离子色谱分析-离子色谱功能提高色谱性能色谱管理模块整合系统管理新型电化学检测器具有3D数据功能多点精确控温
    留言咨询
  • 1260 Infinity II 氨基酸分析系统1260 Infinity II 氨基酸分析系统为自动化 HPLC 氨基酸分析提供了一种完整的解决方案。它将 HPLC 仪器和色谱柱技术的最新进展与久经验证的柱前衍生化技术相结合,实现快速、灵敏的氨基酸分析。使用 Agilent 1260 Infinity II 样品瓶进样器进行自动化柱前衍生,将分析效率提升至全新水平。即用型试剂和标准品与安捷伦提供的应用支持相结合,使该解决方案成为食品和制药行业中实现自动化氨基酸分析的理想工具。特性用于快速、灵敏和自动化氨基酸分析的完整解决方案,包括仪器、色谱柱、化学品、标准品和应用支持使用 1260 Infinity II 样品瓶进样器进行自动柱前衍生,避免繁琐的手动操作程序,提高效率和重现性Agilent InfinityLab Poroshell 120 HPH 色谱柱可实现稳定分离,并在较低的反压下改善分离度并提高通量基于二极管阵列技术的高灵敏度、同步多波长紫外检测,可获得出色的灵敏度在鉴定和峰纯度分析中可选用全谱检测,以获得更高的可信度多信号荧光检测可提高选择性并减小基质效应,从而在飞摩尔范围内提供优异的灵敏度
    留言咨询

化学药氨基比林相关的方案

化学药氨基比林相关的论坛

  • 《粮油检验 粮食及其制品中有机磷类和氨基甲酸酯类农药残留的快速检验》标准 编制说明

    《粮油检验 粮食及其制品中有机磷类和氨基甲酸酯类农药残留的快速检验》标准编制说明有机磷类和氨基甲酸酯类农药是目前最常用的农药之一,广泛用于粮食作物的生产和储藏。过量残留在粮食作物上的农药可经消化道、呼吸道及完整的皮肤和粘膜进入人体,对人体造成不同程度的损害,影响人们的健康。近年来,粮食作物中因为农药残留超标的报道时有发生。究其原因主要在于:一是不按规定的用药量、次数、方法或安全间隔期施药,或施用禁用的剧毒、高毒农药;二是我国现有粮食农药残留检测标准方法需要使用大型分析仪器,缺乏现场、快速的标准检测方法使得基层的粮食农药残留检测能力不足导致的监管真空。因此,建立适合于我国国情的粮食中农药残留快速检测标准方法,对于指导、规范农户合理施药,提升基层监管部门的农药残留监测能力,加强粮食质量安全水平,有着重要的现实意义。农药残留量检测是微量或痕量分析,必须采用高灵敏度的检测技术才能实现。自20世纪50年代,各国科学家就开始研究农药残留的检测方法,常用的农残检测方法包括色谱法和快速检测方法。色谱法包括[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用、高效液相色谱、液相色谱-质谱联用等,其中[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术的引进极大地推动了农药残留分析的发展,有效的提高了农药残留分析检测的水平;高效液相色谱法作为目前发展最快、应用最广泛的分析技术,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法不能分析的高沸点、热稳定性差和极性农药及其代谢物,可以进行有效的分离检测;质谱以及色谱-质谱联用技术的应用,使农药残留分析从一种或几种农药发展到可同时测定几十种上百种不同种类的农药,实现了对农药的高通量,高灵敏度的定性、定量检测。虽然色谱类方法结果准确可靠、灵敏度高,但由于需要大型的色谱、质谱设备,检测成本高,同时对操作人员水平要求高,限制了其在基层实验室的应用。快速检测方法由于具有操作简便,检测时间短,成本低,无需大型仪器等优势,适合于基础现场的快速筛查。目前的快速检测方法主要包括化学速测法、免疫分析法、酶抑制法和生物荧光法等。化学速测法主要根据氧化还原反应,水解产物与检测液作用变色,常用于有机磷农药的快速检测,但是化学速测法灵敏度低,使用有局限性,且易受还原性物质干扰,因此应用较少;免疫分析法最常用的是酶联免疫分析法(ELISA),以抗原与抗体的特异性、结合反应的可逆性为基础的检测技术,灵敏度高、选择性好,但通常只能检测一种农药,无法进行多残留检测;而酶抑制法是在昆虫毒理学基础上发展起来的,基于农药能抑制动植物体内某些特定的生物酶(如乙酰胆碱酯酶、羧酸酯酶、植物水解酶等)活性,通过肉眼或仪器观察显色反应,从而对样品中的农残进行定性检测,酶抑制法可同时检测有机磷和氨基甲酸酯两大类农药残留,因具有快速、操作简便、成本低廉等特点而被广泛应用,但是这种方法灵敏度较低,许多目标物的灵敏度无法满足国家限量要求;生物荧光法在酶抑制法的基础上进行改进,通过使用荧光检测代替传统的分光光度法,有着更高的灵敏度,适用范围更广。鉴于国内外对食品安全的日益重视,有机磷类和氨基甲酸酯类农药残留对人体健康的危害,我国先后制定出台了一系列的有机磷类和氨基甲酸酯类农药残留标准方法,其中标准方法《蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测》(GB/T 5009.199-2003),可用于蔬菜现场基层快速检测,但是由于粮食基质和蔬菜基质相差较大,无法用于粮食样品的快速检测。同时由于标准的判定方法过于粗犷,假阳性和假阴性较高,此外方法的灵敏度较低,无法满足多数限量浓度农药的检测,因此建立适用于粮食及其制品的有机磷和氨基甲酸酯类农药残留的高灵敏度检测方法标准,满足限量检测筛查的需求,提升我国粮食农残基层现场的检测能力势在必行。

  • [讨论]4-氨基安替比林的提纯

    我做过一年的地表水中挥发酚,用的是4-氨基安替比林分光光度法,值得注意的是4-氨基安替比林容易变质,要用苯进行提纯。具体方法如下:将4-氨基安替比林置于干燥的烧杯中,加约10倍量的苯,用玻璃棒充分搅拌,并使块状物粉碎,将溶液连同沉淀移至干燥滤纸上过滤,再用少量苯洗至滤液为淡黄色为止。将滤纸上的沉淀物摊于表面皿,利用通风柜的机械通风,在较短的时间内使残留的苯挥发,去除后,把表面皿上的4-氨基安替比林用药瓶装好,置于干燥器内避光保存。(注意操作都要在通风柜中进行)[em01]

  • 【转帖】复方氨基比林注射液说明书

    复方氨基比林注射液说明书(兽用)【兽药名称】通用名:复方氨基比林注射液     英文名:Compound Aminophenzone Injection    汉语拼音:Fufang Anjibilin Zhusheye【主要成分】为氨基比林与巴比妥混合制成的灭菌水溶液。含氨基比林7.15%和巴比妥2.85%。【性 状】本品为无色或淡黄色的澄明液体。【药理作用】本品给药后即时产生镇痛作用,其解热镇痛作用强而持久,氨基比林与巴比妥合用能增强其镇痛作用,有利于缓解疼痛症状。本品还有抗风湿和消炎作用。半衰期为1~4小时。【适 应 症】用于发热性疾患、关节炎、肌肉痛和风湿症等。【用法用量】 肌内、皮下注射:一次量,马、牛20~50mg;羊、猪5~10mg。【注意事项】连续长期应用可引起粒性白细胞减少症,应定期检查血象。【停 药 期】28日,弃奶期7日。【有 效 期】二年【规 格】10ml【包 装】10ml /支×5支/盒【贮 藏】遮光、密闭保存。

化学药氨基比林相关的资料

化学药氨基比林相关的资讯

  • 与典同行|2020中国药典增补版应对方案——氨基酸篇
    与典同行|2020中国药典增补版应对方案——氨基酸篇原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼沈国滨 冉良骥背景介绍2023年10月,国家药品监督管理局发布了《中华人民共和国药典》(2020年版)第一增补本,已于今年3月12日正式实施。其中收载新增品种47个,通用技术要求、指导原则6个;修订或订正品种646个、通用技术要求15个,以期更快更好地满足药品生产检验、监督管理等工作的需要。截图来源:国家药品监督管理局网站为更好地帮助客户根据药典新增通则和指导原则,开展相关检测方法扩项和升级,赛默飞针对药典的新增内容,特推出2020中国药典增补版应对方案专题。第一期我们聚焦增补本(四部)新增的“9120氨基酸分析指导原则”。氨基酸作为构成人体所需蛋白质的基本物质,通常紫外吸收较弱,直接使用紫外方法检测干扰较大,灵敏度低。故药典中将通过合适的衍生试剂经衍生化增加生色团后,再使用液相色谱结合紫外检测等手段作为药品中氨基酸测定的常用方法。目前氨基酸衍生化主要分为柱前和柱后衍生,柱前衍生又有离线和在线衍生。药典中常用的衍生化试剂主要有异硫氰酸苯酯(PITC)、氨基甲酸酯(AQC)、邻苯二甲醛(OPA)、芴甲基氯甲酸甲酯(FMOC)和2,4-二硝基氟苯(DNFB)等,不同的衍生化试剂在反应原理、效率及稳定性等方面不尽相同。最新公布的2020版中国药典第一增补本(四部),新增的9120氨基酸分析指导原则,除了对分析方法进行了一定优化外,最受关注的当属方法三——柱前OPA和FMOC衍生氨基酸测定法中首次提到了自动化柱前衍生法。自动化在线衍生-紫外检测法赛默飞Vanquish液相色谱的自动进样器配合变色龙软件(Chromeleon),可提供用户自定义进样程序(User-Defined Program, UDP),从而完全替代人工,实现定制化、自动化的在线氨基酸衍生操作,完美契合2020药典增补9120氨基酸指导原则中“衍生化操作也可由具有自动衍生功能的进样器完成”的需求。Vanquish 液相色谱和自动进样器在线针内衍生程序示例(Position R:A2:硼酸盐缓冲液;Position R:A3:OPA溶液;Position R:A4:FMOC溶液;Position R:A5:进样稀释液)(点击查看大图)方法结合OPA和FMOC衍生试剂,Acclaim 120 C18色谱柱(PN: 059148)和Vanquish自动进样器在线针内衍生功能,可以轻松实现氨基酸的在线自动化衍生、分析。无需手动衍生,节省了试剂消耗和人力成本,同时在线衍生程序编辑智能、简便,大幅提升了氨基酸检测效率。自动在线衍生-紫外检测法分析氨基酸(点击查看大图)另外,指导原则方法三中提到一级和二级氨基酸衍生物“经反相高效液相色谱分离后需用紫外光检测器在338nm和262nm波长处分别检测”。基于双波长检测要求,客户通常会选择二极管阵列检测器,或单通道紫外检测器结合波长切换等方法,而赛默飞Vanquish Core 紫外检测器标配双检测通道特点,无需波长切换即可实现两个波长的同时检测,结果优于相关标准常规高效液相色谱方法的检测灵敏度。非衍生-电雾式检测法赛默飞电雾式检测器(Charged Aerosol Detector,CAD)作为通用型检测领域的典型代表,凭借其在灵敏度、重现性以及响应一致性等方面的显著优势而备受用户关注和青睐,成为国内外各大药企和科研院所在研发和质量控制等应用方面的一大利器。而基于大部分氨基酸紫外吸收较弱的特点,CAD又为氨基酸检测,开辟了一条衍生方法以外的独特检测捷径。Vanquish 电雾式检测器(CAD)CAD检测器结合赛默飞Hypercarb多孔石墨化碳色谱柱(PN:35005-154630)在极性化合物分析方面的独特优势,可以实现无需衍生的氨基酸直接分析,大大简化了前处理步骤,也完美规避了指导原则中提及的关于“二级氨基酸衍生重复性较差,OPA-氨基酸衍生物不稳定”等实际问题。两种方法在重现性和灵敏度方面的表现基本相当。非衍生-电雾式检测法直接分析氨基酸(点击查看大图)总 结赛默飞Vanquish液相色谱平台,所具备的多种类型的检测器和灵活可定制的程序软件,结合兼具合规和创新的分析色谱柱,既可以满足自动化在线氨基酸衍生分析要求,又能拓展无需衍生的CAD直接分析氨基酸方法。在满足药典第一增补本(四部)中的新增指导原则的同时,为相关制药及食品等行业客户在氨基酸检测方面提供了更多更新颖的检测思路和分析手段。参考文献:[1] 国家药典委员会. 中华人民共和国药典(2020版第一增补本)[S]. 北京: 中国医药科技出版社, 2023: 623.[2] Pual H. Gamache等. 电雾式检测在液相色谱及相关分离中的应用[M].第1版. 北京:化学工业出版社,2024.[3] AN_20056_HPLC_药物_全新Vanquish Core高效液相色谱系统用于氨基酸分析——在线衍生紫外检测和非衍生电雾式检测方法比较[4] 陆明, 孙黛妮, 汪杨等. OPA-FMOC联用柱前衍生化法测定复方氨基酸注射液中氨基酸的含量[J].药物分析杂志, 2010, 30(12): 2323-2327.往期推送● 查异析微|赛默飞培养基液相解决方案. 2023. ► 点击阅读 ● Vanquish Core带你探索生命之源. 2021. ► 点击阅读 ● 授君以渔 | 电雾式检测器中文红宝书正式发行. 2024. ► 点击阅读 如需合作转载本文,请文末留言。
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 默克密理博果汁饮料氨基甲酸酯类农药的检测
    作者 默克密理博应用实验室 近期,长春市发生了两起果汁饮料食物中毒事件,经公安部门检验认定,这两起事件剩余饮料中均含有高毒性的胺基甲酸脂类杀虫剂(万灵)成分。 万灵又名灭多威、快灵、乙肟威,是一种广谱性杀虫剂,在化学分类上属于氨基甲酸酯类。该剂在水中溶解度高,但在碱性条件或在潮温土壤中易分解,故在环境中不会持久存在。其对人畜口服毒性高(大白鼠经口急性LD50 为17-24 毫克/公斤),但经皮毒性低(兔经皮急性LD50 大于500 毫克/公斤)。对蜜蜂和害虫天敌安全,对鱼高毒。 氨基甲酸酯农药的检测一般采用农业部标准NY/T 761-2008(蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定)进行检测,我们参照该标准,采用默克高纯硅胶基质的色谱柱PurospherSTAR 系列的色谱柱,在紫外检测器下测试了7 种氨基甲酸酯类成分,获得满意的分离效果。 图1 PurospherSTAR 色谱柱分离氨基甲酸酯类农药 色谱数据RetTime[min]k' [mAU*s]Area[mAU]PlatesResolutionRRT涕灭威亚砜11.8521.38433.149938846-0.54涕灭威砜13.4121.69360.15695560754.260.61灭多威14.5481.92291.59830627734.940.663-羟基克百威17.0492.42713.502817155810.250.78涕灭威19.6542.94395.7662013575511.110.90克百威21.012 3.21682.075441608356.410.96甲萘威21.9223.402726.120612024684.501.00 结果显示,7中氨基甲酸酯成分都得到了良好的分离。在进行果汁饮料中的农药万灵测试时,可参照NY/T 761-2008标准,采用柱后衍生的办法,以获得更高的灵敏度、更低的检测限和更好的峰形。实验中用到的色谱柱及溶剂描述货号色谱柱PurospherSTAR LP RP-18e 5um 250-4.6mm1.56200.0008色谱甲醇LichroSolvMethanol Gradient Grade1.06007.4004 关于默克密理博 默克密理博是德国默克集团旗下的生命科学部门。为生命科学领域提供广泛的创新的高性能产品、服务以及专业的合作,确保我们的客户在生物科技与专业治疗领域的药品生产中的研究、开发和生产过程中取得成功。在新科学和工程领域专业的视角与合作,位列全球三大生命科学研发合作伙伴之一,默克密理博将成为生命科学领域的客户们战略伙伴,帮助他们提升其在生命科学的能力。默克密理博总部位于美国马萨诸塞州的比尔里卡,全球拥有员工10,000名,在67个国家有分支机构。其2010年总收入达17亿欧元。默克密理博在美国和加拿大以EMD密理博的名义经营。备注:此处默克为德国达姆施塔的默克集团。关于默克 默克集团的所有新闻稿都将通过电子邮件分发,并同时在默克集团网站上发布。请您登录http://www.merck.de/subscribe进行在线登记,选择项目或取消。默克集团是一家全球化的医药和化学企业,2010年总销售额达93亿欧元。它的历史可以追溯到1668年。目前在全球68个国家拥有近40,000名员工,共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团 (Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制