挥发性硫化合物

仪器信息网挥发性硫化合物专题为您整合挥发性硫化合物相关的最新文章,在挥发性硫化合物专题,您不仅可以免费浏览挥发性硫化合物的资讯, 同时您还可以浏览挥发性硫化合物的相关资料、解决方案,参与社区挥发性硫化合物话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

挥发性硫化合物相关的耗材

  • 挥发性有机化合物 (VOC) 应用工具包
    产品特点:订货信息:挥发性有机化合物 (VOC) 应用工具包描述  部件号数量挥发性有机化合物 (VOC) 应用工具包 60181-7341 套含以下组件:    TraceGOLD TG-VMS GC 色谱柱:20m x 0.18mm x 1.00μm26080-49501 包S/SL 进样器 - BTO 隔垫,直径 9mm 3130324050 个S/SL 进样器 - 银隔垫  2903362910 个S/SL 进样器 - 石墨衬管隔垫 2903340610 个S/SL 进样器 - 石墨密封圈,适用于 0.25mm ID 色谱柱2905348810 个MS 接口 - 石墨/Vespel 密封圈,适用于 0.25mm ID 色谱柱2903349610 个2mL 螺口样品瓶,棕色 60180-567100 个带 PTFE/红色橡胶垫的蓝盖 60180-569100 个40mL VOA 样品瓶,带盖和垫 60180-57372 个
  • DB-VRX 挥发性化合物分析柱
    产品特点: 安捷伦提供了多种高级聚合物固定相,以满足日益增长的对挥发性化合物分析的需求。无论是作为主要的分析用色谱柱还是辅助的验证色谱柱,安捷伦J&W 毛细管柱均是色谱分析工作者的首选。 DB-VRX &bull 为获得对挥发性化合物分析的最佳分离而设计独特的选择性:美国EPA 方法502.2、524.2 和8260 &bull 对GC方法(行业第一),与0.53mm内径色谱柱相比,0.45mm内径色谱柱具备更高的每米塔板数,最少的共流出 &bull 分离这六种&ldquo 气体&rdquo 无需低温冷却 &bull 分析时间短 &bull 快速运行时间 30分钟,适合优化样品分析通量 &bull 用0.18 mm 内径色谱柱的运行时间 8 分钟 &bull 弱极性 &bull 峰形优异 &bull 键合交联 &bull 可用溶剂清洗 **两对共流出物:1)间- 二甲苯和对- 二甲苯,美国EPA 不要求分离,2)1,1,2,2- 四氯乙烷和邻- 二甲苯,可分别用检测器PID 和ELCD 分离。注意,对于GC/MS 分析:这些共流出化合物具有不同的主要特征离子,分别为83 和106。 相似的固定相:VOCOL, NON-PAKD, Rtx-Volatiles, PE-Volatiles, 007-624, HP-624, CP-624, Rtx-VRX, Rtx-VGC 产品应用: 建议使用用于挥发性化合物的色谱柱 &bull 用于EPA 方法502.2 和8021 的DB-VRX 和DB-624 &bull DB-VRX(60 m,0.25 mm 内径),用于GC/MS 挥发性化合物方法 &bull DB-VRX(20 m,0.18 mm 内径)适用于使用5973 MSD 分析挥发性化合物GC/MS 应用 (不建议使用于离子阱MS 或老型号的MSD) &bull DB-MTBE 柱,用于扩展的EPA 方法8020 &bull DB-TPH 柱,用于分析BTEX 和汽油总石油烃类 &bull DB-624 (20 m, 0.18 mm ID),用于挥发性化合物的快速GC/MS 分析。 DB-624 非常适用于美国EPA方法: 501.3,502.2,503.1,524.2,601,602,8010,8015,8020,8240,8260 DB-VRX 为获得对挥发性化合物分析的最佳分离而设计独特的选择性:美国EPA 方法502.2、524.2 和8260; 对GC方法(行业第一),与0.53mm内径色谱柱相比,0.45mm内径色谱柱具备更高的每米塔板数,最少的共流出;分离这六种&ldquo 气体&rdquo 无需低温冷却 DB-VRX 柱的色谱图 环境 &bull 使用GC/MS 分析EPA 挥发性化合物(分流进样器) &bull 高速VOC 分析,EPA 方法8260 &bull 无铅汽油 &bull EPA 方法8021 的扩展分析物列表 订货信息: DB-VRX 内径(mm) 长度(m) 膜厚(µ m) 温度范围(℃) 部件号 0.18 20 1.00 -10 至260 121-1524 0.18 40 1.00 -10 至260 121-1544 0.25 30 1.40 -10 至260 122-1534 0.25 60 1.40 -10 至260 122-1564 0.32 30 1.80 -10 至260 123-1534 0.32 60 1.80 -10 至260 123-1564 0.45 30 2.55 -10 至260 124-1534 0.45 75 2.55 -10 至260 124-1574
  • 122-9732-DB-UI 8270D专用半挥发性化合物分析柱
    DB-UI 8270D 半挥发性化合物分析色谱柱.针对EPA 方法8270D 和其他法规规定的GC/MS 分析半挥发性化合物而设计.专用半挥发性化合物测试,确保柱与柱之间痕量分析卓越性能.特别适合于2,4-二硝基苯酚的分析.超高惰性,低流失

挥发性硫化合物相关的仪器

  • TVOC-800 挥发性有机化合物光离子化在线监测系统可以快速检测TVOC、VOCs。该系统采用光离子化检测器(PID),符合广东省地方标准《DB44/T 1947-2016 固定污染源挥发性有机物排放连续自动监测系统 光离子化检测器(PID)法技术要求》,同时也满足河北省环境保护厅发布的《关于加强重点企业工业园挥发性有机物排放监控工作的通知》文件要求,并通过中环协环保认证获得中国环境保护产品认证(CCEP)证书。TVOC-800 挥发性有机化合物光离子化在线监测系统应用领域广泛,适用于企业有组织废气(集中排放口)排放、无组织废气(厂区点位、厂界点位)排放的TVOC、VOCs实时在线浓度监测和浓度超标预警、报警。核心技术:光离子化检测器原理PID是一种光离子化检测器,使用一个紫外灯(UV)光源将有机物分子电离成可被检测器检测到的正负离子(离子化)。检测器捕捉到离子化气体的正负电荷并将其转化为电流信号输出以实现气体浓度的测量。当待测气体吸收高能量的紫外光时,气体分子受紫外光的激发暂时失去电子成为带正电荷的离子,气体离子在检测器的电极上被检测后,很快与电子结合重新组成原来的气体分子。PID原理是一种非破坏性的检测原理,它不需要燃烧,不会永久性的改变待测气体分子,经过PID检测的气体仍可被收集做进一步测定或处理。PID检测器是一种高灵敏度、使用范围广泛的检测器,主要用来检测浓度在1ppb-1000ppm数量级的低浓度挥发性有机化合物和其它有毒气体。系统组成挥发性有机化合物光离子化在线监测系统主要包含以下单元:采样单元:由样气采样探头、样气传输管线、样气预处理装置、抽气泵等组成。主要被测气体经过除尘、除湿等后无损输送到气体控制器。气体控制器:由流量计、气路切换电磁阀等部件组成,主要实现样气采集流量、校准气流量控制和分配,保障分析单元稳定的样气、标气的稳定输送。分析单元:由PID光离子化检测器、数据处理器等组成,完成样气的浓度分析。控制单元:由数据处理与存储、数据显示与查询、状态显示与查询、通讯等硬件与软件控制系统组成。辅助设备:系统所需要的机柜、平台和安装固定装置等。性能优势采用进口品牌PID传感器,精度高,响应速度快,反应灵敏。内置二级除尘及除湿预处理系统,有效过滤颗粒物及水分杂质,延长系统使用寿命。系统具备自动取样流路反吹清洗功能,保障测量数据可靠。分析周期快,单次取样分析周期小于1min,监测实时性强。实现全自动VOCs在线监测,超标预警、报警。内置无线传输模块,可实时上传监测数据至监控平台,也可以接入数采仪按照HJ/T212协议上传监测数据至监控平台。外壳使用高强度金属材质加防腐涂层,核心部件防护等级IP65,宜于室外使用,无需建立站房。信号输出:4~20mA DC三线制 最大负载电阻500Ω、RS485输出、开关量输出。系统软件支持原始监测数据存储、查询和历史VOCs排放趋势分析,可查看和输出小时报表、日报表、月报表、年报表等。具备CCEP中国环境保护产品认证证书。系统具备扩展性,可集成气象五参数、户外屏等部件。可提供防爆型产品,主要应用于防爆要求场合,如防爆区、加油站等。
    留言咨询
  • 5800-GM挥发性有机物在线气质联用监测系统 赛默飞在线VOCs富集系统和ISQ气质联用仪(GCMS)通过创新系统设计、灵活软硬件配置、优化分析方法可实现对空气中VOCs组分的24小时/7天连续定性定量分析。在线VOCs富集系统为双/单富集冷聚焦设计,无需制冷剂,操作简单,能够实现对包括C2等轻组分的VOCs有效富集;气相色谱与四极杆质谱联用仪结合NIST谱库可以实现对空气中的VOCs组分进行分离并解析;可对PAMS、TO-15以及醛、酮类含氧挥发性有机物组分进行有效的富集和准确的定性定量分析,检测限低至ppt级,分析方法满足国家相关要求。该方案可以用于在线环境监以及离线环境检测等多种场合,也可以用于车载,实现环境监测应急监测。 环境被测大气样品通过的在线冷阱采样系统,在低温条件下,大气中的挥发性有机化合物在冷阱中被捕集;然后快速加热解吸,进入分析系统,经色谱柱分离后被FID或质谱检测器检测;之后,残存在捕集柱上的干扰物被反吹吹出,等待下一次分析。 系统的双冷阱无盲点设计还可以支持零空隙的连续采样功能,一个冷阱在分析的同时另一个冷阱在采样,始终有一个冷阱在捕集样品,确保空气样品不间断的采集,不损失任何时刻的空气样品。 系统特点: 针对24x7在线分析进行系统优化 已验证的高端电子制冷技术,无需液氮有效降低维护费用,冷阱加热迅速,脱附效率高,冷阱更换方便 系统支持单机与二级冷阱在线取样浓缩技术,适用高低沸点组分 内置低温内置除水模块,有效去除高湿样气中水分,避免对色谱柱和检测器等损害,提高系统准确性和稳定性 ISQ GCMS结合FID检测器,同时分析低碳、高碳、醛酮类、卤代烃等多种组分 Thermo ScientificTM ExtractaBriteTM 离子源,采用高惰性材料,双灯丝和独立双加热区设计,专利设计RF透镜组 永不停歇的工作时间“Never Vent”技术,无需放空质谱即可进行更换离子源和清理进样口以及更换色谱柱,增加在线数据捕获率 多重技术组合,提高系统性能:Smart tune、Auto SIM、Timed SIM、Retention time Alignment、S形例子通道等 内置质量流量计,有效提高系统准确性 完全满足国标方法与EPA相关方法 支持“无盲点”采样技术,适用低碳与高碳组分 客户定制化,满足多种监测要求 技术参数:通用参数安装标准19”机柜尺寸/重量1500mm宽x2100mm高x900mm深/~200KG(不含机柜,不含UPS)电源要求220VAC±10%,50-60Hz, 最大功率10000W环境温度0℃-25℃,15-85%无凝结储存温度-20℃到75℃分析方法GC-FID与质谱MSD检测器分析组分PAMS,TO-15,13种醛酮类VOCs,或其他需要监测的VOCs进样方式在线富集热脱附进样技术测量范围0-50ppb,0-500ppb可选择最低检测限C2-C5 碳氢化合物:≤0.02ppb(丙烯);C6-C12 碳氢化合物:≤0.01ppb(苯);卤代烃类VOCs:≤0.01ppb(四氯化碳);含氧(氮)类VOCs:≤0.2ppb(丙酮);硫化物类VOCs:≤0.01(二硫化碳)测量周期≤60min采样流量及控制0-100ml/min,MFC采样流量准确度≤±1.5% F.S采样体积0-2000ml,典型值600ml(可调)气相色谱峰面积重现性丙烯(0.5ppb):≤3%;苯(0.5ppb):≤3%;四氯化碳(0.5ppb):≤3%;丙酮(0.5ppb):≤3%;二硫化碳(0.5ppb):≤3%;色谱炉箱温度范围室温以上3℃到450℃,控制精度0.1℃程序升温程序升温:32阶/33平台,最高升温速率:125℃/min,温度稳定性:0.01℃/1℃气路控制全流路高精度EPC控制,压力范围:0~1000kPa,精度:0.001psiFID检测器最低检出限1.4 pgC/s检测信号线性范围>107检测器保护自动点火,灭火自动切断气体和报警功能燃气H2,99.999%,30-50ml/min助燃气洁净空气,300-500ml/min载气氦气He,99.9995%ISQ质谱质量范围1.2 –1100amu扫描速度20000 u/s分辨率全质量范围内单位质量分辨灵敏度EI 全扫描,1pg/μL八氟萘仪器检出限(IDL)≤2 fg真空系统空气冷却的高真空大抽速分子涡轮泵:分子涡轮泵抽速为300L/s(He) ,5.2前级机械泵抽速为3.3 m3/h软件和控制 内置工业电脑Intel处理器,32G内存仪器反控软件内置系统控制软件,自动完成采样、分析和周期性校准/系统响应测量,可实现系统7x24自动无人运行与自动校准,老化等功能基本功能1 提供全扫描、选择离子扫描和全扫描/选择离子扫描交替扫描 (100组)。2 可对每段扫描的扫描速度、扫描范围、离子极性、棒状图或轮廓图的采集、发射电流、检测器增益,指定调谐文件进行控制3 支持如下扫描模式:全扫 (FS), 特征离子扫描(SIM),定时-选择离子扫描 (t-SIM),可进行全扫描(FS)、选择离子扫描(SIM)、全扫/选择离子扫描同时进行(FS/SIM)、定时-选择离子扫描(t-SIM)、全扫/定时-选择离子扫描同时进行(FS/t-SIM)4 具有AutoSIM和t-SIM功能(即根据全扫描自动生成SIM定量离子和保留时间的方法,并根据每个分析物的保留时间自动分配以该化合物保留时间为中心的SIM片段采集方法)5 智能调谐模式,可以自动根据仪器状态自动选择调谐模式,且自带仪器调谐诊断工具6 数据处理系统:智能/自动/手动调谐、数据采集、数据检索、分析结果报告、定量分析及谱库检索功能7 可远程参数设定、编辑及结果处理等操作8 自诊断报警功能通讯 通讯接口RS485,RS232,Ethernetx2,无线网络(可选),USBx3,VGA扩展, 3G/4G网络远程诊断(选配)通讯方式Modbus TCP(标配)Modbus RS-485(标配)Modbus RS-232(标配)0-1V模拟信号(选配)4-20mA模拟信号(选配)
    留言咨询
  • 5800挥发性有机物监测系统(5800 VOCs CEMS)系统组成 挥发性有机物监测装置:测量CH4/NMHC、苯、甲苯、二甲苯、苯系物、高反应性VOCs(根据需要) 烟气参数监测装置:流量、温度、压力、O2(根据需要) 系统控制及数采装置 系统应用范围 实现固定污染源挥发性有机物排放的实时连续监测 为挥发性有机物排放控装置实现系统控制提供测量参数 计算污染物排放量,并为环境管理提供数据 系统特点: 基于热态测量设计和组成,可接受的样气温度可达220℃ 能实现成份分析:THC/CH4/NMHC、 苯、甲苯、二甲苯、苯系物(苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯、苯乙烯) 、美国光化测站56种VOC、高反应性VOC,可测量组份多达90种 量程宽: 0.05-50/500/5000/50000/500000 ppm(可选择) 分析时间迅速:每分钟一笔数据;既可满足合规的连续性要求,又可满足治理设备的工艺控制要求 校准 :统全程校准,国标规定,可确保整个分析系统的准确性。 仪器校准,方便VOC监测系统的查修 直接抽取法(热-湿式)采样系统采样探头由于可能需要应用于不同的装置,不同工况,比如,VOCs治理设备的入口/出口同时都需要监测,其工况特点不同治理设施入口烟气特点:浓度高:选用高量程设定分析条件成分多:依各个监测成分定量分析吸附性强:样品全段加热避免吸附水分低:对分析影响较小温度低:取样加热管可适度调整保温条件治理设施出口烟气特点: 浓度低:选用低量程设定分析条件 燃烧后副产物:可能造成管路腐蚀或堵塞,应加热及回吹 吸附性低:可适度调整样品传输条件 水分高(燃烧或湿式处理流程):烟气水分可能造成分析误差 温度高(燃烧后):取样设备兼具耐温及耐蚀性我们需要根据工况设置探头及管线的温度,我们希望尽量保持烟气的工况温度,既不会温度过低,导致凝结,也不会过度加热,导致组份变化,因为,VOCs的沸点在50~260℃,如果过度加热,有可能导致组份的化学反应或物理状态变化。系统采用由高温取样探头取样,高温取样探头包括进入烟道中加热取样管(根据烟道尺寸配有不同长度取样管)和在烟道外的加热过滤器及温度控制系统。 取样探头带有标准的防护罩。电加热取样探头可以被控制加热到最高200℃。温度控制系统除恒温控制整个取样探头外,在探头掉电或温度过低时可以输出报警信号给系统。探头最高可适应含尘量≤10g/m3。一个独立的自动反吹系统直接与取样探头连接。在常温下,反吹仪表风经加热后进入取样探头内部的5um过滤器里,对过滤器直接进行吹扫,以阻止烟尘在过滤器表面堆积。用户可以根据现场情况设定自动反吹的间隔时间。 不锈钢伴热管线从取样探头抽出的样气通过电伴热取样管线进入样品预处理系统。取样管线是恒功率加热式的,并采用温控器对管线温度进行控制,加热温度可以设定为80-150℃。取样管线设定的温度将可以保证样气在传输过程中气态污染物不会发生冷凝,以保证测量结果的准确性。取样管线的材质为不锈钢,可以防止Teflon材质对VOCs组份的吸附作用。 样气预处理系统由于挥发性有机物的物质种类非常多,有些物质可能会溶解在水中,因此,我们的系统不设置制冷器,高温加热的样气可以直接进入分析仪,Model 5800可接受的样气最高温度为220℃分析系统 A.样品由载气携带通过分离管柱分离:(可测定的成分及分离方式如下)a) THC透过无分离效果的熔硅毛细空管,将样品一同吹出b) CH4透过具强吸附性的分子筛,仅允许CH4通过c) VOCs针对不同用户的分析要求,透过不同分离效果的管柱组合,来实现定制化测量B.使分离后的有机物进入FID,在氢火焰中被电离成碳阳离子和电子,其产生的微电流,经由信号放大器输出信号。 技术参数分析方法:GC-FID气相色谱火焰离子法 量程范围: 50ppm/500ppm/5000ppm/5%/50% as Methane 准确度: ±1% f.s. 或 ±0.1 ppm(取其优者) 检测限:0.05 ppm 重现性: ±1% f.s. 或 ±0.1 ppm(取其优者) 零点漂移:±1% f.s. 或 ±0.1 ppm(取其优者) 量程漂移: ±1% f.s. 或 ±0.1 ppm(取其优者) 分析时间:1分钟 (平均) 样品流速:- Flow in analyzer分析用样品:600 ml/min- System flow rate样品更新速率:3 - 10 L/min. max. 校准周期:每月-每年,使用者可自行设定系统报警: 仪器故障 / 校正故障 / 侦测器(FID)故障 输出: Modbus TCP,另有多款选配可供选择:4-20mA (最多12組) / RS232 / RS485 样品稳定: 15-45℃, 85% RH (无冷凝) 环境条件: - Operation操作温度:0-45℃, 0-85% RH (无冷凝) - Storage存储温度:-20-60℃, 0-85% RH (无冷凝)- Sample Inlet进样温度:220℃ 电源: AC 220V, 50Hz, 1.5 Kw 辅助气体燃料气体: H2, 30 ml/min, 2 kg/cm2, 純度99.999%, THC 0.1 ppm 助燃气体: Oil/water free air, 300 ml/min, 2 kg/cm2, THC 0.1 ppm 载气: Oil/water free air, 60 ml/min, 2 kg/cm2, THC 0.1 ppm 零点校正气体: Oil/water free air, 2 kg/cm2, THC 0.1 ppm (载气為空气) Oil/water free N2, 2 kg/cm2, THC 0.1 ppm (载气為氮气) 量程校正气体: 未知浓度之碳氢化合物平衡于空气中(载气为空气),进流压力为1 Kg/cm2 未知浓度之碳氢化合物平衡于氮气中(载气为氮气) ,进流压力为1 Kg/cm2 管路吹扫气体: Oil/water free air, 10 L/min, 2 kg/cm2, THC 1 ppm
    留言咨询

挥发性硫化合物相关的试剂

挥发性硫化合物相关的方案

挥发性硫化合物相关的论坛

  • 【分享】VOC-挥发性有机化合物

    【分享】VOC-挥发性有机化合物

    1.[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908100045_164737_1610969_3.jpg[/img][color=#DC143C]VOC—挥发性有机化合物[/color]  VOC是挥发性有机化合物(volatile organic compounds)的英文缩写。  [color=#00008B]定义种类[/color]  例如,[color=#DC143C]美国ASTM D3960-98标准将VOC定义为任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义:挥发性有机化合物是除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。[/color]  世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。  有关色漆和清漆通用术语的国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对VOC的定义是,原则上,在常温常压下,任何能自发挥发的有机液体和/或固体。同时,德国DIN 55649-2000标准在测定VOC含量时,又做了一个限定,即在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物。  巴斯夫公司则认为,最方便和最常见的方法是根据沸点来界定哪些物质属于VOC,而最普遍的共识认为VOC是指那些沸点等于或低于250℃的化学物质。所以沸点超过250℃的那些物质不归入VOC的范畴,往往被称为增塑剂。

  • 挥发性硫化物

    请问有没有测过挥发性硫化物。 我想测一下葡萄酒中的硫化物(呈还原味的气体) 请问有卖混标硫化物的吗,

  • 油漆挥发性有机化合物检测

    请问有用气相做油漆挥发性有机化合物的?我们想用气质开展这个项目,看国标无法理解上面的定性,既没有说买标准物质也没有具体的说如何定性,我是走样品出了色谱峰后匹配谱库然后再看特整离子,没有标准物质如何对比,有机化合物这么多,自己做检测不久实验室也没有懂得,所以一有问题就上来论坛,真的帮忙解决了不少,希望这次也能得到指教,感谢

挥发性硫化合物相关的资料

挥发性硫化合物相关的资讯

  • 总有机碳TOC分析仪对挥发性化合物的回收率
    1、挑战总有机碳(TOC,Total Organic Carbon)分析技术能够有效测量样品中的杂质,提供有机污染物的简明、非专属、全面的测量结果,为用户提供宝贵的工艺监测数据。准确地检测和量化低TOC浓度,对工艺控制、产品质量、资产保护来说至关重要。有机物的污染会影响生产工艺、污染制成品,导致整个产品批次不合格,甚至损坏生产设备。有机污染物的来源之一是挥发性化合物。挥发性和半挥发性化合物常来源于清洁剂或冷却剂。挥发性污染物也可能来自源水和化学分解产物。能够有效检测挥发性和半挥发性化合物,对于城市用水和工业用水处理工艺的全面检漏来说非常关键,我们可以用TOC分析技术来完成这项检测任务。先将有机物氧化成CO2,然后检测CO2的含量,从而完成TOC分析。有些常用的TOC分析方法会在过程中添加酸剂并进行气体吹扫。向液体样品中添加酸剂降低其pH值,可以确保将所有以碳酸根或碳酸氢根形式存在的碳转化为溶解CO2。气体吹扫就是使气泡通过液体样品,去除样品中的其它溶解气体或挥发性液体的过程。有些分析方法很难有效检测挥发性化合物,这是因为挥发性化合物会消失在气体吹扫过程中,或者需要用特殊方法才能检测到。这些局限性会造成监测数据不准确,从而导致应对决策延误甚至错误。本文比较了以下三种TOC氧化法对挥发性化合物的回收效率:高温催化燃烧法两级先进氧化法紫外-过硫酸盐氧化和膜检测法(此技术用于 Sievers M系列TOC分析仪)2、实验在实验中,我们用上述几种TOC氧化方法对不同的挥发性化合物进行测试,以了解这些氧化方法的分析性能。我们测量了TOC浓度分别为0.25 ppm、1.0 ppm、5.0 ppm的标准品的TOC值。本次研究根据以下化合物特性,选用4种化合物【丙酮、甲醇、甲乙酮(MEK)、异丙醇(IPA)/2-丙醇】进行测试:具有挥发性或半挥发性是水系统中常见的污染物可能影响制成品质量,或长期损坏生产设备催化燃烧(CC,Catalytic Combustion)式分析仪在本次研究中使用的催化燃烧式分析仪用铂催化剂和高温燃烧法进行TOC氧化,然后进行非色散红外(NDIR,Non-Dispersive Infrared)检测。在TOC或POC(Purgeable Organic Carbon,可吹除有机碳)模式下运行分析仪来分析挥发性化合物,工作流程见图1和图2。POC模式是分析仪的可选配置,不在本次研究中讨论。图1:催化燃烧式分析仪的NPOC(Non-Purgeable Organic Carbon,不可吹除有机碳)模式图2:催化燃烧式分析仪的TOC模式图1和图2是催化燃烧式分析仪的两种常见操作模式。图1显示,在NPOC模式的吹扫过程中,IC(Inorganic Carbon,无机碳)和POC被去除,因而不包含在测量结果中。图2显示了TOC分析的两步过程。在TC测量中,由于未吹扫就进行氧化,TC(Total Carbon,总碳)测量结果中包括了POC。在IC测量中,样品和酸剂经过吹扫,产生的CO2被载气送到NDIR部分进行测量。两级先进氧化(TSAO,Two-Staged Advanced Oxidation)式分析仪在本次研究中使用的两级先进氧化式分析仪用氢氧化钠和臭氧(能够产生羟基自由基)进行TOC氧化,然后进行NDIR检测 。在TC或VOC(Volatile Organic Carbon,挥发性有机碳)模式下操作分析仪来分析挥发性化合物,TC模式和VOC模式均为分析仪的可选配置。本次研究不评估TC模式。两级先进氧化式分析仪的VOC模式类似于催化燃烧式分析仪的POC模式,这两个术语可以互换使用。图3是两级先进氧化式分析仪的标准操作模式【TIC(Total Inorganic Carbon,总无机碳)+TOC模式】。在这两步操作模式下,在NDIR测量之前先进行IC和POC吹扫。由于未进行氧化,POC不包含在测量结果中。此模式的两个步骤使用同一样品,TOC代表样品中的NPOC。*注意:在 IC 测量步骤中,已通过吹扫去除了样品中的 POC 和 IC。图3:两级先进氧化式分析仪的TIC+TOC模式图4是两级先进氧化式分析仪的附加TC模式。在此模式下,用氢氧化钠和臭氧来预氧化样品,以便在吹扫之前氧化全部POC。分析仪的VOC模式是TC分析和TIC+TOC分析的结合。计算实测的“TC”与实测的“TIC和NPOC之和”之间的差值,即可得到VOC。VOC=TC–(TIC+NPOC)。图4:两级先进氧化式分析仪的TC模式Sievers M系列分析仪Sievers M系列TOC分析仪用紫外-过硫酸盐进行TOC氧化,然后进行膜电导(MC,Membrane Conductimetric)检测。分析仪可以在普通操作模式下检测挥发性有机物。图5是M系列分析仪所采用的TOC分析方法的流程。图5:M系列分析仪的标准操作图5显示了Sievers M系列TOC分析仪的普通分析模式。样品在被加入酸剂后,分流到分析仪中相互独立的TC通道和IC通道中。TC通道中的样品被加入氧化剂,然后在紫外线照射下,样品中的有机物被氧化。IC通道中的样品则跳过上述过程。各通道中的样品通过CO2渗透膜,将CO2分离开。TOC等于TC减去IC。如果需要事先去除IC以获得更准确的TOC结果,可以使用无机碳去除器(ICR,Inorganic Carbon Remover),而无需进行吹扫。建议当IC高10倍的TOC时使用无机碳去除器。IC通道中的样品被送进无机碳去除器,通过一圈CO2渗透管,即可在不使用载气的情况下去除IC。此方法不会在去除IC的过程中损失挥发性碳,因而能准确测量TOC。同催化燃烧工艺和两级先进氧化工艺相反,M系列分析仪内的样品不接触空气,这就能够确保在受控实验室环境中测得的挥发性有机物的结果真实反应了在线设置中的实际工艺样品的TOC。3、结果图6-9显示了上述三种TOC氧化技术的挥发性化合物回收率的测量数据。M系列分析仪在关闭无机碳去除器的普通分析模式下运行,催化燃烧式分析仪在TOC模式下运行,两级先进氧化式分析仪在VOC模式下运行。图 6:丙酮的回收率CC=催化燃烧TSAO=两级先进氧化图 7:甲醇的回收率图 8:甲乙酮(MEK,也称为丁酮)的回收率图 9:异丙醇(IPA)的回收率图6-9显示了在本次研究中评估的4种化合物的回收率。各图中的红线代表100%回收率。4、结论本次研究使用的所有分析仪都在正确的操作模式下成功完成了对化合物的分析,但Sievers M系列分析仪是唯一在标准操作模式下并且在不用载气的情况下有效检测挥发性有机物的仪器。表1列出了所有化合物和所有分析浓度的挥发性有机物的平均回收率。表 1:本次研究中的所有化合物和分析浓度的挥发性有机物的平均回收率分析仪平均回收率M系列分析仪100.04%CC103.02%TSAO90.52%在本次研究中使用的催化燃烧式分析仪只能在TOC模式(或配置可选附件的POC模式)下检测挥发性化合物。但大多数用户所采用的标准操作是NPOC模式,该模式无法检测挥发性有机物。在本次研究中使用的两级先进氧化式分析仪只能在TC或VOC模式下检测挥发性有机物,但这两种模式都是可选配置。催化燃烧式分析仪和两级先进氧化式分析仪都需要用载气进行吹扫和NDIR检测。用载气进行吹扫时,会损失挥发性和半挥发性有机化合物。用载气进行NDIR检测时,要求进行精确的气液分离,这是因为水分会影响测量结果的准确性。Sievers M系列分析仪采用膜电导检测法来测量液体(而非气体)的CO2,能够避免上述缺点。为了应对工艺偏差或泄漏,用户必须能够有效地监测有机污染物(如挥发性化合物)。精准的监测结果帮助用户正确掌握工艺。Sievers M系列分析仪能够在标准操作模式下准确测量挥发性化合物的TOC,为用户提供了理想的监测解决方案。紫外-过硫酸盐氧化结合膜电导检测技术,无需进行吹扫和使用载气,避免了挥发性化合物的损失。在低污染的情况下快速识别工艺泄漏和生产效率过低的原因,可以有效保护生产设备和制成品质量,帮助用户及时做出应对决策,从而为用户节省大量的时间和资金。Sievers M系列分析仪的检测限(LOD,Limit of Detection)和定量限(LOQ,Limit of Quantification)最低,对低浓度挥发性化合物的分析结果最准确,能够满足用户的一切监测需求。Sievers M系列TOC分析仪具有精准的分析性能、良好的整体易用性、无需另行购买可选附件,是检测挥发性有机化合物的理想工具。◆ ◆ ◆联系我们,了解更多!
  • 《环保产品认证实施规则 挥发性有机化合物检测仪》
    p  日前,中国环保产业协会印发《环保产品认证实施规则 挥发性有机化合物检测仪》。对VOCs检测仪环保产品认证做了详细的规定。全文如下:/pp style="TEXT-ALIGN: center"  环保产品认证实施规则/pp style="TEXT-ALIGN: center"  编号:CCAEPI-RG-Y-024-2017/pp style="TEXT-ALIGN: center"  2017-04-01 发布 2017-04-02 实施/pp style="TEXT-ALIGN: center"  中环协(北京)认证中心发布/pp  前 言/pp  本认证规则规定了挥发性有机化合物检测仪的适用范围、认证模式、认证环节、认证要求、认证标志使用及收费等内容。/pp  本认证规则由中环协(北京)认证中心技术部提出。/pp  本认证规则主要起草人:王则武、高晓晶、廖小卿。/pp  本认证规则由中环协(北京)认证中心 2017 年 04 月 01 日批准。/pp  本认证规则自 2017 年 04 月 02 日起实施,原认证实施规则《挥发性有机化合物检测仪》(CCAEPI-RG-Y-024-2013)即日起作废。/pp  本认证规则由中环协(北京)认证中心解释。/pp  1.适用范围/pp  本实施规则规定了挥发性有机化合物检测仪认证的模式、环节、要求、认证证书、标志及收费等内容。本规则适用环境空气挥发性有机化合物在线监测仪、污染源挥发性有机化合物在线监测仪、报警式挥发性有机化合物监控仪等 3 种挥发性有机化合物检测仪的环境保护产品认证。/pp  2.认证模式/pp  产品检验+工厂(现场)检查+认证后监督。/pp  3.认证的基本环节/pp  认证的主要环节包括:认证申请 产品检验 初始工厂检查 认证结果评价与批准 认证后的监督。/pp  4 认证实施的基本要求/pp  4.1 认证申请/pp  4.1.1 申请单元划分/pp  原则上按不同的型号、测量方式、分析原理来划分申请单元。产品由同一生产厂生产且测量方式、分析原理完全相同可以作为一个申请单元。/pp  配置不同的产品为不同的申请单元。/pp  主要零部件型号不同的产品为不同的申请单元。/pp  依据不同标准生产或不同生产场地的产品为不同的申请单元。/pp  4.1.2 申请文件/pp  申请认证应提交正式申请,并随附以下文件:/pp  a)工商行政管理部门核发的有效营业执照复印件 /pp  b)质量技术监督部门核发的组织机构代码证复印件 /pp  c)已经当地质量技术监督部门备案登记的申请认证产品的企业标准 /pp  d)申请认证产品工厂质量保证管理文件 /pp  e)产品说明书、主要技术性能指标说明、同一申请单元内各个型号产品之间的一致性说明及其差异说明等 /pp  f)申请认证产品两个以上用户意见 /pp  g)其他需要的文件。/pp  4.2 产品检验/pp  4.2.1 产品检验的抽样/pp  原则同一申请单元的产品,抽取具有代表性的样品 1 台进行产品检验。抽样基数不少于 5 台。/pp  4.2.2 产品检验的方式/pp  采取实验室检验与相关质量证明文件审查相结合的方式。/pp  4.2.3 产品检验依据的标准/pp  JJF 1172-2007 挥发性有机化合物光离子化检测仪校准规范/pp  GB/T6587-2012 电子测量仪器通用规范/pp  4.2.4 产品检验要求和方法/pp  环境空气挥发性有机化合物在线监测仪的指标要求、检验方法按照附件 1 的要求执行 污染源挥发性有机化合物在线监测仪的指标要求、检验方法按照附件 2 的要求执行 报警式挥发性有机化合物监控仪的指标要求、检验方法按照附件 3 的要求执行。/pp  4.3 初始工厂检查/pp  4.3.1 检查内容/pp  工厂检查的内容为工厂质量保证能力检查和产品一致性检查。/pp  4.3.1.1 工厂质量保证能力检查/pp  由认证机构派检查员对生产厂按照 CCAEPI-GK-305《环境保护产品认证工厂质量保证能力要求》进行检查。/pp  4.3.1.2 产品一致性检查/pp  在生产现场对申请认证的产品进行一致性检查。若认证单元为产品系列,则一致性检查应对每个单元的产品至少抽取产品检验时未进行的一个规格型号。重点核实以下内容:/pp  1)认证产品上和包装上标明的产品名称、型号、规格与产品检验报告上所标明的一致 /pp  2)认证产品的结构及主要配套设备应与产品检验时的样品一致 /pp  3)认证产品所用的原材料应与产品检验时申报并经认证机关确认的一致。/pp  4.3.1.3 检查范围/pp  工厂检查的范围覆盖申请认证产品的所有加工场所和所涉及的活动。包括与制造该产品有关的质量体系所涉及的部门、岗位、设施相关的质量活动。 4.3.2 初始检查时间一般情况下,产品检验合格后,再进行初始工厂检查。产品检验和初始工厂检查也可以同时进行。初始工厂检查时间,根据所申请认证产品的单元数量和工厂的生产规模确定,一般每个加工场所为 3 至 6 个人日。/pp  4.4 认证结果评价与批准/pp  4.4.1 认证结果评价与批准/pp  由认证机构负责对产品检验、工厂检查结果进行综合评价,评价合格后,由认证机构对申请人颁发认证证书。认证证书的使用应符合认证机构的有关规定。/pp  4.4.2 认证时限/pp  认证时限是指自受理申请之日起至颁发认证证书时止所实际发生工作日,包括产品检验时间、工厂检查后提交报告时间、认证结论评定和批准时间、以及证书的制作时间。产品检验时间根据产品和相关标准确定(因检验项目不合格,进行整改和复试的时间不计算在内),从收到样品和检测费用起计算。检验完成后,提交报告的时间一般为 5 个工作日。工厂检查后提交报告时间为 5 个工作日,以审核员完成工厂检查、收到生产厂递交了符合要求的不符合要求的不符合项纠正措施报告之日起计算。认证结果评定、批准时间及证书制作时间一般不超过 7 个工作日。/pp  4.5 认证后的监督/pp  4.5.1 监督的内容和方式/pp  一般情况下,在获证后三年有效期内,进行两次监督检查。监督检查的重点是认证后工厂是否持续符合环保产品认证的能力要求,以及产品一致性检查。监督检查可以采用以下方式进行:/pp  a)工厂质量体系检查 /pp  b)产品性能抽检 /pp  c)用户调查。/pp  4.5.2 增加监督频次的条件/pp  若发生下述情况之一可增加监督频次:/pp  a)获证产品出现严重质量问题或用户提出严重投诉并经查实为持证人责任时 /pp  b)认证机构有足够理由对获证产品与标准要求的符合性提出质疑时 /pp  c)有足够的信息表明生产者、生产厂因变更组织机构、生产条件、质量管理体系等,可能影响产品符合性或一致性时。/pp  4.5.3 监督结果的评价/pp  监督检查合格后,可以继续保持认证资格使用认证标志。监督检查时发现的不合格之处应在规定的时间内(一般不超过 3 个月)进行整改。逾期将撤消认证证书、停止使用认证标志,并对外公告。/pp  5.认证证书/pp  5.1 认证证书的保持/pp  5.1.1 认证证书的有效性/pp  本规则覆盖产品的认证证书有效期一般为 3 年。在规定的有效期内,证书有效性的保持依赖认证机构定期的监督获得。/pp  5.1.2 认证产品的变更/pp  5.1.2.1 变更的申请/pp  认证后的产品,如果涉及主要设计参数、产品结构、关键材料和元器件发生变更时,或证书持有者法人名称发生变更时,应向认证机构提出变更申请。/pp  5.1.2.2 变更评价和批准/pp  认证机构根据变更的内容和提供的资料进行评价,确定是否可以变更或需送样品进行检验,如需送样检验,检验合格后方能进行变更。/pp  5.2 认证证书覆盖产品的扩展/pp  5.2.1 扩展程序/pp  认证证书持有者需要增加与已经获得认证产品为同一认证单元内的产品认证范围时,应从认证申请开始办理手续,认证机构应核查扩展产品与原认证产品的一致性,确认原认证结果对扩展产品的有效性,针对差异做补充检验或检查,并根据认证证书持有者的要求单独颁发认证证书或换发认证证书。/pp  5.2.2 样品要求/pp  证书持有者应先提供扩展产品的有关技术资料,需要对扩展产品检验时,检验项目由认证机构决定。/pp  5.3 认证证书的暂停、注销和撤消。/pp  按照认证机构的有关规定执行。/pp  6.产品认证标志的使用/pp  证书持有者必须遵守认证机构认证标志管理办法的规定。/pp  6.1 准许使用的标志样式/pp  6.2 变形认证标志的使用/pp  本规则覆盖的产品允许使用认证机构规定的变形认证标志。/pp  6.3 加施方式/pp  可以采用认证机构允许的加施方式。/pp  6.4 标志的位置/pp  应在产品本体明显位置上加施认证标志。/pp  7.收费/pp  自愿认证收费由认证机构按国家有关规定收取。/pp style="TEXT-ALIGN: center"img title="图1.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/fbba6ffe-20ad-4595-b2f3-c37f4ddc60d5.jpg"//pp style="TEXT-ALIGN: center"img title="图2.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/438567f7-4c47-466d-8072-e3d8a69d571d.jpg"//pp style="TEXT-ALIGN: center"img title="图3.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/c2ca1ea0-ed35-4806-a3f3-1a241192df85.jpg"//p
  • 建筑类涂料与胶粘剂挥发性有机化合物含量限值标准(全文)
    p  为减少VOCs排放,推动京津冀区域大气环境质量改善,北京、天津、河北三地共同制定了《建筑类涂料与胶粘剂挥发性有机化合物含量限值标准》。据悉,该《标准》已于4月12日在三地同步发布,并将于9月1日起同步实施。这是京津冀三地在环保领域发布的首个统一标准。全文如下:/pp style="TEXT-ALIGN: center"img title="111.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/e0c70e09-2e8d-4d5f-94fd-161c105241e3.jpg"//pp style="TEXT-ALIGN: center"img title="112.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/c8fd4e48-1ddd-4f61-9861-758c36c2fdb7.jpg"//pp style="TEXT-ALIGN: left"strong前言/strong/pp 为推进京津冀协同发展战略实施,北京市环境保护局、天津市环境环保局、河北省环境保护厅、北京市质量技术监督局、天津市市场和质量监督管理委员会、河北省质量技术监督局共同组织制定本地方标准,在京津冀区域内适用,现予发布。/pp 本标准为全文强制。/pp 本标准依据GB/T1.1-2009给出的规则起草。/pp 本标准由河北省环境保护厅提出并归口。/pp 本标准起草单位:(北京组)北京市环境保护科学研究院、北京建筑材料检验研究院有限公司、北京建筑大学。(天津组)天津市环境监测中心、北京市环境保护科学研究院。(河北组)河北海航企业管理咨询有限公司、河北安亿环境科技有限公司、河北环学环保科技有限公司、河北省环境科学学会、北京市环境保护科学研究院、河北润峰环境检测服务有限公司、河北晨阳工贸集团有限公司、衡水新光化工有限责任公司、石家庄市油漆厂、河北省粘接与涂料协会、北京惠盟创洁环保科技有限公司。/pp 本标准主要起草人:/pp (北京组)聂磊、高美平、袁勋、高喜超、檀春丽、闫磊、张澜夕、杜晓丽、申前进、邢可欣。/pp (天津组)邓小文、关玉春、吴宇峰、聂磊、崔连喜、张肇元、王效国、杨虹、王琳、刘琨。/pp (河北组)李占广、马贵宝、于海、程娜、聂磊、耿耀宗、耿树行、于欣沛、胡中源、田海宁、凌芹、吴唐健、马瑞兰、贾小芳、刘芳萍、柳坤然。/pp 本标准由河北省质量技术监督局、河北省工商行政管理局、河北省环境保护厅共同组织实施。/pp引言/pp 为贯彻《河北省大气污染防治条例》,降低建筑类涂料与胶粘剂使用过程挥发性有机化合物的排放,改善区域大气环境质量,制定本标准。/pp style="TEXT-ALIGN: center"  strong建筑类涂料与胶粘剂挥发性有机化合物含量限值标准/strong/pp1范围/pp 本标准规定了建筑类涂料与胶粘剂中挥发性有机化合物含量限值要求、检验方法、检验规则、包装标志等内容。本标准适用于京津冀区域内生产、销售和使用的各类建筑类涂料与胶粘剂。/pp2规范性引用文件/pp style="TEXT-ALIGN: left" 下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本标准。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 /pp GB/T3186-2006色漆、清漆和色漆与清漆用原材料取样/pp GB/T6750-2007色漆和清漆密度的测定比重瓶法(ISO2811-1:1997,Panitsandvarnishes-Determinationofdensity-Part1:Pyknometermethod,IDT)/pp GB/T9754-2007色漆和清漆不含金属颜料的色漆漆膜的20° 、60° 和85° 镜面光泽的测定(ISO2813:1994,IDT)/pp GB24408-2009建筑用外墙涂料中有害物质限量GB18582-2008室内装饰装修材料内墙涂料中有害物质限量/pp GB/T22374-2008地坪涂装材料/pp GB/T23986-2009色漆和清漆挥发性有机化合物(VOC)含量的测定气相色谱法/pp GB/T8170-2008数值修约规则与极限数值的表示和判定/pp GB30981-2014建筑钢结构防腐涂料中有害物质限量/pp GB18583-2008室内装饰装修材料胶粘剂中有害物质限量/pp JC1066-2008建筑防水涂料中有害物质限量/pp3术语和定义/pp 下列术语和定义适用于本文件。/pp 3.1挥发性有机化合物(VOC)volatileorganiccompounds/pp 在101.3kPa标准大气压下,任何初沸点低于或等于250℃的有机化合物。/pp 3.2挥发性有机化合物含量(VOC含量)volatileorganiccompoundscontent/pp 按规定的测试方法测试产品所得到的挥发性有机化合物的含量。/pp 注1:外墙涂料、内墙涂料、挥发固化型防水涂料、水性地坪涂料、水性建筑防腐涂料、水基型胶粘剂为产品扣除水分后的挥发性有机化合物的含量,以克每升(g/L)表示。DB13/3005—20172/pp 注2:反应固化型防水涂料、溶剂型地坪涂料、无溶剂型地坪涂料、溶溶剂型建筑防腐涂料、溶剂型胶粘剂为产品不扣除水分的挥发性有机化合物的含量,以克每升(g/L)表示。/pp 注3:外墙与内墙腻子为产品不扣除水分的挥发性有机化合物含量,以克每千克(g/kg)表示。/pp 3.3建筑类涂料architecturalcoatings/pp 用于建筑行业及相关领域,起保护、装饰作用的涂料。本标准包括外墙涂料、内墙涂料、防水涂料、地坪涂料与建筑防腐涂料。/pp 3.4建筑类胶粘剂architecturaladhesives/pp 用于建筑行业及相关领域,通过粘和作用,使被粘物结合在一起的胶粘剂。本标准包括溶剂型胶粘剂、水基型胶粘剂与本体型胶粘剂。/pp 3.5重防腐涂料heavy-dutycoatings/pp 能在严酷的腐蚀环境下应用,并具有长效使用寿命的涂料。/pp4限值要求/pp 产品中挥发性有机化合物含量应符合表1的要求。/pp style="TEXT-ALIGN: center"img title="113.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/38c32925-55b1-430b-b02d-34a5722ba347.jpg"//pp style="TEXT-ALIGN: center"img title="114.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/ca104c90-a330-4a59-ae13-4163b35b2556.jpg"//pp style="TEXT-ALIGN: left"5检验方法/pp 5.1取样产品/pp 取样按照GB/T3186-2006的规定进行。/pp 5.2试验方法/pp 5.2.1外墙涂料中挥发性有机化合物(VOC)的检测按照GB24408-2009附录A的规定进行,其中水分含量的检测按照GB24408-2009附录B进行,密度的检测按照GB/T6750-2007进行。底漆和面漆产品测试结果的计算按照GB24408-2009附录A中A.7.2进行,腻子产品测试结果的计算按GB24408-2009附录A中A.7.1进行。/pp 注:所有腻子样品不做水分含量和密度的测试。/pp 5.2.2内墙涂料与挥发固化型防水涂料中挥发性有机化合物(VOC)的检测按照GB18582-2008附录A的规定进行,其中水分含量的检测按照GB18582-2008附录B进行,密度的检测按照GB/T6750-2007进行。底漆和面漆产品测试结果的计算按照GB18582-2008附录A中A.7.2进行,腻子产品测试结果的计算按照GB18582-2008附录A中A.7.1进行。/pp 注:所有腻子样品不做水分含量和密度的测试。/pp 5.2.3内墙涂料涂膜光泽的检测按照GB/T9754-2007进行,测试条件为(105± 2)℃,烘干2小时。/pp 5.2.4反应固化型防水涂料中挥发性有机化合物(VOC)的检测按照JC1066-2008附录A的规定进行。/pp 5.2.5地坪涂料中挥发性有机化合物(VOC)的检测按照GB/T22374-2008的规定进行。/pp 5.2.6水性建筑防腐涂料中挥发性有机化合物(VOC)的检测按照GB/T23986-2009的规定进行,其中水分含量的检测按照GB18582-2008附录B进行,密度的检测按照GB/T6750-2007进行。涂料产品测试结果的计算按照GB/T23986-2009中10.4进行。/pp 5.2.7溶剂型建筑防腐涂料中挥发性有机化合物(VOC)的检测按照GB30981-2014附录A的规定进行。/pp 5.2.8胶粘剂中挥发性有机化合物(VOC)的检测按照GB18583-2008附录F的规定进行。/pp6检验规则/pp 6.1检验项目/pp 6.1.1本标准所列的全部要求均为型式检验项目。/pp 6.1.2在正常生产情况下,每年至少进行一次型式检验。/pp 6.1.3有下列情况之一时应随时进行型式检验:——新产品最初定型时 ——生产配方、工艺、关键原材料来源及产品施工配比有较大改变时 ——停产三个月后又恢复生产时。/pp 6.1.4销售单位在京津冀区域内销售本标准规定的产品,销售单位应能提供有效的型式检验报告。/pp 6.2检验结果/pp 6.2.1检验结果的判定按照GB/T8170-2008中修约值比较法进行。/pp 6.2.2粉状腻子、反应固化型防水涂料、溶剂型地坪涂料、溶剂型建筑防腐涂料、溶剂型胶粘剂产品报出检验结果时应同时注明产品明示的施工配比。/pp 6.2.3检验结果达到本标准表1的要求时,产品为符合本标准要求。/pp7包装标志/pp 7.1 2017年9月1日起,在京津冀区域内生产、销售本标准规定的产品,除原有产品说明外,需要在包装标志上补充标明以下内容(示例参见附录A):/pp a)本标准规定的产品类型和用途。/pp b)产品所含挥发性有机化合物含量,可以选用以下两种形式之一表述:1)挥发性有机化合物含量值 2)挥发性有机化合物含量不超过表1规定的限值。/pp c)对于施工时需要稀释的产品,则须显示推荐的稀释溶剂和稀释比例(对于用水稀释的建筑类涂料或胶粘剂无需说明)。对于由双组分或多组分配套组成的产品,则须显示各组分的施工配比。/pp style="TEXT-ALIGN: center" img title="115.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/05f2ca36-5a8e-407e-aa41-9ab3d9f036e3.jpg"//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制