抗湿滑性能

仪器信息网抗湿滑性能专题为您整合抗湿滑性能相关的最新文章,在抗湿滑性能专题,您不仅可以免费浏览抗湿滑性能的资讯, 同时您还可以浏览抗湿滑性能的相关资料、解决方案,参与社区抗湿滑性能话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

抗湿滑性能相关的耗材

  • 抗湿滑标签
    本款标签适用于湿滑、表面有霜雾或冻存结冰的试管、微孔板等。特点如下:l 能紧紧粘附在潮湿、冻霜覆盖、结冰的表面;l 使用温度范围为-40℃到70℃;l 与离心机转子兼容、匹配;l 能抗化学物质和有机溶剂的侵蚀;l 适用于塑料、玻璃、金属甚至纸板盒;l 激光打印机成片打印,或用热敏印刷机成卷印刷;订购信息:货号产品名称规格77594-10抗湿滑标签27mm x 13mm, 0.5ml tubes个77594-20抗湿滑标签38mm x 13mm, 1.5ml tubes个77594-30抗湿滑标签38mm x 19mm, 2.0ml tubes个77594-40抗湿滑标签9.5mm 直径, 0.5ml tubes个77594-50抗湿滑标签51mm x 6mm 微孔板个77594-60抗湿滑标签1.50"×0.50"-3?8"直径, 1.5ml tubes个价格仅供参考,欢迎联系海德公司获取详细产品信息。
  • 迈拉膜(极佳的抗化学腐蚀性能)TF-160#
    土壤样品杯膜、XRF測試用的麥拉膜材質、美国Premier样品膜TF-160# 品名:XRF样品膜Sample Film 型号:所有型号CAT. NO TF-160# 品牌:美国Premier Lab (原装进口) 货期:现货 起订量:1盒以上。一、美国Premier XRF样品膜:美国Premier Lab Supply公司专注于X射线光谱分析XRF的样品制备领域,以高质量和全面的X射线的样品制备产品线享誉。美国Premier X-ray样品膜(X-ray Film)以其极低的(几乎不含)杂质和厚度均匀而严格生产,极好的柔韧性和抗化学腐蚀性,保证检测结果的可靠性和重现性,被广泛应用于XRF样品制备、检测过程,适用于各类X-ray光谱仪(XRF:WD-XRF、ED-XRF)。X-ray Film能用于固体、液体、粉末、颗粒、土壤等样品XRF检测,适用于RoHS&WEEE检测、油品成份分析、金属成份分析等。二、Premier 样品膜特点: 有卷状和片状,多种规格、尺寸、数量可供选择; 柔韧性强、方便、耐用; 极佳的X-ray射线穿透性,适合各类XRF光谱仪; 极佳的抗化学腐蚀性能,不溶于有机溶剂,不污染待测样品; (几乎不含)痕量杂质,特别适合于轻质元素的限量检测。三、适用于各种品牌X荧光光谱仪XRF:日本岛津shimadzu、牛津仪器Oxford、斯派克Spectro、布鲁克Bruker、日本精工SII、日本电子JEOL、日本理学Rigaku、日本堀场Horiba、热电Thermo、帕纳科Panalytical、尼通Niton、伊诺斯Innox-X、天瑞Skyray、Jordan Valley、ARL、Asoma、Kevex、Metorex、Siemens、Spectrace、Philips、Fisons。四、XRF样品膜目录:美国Premier X-ray样品膜种类:(1)、Hostaphan膜;(2)、Kapton膜:聚酰亚胺膜,卡普顿膜;(3)、Mylar膜:聚酯薄膜,迈拉膜,麦拉膜;(4)、Polypropylene膜:聚丙烯膜。目录编号:CAT. NO 薄膜材料 厚度 长度 数量 描述TF-160 Mylar迈拉膜 6.0μ(0.24mil) 76mm x 91.4m 1卷/盒 Mylar?Rolls连续卷轴
  • VWR防滑且抗静电洁净室靴套
    VWR Maximum SF靴套是整个VWR防护服系列中最洁净也是最耐久的产品。其采用聚丙烯纺粘法织物(SPP)制成,并涂有透气聚乙烯薄膜,旨在优化阻隔防护、清洁度和舒适性。防滑且抗静电阻液、密封防水卓越摩擦系数,确保最大摩擦力最大湿滑表面防滑性能在经ISO认证的工厂进行测试和制造,并有着严格的程序控制。由独立实验室测试进行批量控制和检验。

抗湿滑性能相关的仪器

  • 厂家简介: 德国Petrotest公司是世界著名的石油产品分析仪器专业厂家,公司于1873年由Mr.Berthold Pensky宾斯基先生(注:宾斯基&mdash 马丁闭口闪点仪发明人之一)创办,至今已有近140年历史。Petrotest公司于1994年荣获ISO9001 质量体系认证证书,其开发研制的全自动油品分析仪具有世界先进水平,分析结果精确可靠,使用操作安 全简便。符合ASTM(美国试验与材料协会标准),ISO(国际标准),DIN(德国国家标 准),IP(英国石油学会标准),FTM(美国联邦标准),及其它各种等小标准。在全世界拥有无法计数的广大用户。 2012年2月底,Petrotest公司正式成为安东帕公司的全球第十七个子公司,并改名为Petrotest GmbH,A company of Anton Paar, 同时由安东帕公司全面负责Petrotest公司产品在国内的相关业务。目前Petrotest公司产品涵盖闪点测试、馏程测定、燃料油检测(胶质、氧化 安定性测定、蒸汽压测定、铜片腐蚀等),润滑油测定(抗乳化性能、泡沫特性、防锈测定、摩擦磨损等),沥青测定(软化点、延度、脆点、针入度等),针、锥 入度测定等。依托于安东帕公司精湛的制造工艺,以及一贯的研发投入,Petrotest公司将会在今后为行业客户提供更优质的产品和服务。标准和认证:ASTM D 1401,ISO 6614,DIN 51599 (obs.),FTM 791-0380 (obs.),IP 412,JIS K2207,JIS K2520性能描述:· 全透明浴槽,8个测试位,2个预热位· 数字式温度控制系统· 独有的低液位、超温及泄漏保护· 数字显示搅拌速度,搅拌速度可调· 样品装取方便· 5分钟自动停止搅拌并提示报警
    留言咨询
  • SH116润滑脂抗水淋性能试验仪按照SH/T0109-2004、ASTMD1264《润滑脂抗水淋性能测定法》标准来测定润滑脂对水淋的抵抗能力, 用于规定的实验条件下,在38℃和79℃试验时来评价润滑脂抵抗被水冲出轴承能力的新型产品。38℃和79℃润滑脂抗水淋性能试验仪SH 116 润滑脂抗水淋性:滑脂抗水淋性能是润滑脂在运转轴承中抵抗水冲击的能力,而润滑脂的抗水喷雾性能则是润滑脂在平板上抵抗水雾冲击能力.产品型号 SH116产品名称 润滑脂抗水淋性能试验仪生产厂家 山东盛泰仪器有限公司检测项目 用于规定的实验条件下,在38℃和79℃试验时来评价润滑脂抵抗被水冲出轴承能力的新型产品。符合标准 按照SH/T0109-2004、ASTMD1264《润滑脂抗水淋性能测定法》简单技术特点或参数水浴温度通过PT100传感器(电阻测温包)输入到温控器经温控器内部运算电路处理,获得一控制信号,将这一控制信号输出,从而完成加热控制技术参数及性能特点:● 水浴温度通过PT100传感器(电阻测温包)输入到温控器经温控器内部运算电路处理,获得一控制信号,将这一控制信号输出,从而完成加热控制● 水流喷射量可以由循环泵、大流量阀、喷头等直接控制● 采用电加热棒加热方式,加热速度快● 按标准来选购球轴承,计时器可精确到0.1S● 水槽容量 :≥750ml ● 水槽控温范围:室温~100℃,连续可调● 轴承转速精度: 600±30r/min● 水流喷射精度: 5±0.5ml/s(两阀调节)● 温度计 : 0~100℃ 分格值1℃● 水槽控温精度: ±2℃● 功 率: 600W● 轴承规格 : 204型 ● 外形尺寸 :300×265×425mm ● 仪器重量 :46kg 装箱单 序 号名 称数 量单 位备 注1主机1台2电源线1根3轴承2个4说明书1份5电源线1 根6装箱单1 份7合格证保修卡1份
    留言咨询
  • SH116润滑脂抗水淋性能试验仪按照SH/T0109-2004、ASTMD1264《润滑脂抗水淋性能测定法》标准来测定润滑脂对水淋的抵抗能力, 用于规定的实验条件下,在38℃和79℃试验时来评价润滑脂抵抗被水冲出轴承能力的新型产品。 润滑脂抗水淋性:滑脂抗水淋性能是润滑脂在运转轴承中抵抗水冲击的能力,而润滑脂的抗水喷雾性能则是润滑脂在平板上抵抗水雾冲击能力。SH116润滑脂抗水淋性能测定仪 产品型号 SH116产品名称 润滑脂抗水淋性能试验仪生产厂家 山东盛泰仪器有限公司检测项目 用于规定的实验条件下,在38℃和79℃试验时来评价润滑脂抵抗被水冲出轴承能力的新型产品。符合标准 按照SH/T0109-92、ASTMD1264《润滑脂抗水淋性能测定法》简单技术特点或参数水浴温度通过PT100传感器(电阻测温包)输入到温控器经温控器内部运算电路处理,获得一控制信号,将这一控制信号输出,从而完成加热控制 技术参数及性能特点:● 水浴温度通过PT100传感器(电阻测温包)输入到温控器经温控器内部运算电路处理,获得一控制信号,将这一控制信号输出,从而完成加热控制● 水流喷射量可以由循环泵、大流量阀、喷头等直接控制● 采用电加热棒加热方式,加热速度快● 按标准来选购球轴承,计时器可精确到0.1S● 水槽容量 :≥750ml ● 水槽控温范围:室温~100℃,连续可调● 轴承转速精度: 600±30r/min● 水流喷射精度: 5±0.5ml/s(两阀调节)● 温度计 : 0~100℃ 分格值1℃● 水槽控温精度: ±2℃● 功 率: 600W● 轴承规格 : 204型 ● 外形尺寸 :300×265×425mm ● 仪器重量 :46kg 山东盛泰仪器有限公司对出售给贵方的仪器提供如下质量保证:----提供的仪器材料是全新的、符合国家质量标准和具有生产厂家合格证的货物;----提供的材料、主要元器件符合技术资料中规定的技术要求;----设备整机质量保证期为一年(不含易损件正常磨损)。----在质量保证期内出现的仪器质量问题,我方负责免费维修。由于使用方责任造成设备故障,我方负责维修,合理收费。 ----设备终生优惠供应零部件,整机终生维护维修。 ----保质期满后,使用方需要维修及技术服务时,我方仅收成本费。 装箱单 序 号名 称数 量单 位备 注1主机1台2电源线1根3轴承2个4说明书1份5电源线1 根6装箱单1 份7合格证保修卡1份
    留言咨询

抗湿滑性能相关的方案

  • SSBR 胎面胶抗湿滑性能研究
    研究炭黑和自拨黑料强榕噩丁辈橡肢( SSBR ) 胎面脏的抗温晴性能,井分析抗湿惰性能的影响因章. 结果量明,在一定温度和速度范围内,自提黑补强SSBR 胎面胶抗湿晴性能优于炭黑补强SSBR 胎面肢z 仅果用动在粘弹性能理征胎面肢的抗湿滑佳能是不完善的,抗湿惰性盹量温度、速度和跤料硬度等的嚣响,是润情作用和动在帖弹性能等共同作用的结果.
  • 润滑油的乳化及其抗乳化性能的测定方法
    1润滑油的乳化许多润滑油,如齿轮油、汽轮机油和船用油,在使用过程中,不可避免地混人冷却水、冲洗水,冷凝水及环境中其他形式的水及水汽。如果油 品不具备将混入油中的水迅速彻底分离的能力,油品就会乳化,从而降低甚至失去油品的润滑性能,加速油品的氧化变质,加剧机件的磨损和设备腐蚀[P.所以,许多油品对其抗乳化性能都提出了要求。如表1所示[2。由于基础油中未除净的天然胶质、环烷酸、磺酸盐,以及为保证润滑油具有良好的综合性能必须添加!的清净分散剂、抗氧防腐剂、防锈剂等,都具有降低油/水表面张力的作用﹐使油水易于分散成小颗粒[,同时这些物质吸附于油/水界面上,形成坚固的界面膜﹐会阻碍液滴的聚结v使乳状液稳定+。因此,润滑油含有大量具有乳化作用的添加剂是提高润滑油抗乳化性能的难点之一。另外,油品的粘度越大,对分散相液滴的运动的阻滞作用也越大,液滴就更难凝集。[5。这也是润滑油抗乳化性能差的原因。当润滑油中混入的水是少量的,乳状液主要呈现W/O的形式,所以,少量水存在下的乳状液的研究尤为重要。
  • 食盐包装抗穿刺性能的测试方法
    本文以某品牌食盐包装用塑料复合膜的抗穿刺力测试过程为例,介绍了测试食品包装抗穿刺性能的试验方法,并通过对试验原理、设备XLW(EC)智能电力拉力试验机参数、适用范围及操作过程等内容的介绍,为企业监测包装膜的抗穿刺性能提供参考。

抗湿滑性能相关的论坛

  • 润滑油抗乳化性能的测定法

    [color=#333333]1. [/color][color=#333333]目前被广泛采用的抗乳化性测定方法有两个。其一是油和合成液抗乳化性能测定法([/color][color=#333333]GB/T7305-87[/color][color=#333333]),本方法与[/color][color=#333333]ASTMD1401-67[/color][color=#333333]([/color][color=#333333]77[/color][color=#333333])等效。本方法适用于测定油、合成液与水分离的能力。它适用于测定[/color][color=#333333]40[/color][color=#333333]℃[/color][color=#333333]时运动粘度为[/color][color=#333333]30-100mm2/s[/color][color=#333333]的油品,试验温度为([/color][color=#333333]54±1[/color][color=#333333])[/color][color=#333333]℃[/color][color=#333333]。它可用于粘度大于[/color][color=#333333]100mm[/color][color=#333333]2/s[/color][color=#333333]油品,但试验温度为([/color][color=#333333]82±1[/color][color=#333333])[/color][color=#333333]℃[/color][color=#333333]。其他试验温度也可以采用,例如[/color][color=#333333]25[/color][color=#333333]℃[/color][color=#333333]。当所测试的合成液的密度大于水时,试验步骤不变,但这时水可能浮在乳化层或合成液上面。其二是润滑油抗乳性测定法([/color][color=#333333]GB/T8022-87[/color][color=#333333])本方法与[/color][color=#333333]ASTMD2711-74[/color][color=#333333]([/color][color=#333333]79[/color][color=#333333])方法等同采用。本方法是用于测定中、高粘度润滑油与水互相分离的能力。本方法对易受水污染和可能遇到泵送及循环湍流而产生油包水型乳化液的润滑油抗乳化性能的测定具有指导意义。汽轮机油的抗乳化能力通常按[/color][color=#333333]SH/T34009-87[/color][color=#333333]方法进行,将[/color][color=#333333]20ml[/color][color=#333333]试样在[/color][color=#333333]90[/color][color=#333333]℃[/color][color=#333333]左右与水蒸汽乳化,然后把乳化液置于约[/color][color=#333333]94[/color][color=#333333]℃[/color][color=#333333]的浴中,测定分离出[/color][color=#333333]20ml[/color][color=#333333]油所需的时间。这个方法是完全模拟汽轮机油的工作条件,是测定汽轮机油抗乳化性的专用方法。[/color]

  • 抗起毛起球性能改善措施

    织物的起毛起球机理和评估织物的抗起毛起球性能测试方法的介绍,有助于制造商在开发新产品或对抗起毛起球性能有一定要求的面料时,从源头考虑,选择合适的原材料、织造工艺,综合考虑织物的各方面指标,使设计、性能、品质以及成本达到最佳组合,以此为目标,有的放矢。一旦成为最终产品,如检测结果不能满足要求,则为时已晚,即使采取补救措施也往往不能较大程度地改善。

抗湿滑性能相关的资料

抗湿滑性能相关的资讯

  • 石河子大学王振华课题组《Water》:基于水-沙运动特性的分流对冲式滴灌灌水器抗堵性能优化
    滴灌灌水器位于滴灌系统的最末级,其内部流道的尺寸通常介于0.5~1.2 mm之间,能够将管道中的有压水转变为点滴状水流实现节水灌溉。滴灌灌水器的水力性能决定了灌溉均匀性和灌溉质量。已有研究结果表明,改变灌水器内部流道结构可以显著提升灌水器的水力性能。然而,为了解决灌溉水资源短缺的问题,许多地区使用高含沙量的水源作为灌溉水源,滴灌灌水器堵塞的问题也随之而来。因此在提升滴灌灌水器水力性能的同时,还需对灌水器流道开展结构优化以提升滴灌灌水器的抗堵塞性能,进而提升滴灌系统的使用寿命。近期,石河子大学王振华教授团队提出了一种分流对冲式滴灌灌水器和基于水-沙运动特性的灌水器抗堵优化方案。该团队利用新型一体化打印技术(nanoArch S140,摩方精密)实现了滴灌灌水器流道试件的高精度3D打印,并开展了物理试验和数值模拟研究。该研究提出的灌水器抗堵优化方案在维持灌水器水力性能的前提下,能够使灌水器的抗堵塞性能提升60%。相关成果以“Anti-Clogging Performance Optimization for Shunt-Hedging Drip Irrigation Emitters Based on Water-Sand Motion Characteristics”为题发表在《Water》期刊上。图1. (a)分流对冲式流道结构参数及打印试件。(b)灌水器性能试验平台。(c)灌水器流量试验值和模拟值的误差曲线。分流对冲式流道的结构参数及打印试件如图1(a)所示,流道由8个“回”字形流道单元组成,每个流道单元宽2.6 mm,深0.8 mm。通过电子显微镜对试件进行测量,其打印精度达0.01 mm,满足试验要求。将灌水器试件置于图1(b)所示的试验平台上测定其流量,如图1(c)所示,对不同压力下的流量实测值进行拟合得到灌水器的流态指数为0.479,水力性能优良,流量实测值与流量模拟值的误差在1.29~3.21%之间,证明了本文数值模拟方法、结果及精度的准确性。图2. (a)分流对冲式流道内部流场分布。(b)不同粒径沙粒在流道中的运移轨迹及速度变化。(c)3g/L 的浑水浓度下流道堵塞实物图。图2(a)为通过数值模拟得到流道中深截面处的速度和压力分布云图。模拟结果表明,每个流道单元内的速度分布一致,定义导流件背部为漩涡区I,分流件背部为漩涡区Ⅱ,其余区域为主流区Ⅲ,其中水流对冲区为区域Ⅲ*。主流区Ⅲ的水流流速介于1.21~4.53 m/s之间,漩涡区I和Ⅱ中的水流流速介于0.11~1.21 m/s之间。0.05、0.10和0.15 mm沙粒的运动轨迹及速度如图2(b)所示,沙粒在漩涡区I和Ⅱ中的运移速度在0.06~1.10 m/s之间,沙粒容易发生沉积,相较而言,由直角边壁包围形成的漩涡区I不仅促使沙粒稳定沉积,还使沙粒在大漩涡的作用下互相粘结形成团聚体,造成灌水器堵塞的风险较高。这与浑水试验的结果一致,如图2(c)所示,沙粒在漩涡区Ⅰ中持续堆积,导致流道堵塞。图3. (a)不同粒径沙粒在流道中的跟随性变化。(b)沙粒-流道边壁-漩涡相互作用关系示意图。图4. (a)结构优化示意图。(b)优化后流道的速度分布及沙粒运动轨迹。(c)优化前(SHDIE1)、后(SHDIE2)分流对冲式灌水器的水力特性曲线。(d)优化前(SHDIE1)、后(SHDIE2)分流对冲式灌水器短周期抗堵塞试验结果。(e)3g/L 的浑水浓度下优化后流道堵塞实物图。进一步分析沙粒-流道边壁-漩涡区Ⅰ的相互作用关系,如图3(a)所示,沙粒与流道边壁的敏感区域发生碰撞会导致其运动方向突变并进入漩涡区Ⅰ沉积,这是造成流道堵塞的重要原因。通过统计沙粒与边壁的碰撞位置,确定出A、B、C三个壁面容易导致沙粒进入漩涡区沉积的敏感区域范围,分别为0≤LA≤0.58,0≤LB≤0.64和0≤LC≤0.90 mm。图3(b)显示了不同粒径沙粒沿流道运动时对水流的跟随性变化。沙粒粒径越大,速度幅值比η和速度相位差β的数值越小,跟随性也就越差,这表明粒径越大的沙粒与流道边壁的敏感区域碰撞后越容易进入漩涡区沉积。针对敏感区域范围开展结构优化,使沙粒顺畅通过所有流道单元以提升流道的抗堵塞性能。如图4(a)所示,采用直线几何的方法对阻挡沙粒运动的A面的敏感区域0≤LA≤0.58 mm进行切除,对B、C面敏感区域0≤LB≤0.64 mm和0≤LC≤0.90 mm构成的直角三角形空间所覆盖的低速漩涡区进行填充,得到优化后的分流对冲式流道。对优化后的分流对冲式流道及其灌水器再次开展数值模拟和清水、浑水物理试验,结果分别如图4(b)、(c)、(d)和(e)所示,优化后流道的主流区面积占比提升21%,沙粒的运动轨迹变得光滑有规律。清水试验下优化后流道的水力性能为0.486,仅下降1.46%;浑水试验下优化后流道在第24次灌水后发生堵塞,抗堵塞性能大幅提升60%。基于沙粒运动特性明确流道边壁敏感区域,进而开展的结构优化方案具备可行性。
  • “疏水分子筛”助力安光所研发抗湿型高性能硫化氢传感器
    近日,安光所利用“疏水分子筛”研发抗湿型高性能硫化氢(H2S)传感器,相关成果以“基于Pt锚定CuCrO2(铜铬氧)的高性能H2S气体传感器”,“PDMS(聚二甲基硅氧烷)膜在抗湿、高选择H2S气体传感器中的双重功能”为题,分别发表于ACS Applied Materials & Interfaces和Chemical Communication杂志上。   H2S是一种无色、易燃易爆、有强腐蚀性的剧毒气体,广泛存在于石化、天然气、矿井、下水道、养殖场、废水处理厂、垃圾填埋场等半封闭和高湿度场所。近年来,半导体型H2S传感器取得了长足的进展,包括铜铁矿、氧化锌(ZnO)、氧化铜(CuO)在内的多种氧化物在干燥空气中都对H2S具有较高的响应。然而,传感器在实际使用时必须暴露在湿度环境中,环境中的水汽是一种强干扰性气体,且水汽(湿度)随时间、地点、季节、天气等因素急剧变化,这给传感器的浓度标定带来了较大干扰。此外,H2S是一种强腐蚀性气体,且腐蚀性随湿度增加而增大,导致传感器在高湿度环境下快速腐蚀中毒、寿命大幅缩短,成为传感器走向实际应用的一个重要挑战。   为解决上述问题,安光所激光中心孟钢研究员团队在前期基于Pt单原子敏化CuCrO2的高灵敏H2S传感器基础上,通过热蒸发法在CuCrO2敏感层上蒸镀了一层基于聚二甲基硅氧烷(PDMS)的疏水、透气薄膜。PDMS性质稳定、本征疏水,可有效隔绝环境中水汽的侵入,减弱环境湿度对传感器的影响,同时显著提升传感器在湿度环境中的长期稳定性;此外,PDMS膜中大量微孔可有效阻挡甲硫醇分子(结构、性质同H2S极相似,直径略大),充当“分子筛”的作用,进一步提升了传感器对H2S的选择性,实现了“一石二鸟”的功效。基于PDMS包覆CuCrO2的H2S传感器,工作温度较低(100 ℃)、湿度影响小、响应高(50%相对湿度下对5 ppm H2S的响应高达151)、选择性高、长期稳定性好,为H2S传感器在石化、天然气等领域的实际应用奠定了重要基础。   以上研究工作由中科院国际合作及安徽光机所所长基金等项目资助。
  • 应用 | 新型亲水抗菌硅橡胶口腔印模材料的制备及性能研究
    研究背景硅橡胶口腔印模材料已成为口腔固定修复临床中首选的印模材料。但硅橡胶为主链由硅氧饱和键构成的聚硅氧烷化合物,为强疏水性物质,影响印模材料对口腔软硬组织的细节再现性。聚醚改性硅油是一类性能优良的非离子型表面活性剂,在其分子结构中,既存在亲水性的聚醚链段,又存在可以与有机硅材料实现良好共混的聚二甲基硅氧烷链段。本文结合使用了亲水性聚醚改性硅油及新型纳米抗菌无机填料,制备出兼具亲水及抗菌性能的新型多功能硅橡胶口腔印模材料,探讨相关性能。材料与方法硅橡胶口腔印模材料的基本配方具体见表1。表 1 硅橡胶口腔印模材料基本配方润湿性测试:按1∶1 比例称取硅橡胶基质组分与催化组分,将二者混合均匀后,置于涂有脱模剂的聚四氟乙烯模具中(90 mm×90 mm×2 mm),室温下加压聚合,待硅橡胶固化后脱模。选择表面平整光滑、无任何缺陷的部分裁切为正方形试样(30 mm×30 mm×2 mm),每种材料制备3个试样。对照组按照厂家操作要求,同样制备上述试样。用75%乙醇溶液将试样表面清洗干净,备用。测试仪器为KRÜ SS DSA100S接触角测量仪。将待测硅橡胶试样平整放于水平样品台上,采用座滴法测量各试样的静态接触角。液滴体积设为2.0 μL,液滴出水速度设为2.67 μL/s。设液滴释放至试样表面与其接触的时刻为t=0,记录此时接触角大小,并在t=60 s、t=120 s 时刻记录接触角大小,以观察静态接触角随时间的变化。为防止偶然误差,在每个试样的不同位置测量3次取均值。DSA100接触角测试仪结果与讨论润湿性测试结果:各组静态接触角测试结果见图1。在相同时间节点下, 各组接触角之间差异无统计学意义(P0.05);而在不同时间节点,同一组别的接触角随时间延长逐渐减小,均在0~ 60 s内有明显下降(P 0.05)。图 3 各组静态接触角测试结果Fig 3 Results of contact angle test in each group硅橡胶属于疏水性印模材料,其表面润湿性较差,这主要由于其网状结构骨架为饱和硅氧键,且支链为非极性的烷基或烷氧基。这不仅会在取模时影响印模材料对预备体、牙龈等软硬组织的细节再现性,还会使灌注的石膏模型上产生孔隙、气泡,影响最终修复体的精确度与准确性。为了克服这一问题,通常采用表面改性或本体改性的方法对硅橡胶进行润湿性改善。表面改性主要包括等离子体表面处理、表面接枝改性及表面涂层改性等,但由于其需要特殊设备及额外工序处理,并且不能解决在取模时印模材料与牙体组织之间的润湿问题,因此本体改性的方式更加受到广泛关注。本体改性即通过共混法向材料中加入某些亲水物质,使材料本身具有一定的亲水性。聚醚改性硅油是一类性能优良的非离 子型表面活性剂,在其分子结构中,既存在亲水性的聚醚链段,又存在可以与有机硅材料实现良好共混的聚二甲基硅氧烷链段。经过实验研究,确定加入6%的聚醚改性硅油可在不影响硅橡胶力学性能的同时,获得良好的亲水性,而且润湿性测试结果也与本研究使用的商品化亲水硅橡胶无显著差异。本研究还发现,在不同时间节点,各组的接触角随时间延长而逐渐减小,均在0~60 s内有明显下降 (P0.05),这主要是由于硅橡胶材料中的亲水性表面活性成分逐渐析出所致。本文有删减,详细信息请参考原文:张雪娇,李健新,蒋凤,等.新型亲水抗菌硅橡胶口腔印模材料的制备及性能研究[J].华西口腔医学杂志,2022,40(05):541-548.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制