土壤质量数据可视化

仪器信息网土壤质量数据可视化专题为您整合土壤质量数据可视化相关的最新文章,在土壤质量数据可视化专题,您不仅可以免费浏览土壤质量数据可视化的资讯, 同时您还可以浏览土壤质量数据可视化的相关资料、解决方案,参与社区土壤质量数据可视化话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

土壤质量数据可视化相关的耗材

  • 6500 系列精确质量数四极杆 G6520BA
    产品特点:Agilent 6500 系列精确质量数四极杆-飞行 时间液质联用系统* 低于 1 ppm 的 MS 和 2-4 ppm 的 MS/MS 质量准确度提高了小分子鉴定的可信度,降低了蛋白质数据库检索的假阳性率* 埃托摩尔到低飞摩尔的超高灵敏度有助于您分析痕量化合物* 每秒高达 20 张谱图的数据采集速率保证了与快速 LC 和高通量方法的最大兼容性* 25-20,000 m/z 的宽质量范围适用于小分子、多肽或全蛋白的分析* 在 6530 精确质量数四极杆-飞行时间液质联用系统上具有安捷伦的喷雾流技术,为多种应用提供最高的灵敏度, 包括候选药物分析和痕量食品污染物、代谢产物或生物标志物的分析* MassHunter 工作站软件的完全自动化数据分析方法可以充分发掘来自安捷伦四极杆-飞行 时间液质联用系统的精确质量数质谱数据的海量信息订购信息:Agilent 6500 系列精确质量数四极杆-飞行时间液质联用系统说明部件号6520 精确质量数四极杆-飞行时间液质联用系统G6520BA6530 精确质量数四极杆-飞行时间液质联用系统G6530AA
  • 精确质量数 TOF LC/MS 系统 G6230AA
    产品特点:Agilent 6200 系列精确质量数 TOF LC/MS 系统至尊高精度飞行时间质谱技术,超过其它任何 TOF 系统Agilent 6200 精确质量数飞行时间液质联用系统采用了至尊高精度飞行时间技术,紧凑的台式仪器设计,具有无与伦比的速度和性能,适用于确认合成化合物、发现生物标记物、 鉴定杂质、筛查农药,以及表征全蛋白质。* 典型质量准确度低于 1 ppm,提高了结果的可靠性,减少了假阳性率* 数据采集速率高达每秒 40 张谱图,保证得到最高的数据质量且与快速色谱兼容* 高达 5 个数量级的质谱动态范围可以在即使丰度更高的化合物存在时检测痕量目标物* 皮克级的柱上灵敏度可以在极低浓度下检测到杂质或生物标志物* 全蛋白质分子量的超准确测定,可对重组治疗药物进行快速质量检测* 6230 精确质量飞行时间液质联用系统具有安捷伦的喷雾流热梯度聚焦,在最佳 LC 流速条件下,MS 和 MS/MS 灵敏度提高了 5 到 10 倍,分析结果的可靠性更高* MassHunter 工作站软件的全自动化数据分析方法可以充分发掘来自安捷伦的飞行时间液质联用系统的精确质量数质谱数据的海量信息订购信息:Agilent 6200 系列精确质量数 TOF LC/MS 系统说明部件号6230 精确质量数 TOF LC/MS 系统G6230AA6224 精确质量数 TOF LC/MS 系统G6224AA
  • MPS-2 土壤水势传感器
    MPS-2土壤水势传感器可以很方便地插入到土壤剖面坑中,在其周围包裹上湿土即可。测定和记录非常简单。免维护、无需校准即可测量较大范围的土壤水势(-5 至 -500 kPa (pF 1.71 至 pF 3.71))无需灌水,超大量程使得MPS-2成为测量自然系统水势的理想传感器,特别是张力计无法测量的气穴。MPS-2增加了温度测量功能,可用于估算部分结冰土壤的水势。MPS-2也可使用串口或SDI-12通讯方式与其他数据采集器系统整合(如Campbell Scientific)。需要掌握编程技能,编写一些采样编程。技术参数精度土壤水势:读数的± 25% 或 -5 ~ -100 kPa;土壤温度:±1°C分辨率土壤水势:0.1 kPa;土壤温度:0.1°C测量范围土壤水势:-5 ~ -500kPa (pF 1.71 ~ pF 3.71);土壤温度:-40 ~ 50°C测量速度150 ms平衡时间10 min. 至 1 hr. 与土壤水势有关传感器类型带校准陶瓷板的频域热敏电阻输出方式RS232 (TTL) with 3.6 volt levels或 SDI-12通讯协议供电3.6 - 15 VDC, 等待状态0.03 mA, 150ms测量状态期间达最大值10 mA缆线长度5m,可定制其它长度接口类型3.5mm 耳机接口或镀锡裸线接口(3线头)工作环境-40 ~ 50°C尺寸9.6 cm (l) x 3.5 cm (w) x 1.5 cm (d)支持数采(标配不含)Campbell Scientific: 所有带串行I/O接口的数采,包括CR10X, CR23X, any CRBasic type logger (CR850, 1000, 3000, etc.)其他:能够采集3.6-15V激发数据的系统,并且具备串口或SDI-12通讯方式。产地:美国

土壤质量数据可视化相关的仪器

  • 主要功能:自动监测4个不同深度或不同位点土壤的含水率和温度,结合降雨量,深入研究土壤墒情。同时结合图像自动获取模块和无线传输模块,可远程可视化判断植物的生长状态,尤其是萎蔫情况。应用领域:田间的墒情地精确和实时监测主要技术参数: l 采样间隔时间:1-60minl 可连接传感器数量:9个l 土壤温度:测量范围:0~饱和;分辨率:0.1%;准确度:3%l 土壤水分:测量范围:-32~100℃;分辨率:0.1℃;准确度:0.5℃l 雨量:分辨率0.25mm,精度:±2%l 自动成像模块:自定义自动成像时间,获取田间实时生长图片l 无限传输模块:定时将田间生长情况的图片和墒情等数据,自动远程传输至指定IP地址或网络产地:美国Spectrum
    留言咨询
  • 价格仅作为参考,我司配置有很多种,具体价格根据需求咨询在线客服或者拨打电话,谢谢!奥斯恩专注环保监测行业10年,生产商直接销售售后有保证,请客户放心选购。 奥斯恩环保大数据云平台,已获得多项软件著作权,通过现场端设备对环境颗粒物、空气质量、挥发性有机物、气象等进行监 测,并将监测数据在软件系统进行质控、分析以及应用。系统提供污染“时”、“空”、“物”分析,从而为辖区环境空气质量监 管和污染来源分析提供科学合理的决策支持。数据详情可进行多元化展示,国控站点数据同屏输出,智能分析比对,生成分析报表 ;结合大数据分析模型,由点及面,网格化覆盖,刻画污染扩散轨迹,实现污染溯源,趋势预测,同时具备数据监管大屏,直 观呈现数据变化动态,充分满足监管单位的监测需求。 奥斯恩环境监测产品包括大气、土壤、水质等不同的应用领域,针对这各大领域,开发出了各类子产品的应用平台,满足不同应用领域的需求。 可实现对各种类型污染源监测点的监测数据进行收集、汇总、统计、分析,通过电脑端、手机端等方式对污染排放状况 进行实时跟踪、视频监控、超标报警、历史查询、设备联动等功能,具有现场报警、报警推送等多种报警通知。 平台数据大屏,显示所有前端设备的实时状态和监测数据,便于管理部门更好地实施污染排放情况的全局监控、预警和协调调 度,及时控制超标排放,避免环境污染扩大。
    留言咨询
  • 主要功能:通过自动成像技术,可实现定时获取田间农艺性状图片,同步结合气象、土壤、农作物生长等指标。可实现全方位、多角度对田间作物生长情况的监测。再结合远程传输技术,可实现远程可视化监测作物田间农艺性状应用领域: 用于农业、林业、气象、生态、环境等监测领域主要技术参数: 风向:分辨率1°,精度:±3°风速:量程0,1~322km/h,精度:±5%温度:-32~100℃,精度:±0.5℃湿度:10~100% RH @5 to 50℃ 精度:±3%雨量:分辨率0.25mm,精度:±2%辐射: 0~1500 Wm-2 ,精度:±5%露点:-73~60℃;精度:±2℃自动成像模块:自定义自动成像时间,获取田间实时生长图片无限传输模块:可将实时图片、气象、土壤和农作物生长等参数传输至指定地址或网络可选传感器:光合有效辐射:测量范围0~2500μmol m-2 s-1紫外辐射:测量波段:250nm~400nm;范围:0~200μmol m-2 s-1;精度:±5%气压:标准范围:880~1080hPa;精度:±1.7hPa;高海拔版范围:635~1121hPa;精度:±1.9hPaCO2浓度:测量范围:0~4000ppm;精度:±5%土壤温度:测量范围:0~饱和;分辨率:0.1%;准确度:3%土壤水分:测量范围:-32~100℃;分辨率:0.1℃;准确度:0.5℃土壤水分/电导/温度三合一:土壤水分:0~饱和 分辨率:0.1% 准确度:3%;土壤温度:0.5~80℃ 分辨率:0.1℃ 准确度:0.6℃;土壤电导率:0~10ms/cm 分辨率:0.01ms/cm 准确度:±2%叶面湿度:0(干燥)~15(湿润)产地:美国Spectrum
    留言咨询

土壤质量数据可视化相关的试剂

土壤质量数据可视化相关的方案

  • 使用TIBCOSpotfire® 和Elm空气传感网络实现城市空气质量数据可视化取得的进
    环境空气质量直接影响到我们居住的世界及在其中的生活经历。随着对工业活动和旅游的需求增大,尾气排放、地面臭氧和颗粒物等污染物水平日益受到人们关注。空气污染物浓度增加对植物光合作用、落叶降解等产生负面影响,降低植物防御特定虫害和疾病的能力,显著影响植物和其他动物健康,影响范围小至市镇公园、大至国家森林1。本调查使用TIBCO Spotfire® 将马萨诸塞州波士顿Elm空气传感网络采集的空气质量数据可视化,确定并深入探讨TIBCO Spotfire® 主要功能,可用于丰富我们对空气质量的理解。此次可视化探索的目标是理解TIBCO Spotfire® 如何利用各种工具,将污染事件和监测工作联系起来,确定城市空气质量及其环境影响之间的潜在关联。
  • 使用TIBCO软件土壤无机元素仪表盘调查分析英国土壤质量
    TIBCO Spotfire 软件的土壤无机元素仪表盘可以通过将复杂数据可视化图像化,通过这种方式人们可以快速理解,规避不当的信息传递。本研究利用土壤无机元素仪表盘将从英国地质调查所下载的英国部分区域的土壤质量数据图形化可视化。通过比较这些测试结果建立基线数据,然后通过持续检查数据的正偏离和负偏离波动,来确定数据的变异是否是局部相互作用引起的。英国地质调查所从60 年代末开始致力于环境地球化学基线的调查,每年在全英国的各个地方采集样品。这些从指定的城镇采集回来的样品在90 年代末到2000 年初分别测试完成并及完成统计工作。
  • PerkinElmer:使用TIBCO软件土壤无机元素仪表盘调查分析英国土壤中锌
    TIBCO Spotfire 软件的土壤无机元素仪表盘可以通过将复杂数据可视化图像化,通过这种方式人们可以快速理解,规避不当的信息传递。本研究利用土壤无机元素仪表盘将从英国地质调查所下载的英国部分区域的土壤质量数据图形化可视化。通过比较这些测试结果建立基线数据,然后通过持续检查数据的正偏离和负偏离波动,来确定数据的变异是否是局部相互作用引起的。英国地质调查所从60 年代末开始致力于环境地球化学基线的调查,每年在全英国的各个地方采集样品。这些从指定的城镇采集回来的样品在90 年代末到2000 年初分别测试完成并及完成统计工作。

土壤质量数据可视化相关的论坛

  • 化工、石化等领域对于隐患报警、设备情况等相关数据具有可视化需求吗?数据可视化有什么优势?

    众寻“巡查使”智能巡查安全管理系统可将数据通过可视化大屏呈现出来:将复杂、抽象、专业的数据内容,通过直观、动态、通俗多样更加直观的方式展现出来,用更加易于理解的方式为用户做出更好的决策提供数据依据。一方面,它形象地表达数据内在的信息和规律,能简洁全面地推进数据的传播;另一方面,它能帮助企业发现数据中某种规律和特征,从而挖掘数据背后的价值。“巡查使”智能巡查安全管理系统不仅适合化工、石化行业,巡查使同样适用于电力、铁路、林业、景区、物业、生产设备、自然保护区等需要巡检的行业,相关巡检数据都可通过可视化大屏呈现,便于管理层提升决策效率和效果。

  • 气味可视化

    气味成分的可视化表征,是对食品农产品质量和安全信息进行快速无损检测的一种新途径。本微课以普鲁斯特效应这一科学现象为背景,对气味可视化的起源、技术原理、应用场景以及未来发展趋势等,进行由浅入深、逐层分解

  • 【原创大赛】数据可视化之热图的应用与绘制

    【原创大赛】数据可视化之热图的应用与绘制

    [align=center][font=宋体][size=24px][b]数据可视化之热图的应用与绘制[/b][/size][/font][/align][align=center][font=宋体][size=24px][b]welewolf (ID: v2823651)[/b][/size][/font][/align][font=宋体][size=12.0pt]本篇原创作品以我在论文写作过程中绘制热图的经历和感悟为主题,与大家一起交流学习。[/size][/font][size=24px][b][font=宋体][size=14.0pt]1.[/size][/font][/b][/size][b][font=宋体][size=14.0pt]可视化图形是科研论文不可或缺的要素之一[/size][/font][/b][font=宋体][size=12.0pt]信息时代中海量的数据信息需要[color=#333333]借助图形手段可视化,从而清晰高效地传递。科学研究获得的原始数据通常繁杂无序,但科研论文不能只是这些数据的[/color][/size][/font][font=宋体][size=12pt][color=#333333]简单堆叠。因此,在科研领域,数据通过可视化图形表达是一个极为活跃而又关键的要素。[/color][/size][/font][font=宋体][size=12.0pt]科研绘图作为论文的[/size][/font][font='Times New Roman',serif][size=12.0pt]“[/size][/font][font=宋体][size=12.0pt]脸面[/size][/font][font='Times New Roman',serif][size=12.0pt]”[/size][/font][font=宋体][size=12.0pt],既要注重科学性,又要注重艺术性。[color=#333333]众所周知,科研论文的发表要经过编辑和多位审稿人多层次和全方位的审核,而众多[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]期刊编辑和审稿人的审稿习惯都是先看文章插图。因此规范化的科研绘图在论文发表过程中极为重要。正如著名期刊[/color][/size][/font][font=&][size=12.0pt][color=#333333]Journal of Hazardous Materials[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]副主[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]编关小红所说:[/color][/size][/font][font=&][size=12.0pt][color=#333333]“[/color][/size][/font][font=宋体][size=12.0pt]论文千万条,规范第一条;绘图不规范,被拒两行泪[/size][/font][font=&][size=12.0pt][color=#333333]”[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]。[/color][/size][/font][size=24px][b][font=宋体][size=14.0pt]2.[/size][/font][/b][/size][b][font=宋体][size=14.0pt]热图[/size][/font][/b][font=宋体][size=12.0pt][color=#333333]热图通常是以矩阵的形式,结合渐进的色带展示数据值大小变化规律的热谱图,其效果一般优于离散点的直接显示,可以很直观地展现空间数据的疏密[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]程度或频率高低。据统计,[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]2012[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]年发表于[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]NatureBiotechnology, Cancer Cell, Genome Research, Genome Biology, [/color][/size][/font][font=宋体][size=12.0pt][color=#333333]和[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]Molecular & Cellular Proteomics[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]等五种期[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]刊的[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]664[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]篇原始研究文章中,使用热图对科研数据进行可视化表达的文章数为[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]202[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]篇,占比为[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]30.4%[sup][1][/sup] ([/color][/size][/font][font=宋体][size=12.0pt][color=#333333]图[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]1)[/color][/size][/font][font=宋体][size=12.0pt][color=#333333],表明热图在科研论文的可视化表达方面具有[/color][/size][/font][font=宋体][size=12pt][color=#333333]较高的认可度和热度。[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]在使用热图的[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]202[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]篇论文中,[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]134[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]篇文章未提及热图的绘制方法;其余[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]68[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]篇文章里明确地说明了热图的绘制方法,其中[/color][/size][/font][font='Times New Roman',serif][size=12.0pt][color=#333333]R[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]语言是最[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]常用的热图绘制工具,占比为[/color][/size][/font][font=&][size=12.0pt][color=#333333]46%[/color][/size][/font][font=宋体][size=12.0pt][color=#333333];其次是[/color][/size][/font][font=&][size=12.0pt][color=#333333]JavaTreeview[/color][/size][/font][font=宋体][size=12.0pt][color=#333333],占比为[/color][/size][/font][font=&][size=12.0pt][color=#333333]24% ([/color][/size][/font][font=宋体][size=12.0pt][color=#333333]图[/color][/size][/font][font=&][size=12.0pt][color=#333333]2)[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]。然而,[/color][/size][/font][font=&][size=12.0pt][color=#333333]R[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]语言的缺陷在于要求使用人员具有相当高的编程技能,而这一缺陷[/color][/size][/font][font=宋体][size=12pt][color=#333333]通常会导致很大一部分研究人员放弃使用热图进行数据的可视化表达。[/color][/size][/font][align=center][font=宋体][size=12.0pt][color=#333333][img=,690,485]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010949047478_4227_2823651_3.png!w690x485.jpg[/img][/color][/size][/font][/align][align=center][font=宋体][size=12.0pt][color=#333333][img=,690,463]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010951393373_8667_2823651_3.png!w690x463.jpg[/img][/color][/size][/font][/align][size=12.0pt][color=#333333][size=24px][b]3. [/b][/size][b][font=宋体]使用[/font][font='Times New Roman',serif]Excel[/font][font=宋体]绘制污染物浓度相关性热图[/font][/b][font=宋体]对于缺乏编程技能的研究工作者们,如何使用常规工具绘制热图,从而增强科研数据可视化表达的效果呢?在此为大家分享一下我在不使用[/font][font='Times New Roman',serif]R[/font][font=宋体]语言的前提[/font][/color][/size][font=宋体][size=12.0pt][color=#333333]下,如何使用Excel绘制污染物浓度相关性热图。以生物样本中有机磷阻燃剂 (A-E) 浓度之间Spearman相关系数为例。[b]首先,[/b]使用SPSS软件对原始数据 (图3) 进行Spearman correlation分析,得到生物样本中有机磷阻燃剂 (A-E) 浓度之间的Spearman相关系数 (图4)。[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]由于不会使用R语言绘制热图,此前仅将统计结果以表格的形式展示于论文中 (表1)。虽然表格的形式也常见于很多期刊论文中,但我还是被老板狠[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]的[/color][/size][/font][font=宋体][size=12.0pt][color=#333333]diss了一回。[/color][/size][/font][align=center][font=宋体][size=12.0pt][color=#333333][img=,690,523]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010954583370_2995_2823651_3.png!w690x523.jpg[/img][/color][/size][/font][/align][align=center][font=宋体][size=12.0pt][color=#333333][img=,690,559]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011021384631_778_2823651_3.png!w690x559.jpg[/img][/color][/size][/font][/align][align=center][font=宋体][size=12.0pt][color=#333333][img=,690,447]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010957027290_2067_2823651_3.png!w690x447.jpg[/img][/color][/size][/font][/align][font=宋体][color=#333333][font=宋体][b]其次,[/b]将获得的Spearman相关系数复制到Excel中(图5),调整字体和单元格的大小,使数据以较为美观的形状展示;并且去除显著性符号 (星号),使数[/font][/color][/font][font=宋体][color=#333333][font=宋体]据以数值形式显示 (图6)。[/font][/color][/font][align=center][font=宋体][color=#333333][font=宋体][img=,690,596]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011022080723_4397_2823651_3.png!w690x596.jpg[/img][/font][/color][/font][/align][align=center][font=宋体][color=#333333][font=宋体][img=,675,695]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010958329083_9152_2823651_3.png!w675x695.jpg[/img][/font][/color][/font][/align][font=宋体][color=#333333][size=12.0pt][b]下一步,[/b]选中数据,点击工具栏中的条件格式选项,在弹出的下拉框中选择色阶选项,在右侧滑出的复选框中选择红-黄-绿色阶,如图7所示。[/size][/color][/font][align=center][font=宋体][color=#333333][size=12.0pt][img=,690,440]https://ng1.17img.cn/bbsfiles/images/2020/06/202006010959401688_5801_2823651_3.png!w690x440.jpg[/img][/size][/color][/font][/align][color=#333333][font=宋体][size=12.0pt][b]最后,[/b]结合PS软件为初步制作好的热图添加显著性符号、图例和相关说明。最终效果如图8所示。[/size][/font][/color][align=center][color=#333333][font=宋体][size=12.0pt][img=,498,484]https://ng1.17img.cn/bbsfiles/images/2020/06/202006011000201088_1249_2823651_3.png!w498x484.jpg[/img][/size][/font][/color][/align][font=宋体][font=宋体][size=12.0pt][b]参考文献:[/b][1] Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: A Toolkit forIllustrating Heatmaps. PLoS ONE 9(11): e111988.[/size][/font][/font]

土壤质量数据可视化相关的资料

土壤质量数据可视化相关的资讯

  • 位可视化定量研究热带农田土壤重金属微区环境行为方面取得重要进展
    近日,中国热科院环植所农业环境研究团队在热带农田土壤重金属原位微区过程研究方面取得重要进展。创新性的应用X射线显微计算机断层扫描结合扫描电镜-能量色散能谱法,发现了土壤孔隙结构特性影响重金属镉微区分布。该研究结果为揭示土壤结构异质性对重金属环境行为的影响机制提供了新的研究思路和方法。  热带作物受镉(Cd)等重金属的污染已成为制约热区农产品质量安全与农业可持续发展的重要问题。土壤异质性导致重金属环境行为过程复杂,一直是重金属污染治理的难点。传统基于总量和平均量的研究方法难以反映由空间、物理、化学和生物共同作用产生的土壤异质性对重金属环境行为的影响。为突破该问题,研究团队建立了X射线显微计算机断层扫描结合扫描电镜-能量色散能谱土壤重金属微区可视化研究方法,结合全景组织细胞定量分析系统,实现了对土壤孔隙内及周围Cd微区分布的原位定量研究。基于团队前期研究发现的团聚体铁、磷形态影响热带农田土壤Cd固持的重要作用,通过该方法分析得到了原状土壤孔隙及周围Fe、P、Cd的微区分布特性,进一步揭示了热带农田土壤的孔隙特性(包括孔隙大小和持水能力)通过控制Fe、P元素微区赋存,影响土壤Cd微区分布特征的微观机制。  该研究成果以“The role of pores in micro-zone distribution of Cd in a tropical paddy soil: Results from X-ray computed tomography combined energy dispersive spectroscopy analysis”为题发表于《Journal of Hazardous Materials》。中国热科院环植所魏超贤助理研究员和林必桂高级工程师为论文共同第一作者,刘贝贝副研究员为论文通讯作者。该研究得到了海南省自然科学基金、海南省重点研发计划等项目资助及农业农村部热区绿色低碳重点实验室、国家农业环境儋州观测实验站、海南省生态循环农业重点实验室等平台的支持。
  • 智能化管理,实现噪声监测“自动化”与数据“可视化”
    2023年,16部门发布“声十条”,提出2024年底前,设区的市级城市完成功能区声环境质量自动监测系统建设工作,并与省级和国家生态环境监测系统联网。鼓励有条件的县级城市开展功能区声环境质量自动监测;2025年1月1日起,设区的市级以上城市全面实现功能区声环境质量自动监测,统一采用自动监测数据评价。不仅如此,一系列行业领域噪声自动检测技术规范等也陆续发布。据了解,“十四五”期间,国家将实现全国地级及以上的城市建成3800多个自动监测站点,目前,全国噪声领域科研及产业发展已形成一定规模。随着技术的进步,现代噪声监测系统正朝着智能化、网络化方向发展,利用物联网、大数据分析等技术实现远程实时监控和预警,使得噪声管理更加精准高效,市场更加广阔。为了解当前噪声监测技术进展、应用成效、行业状况及挑战机遇,向大家展现当前噪声监测市场现状,仪器信息网开展了“噪声监测现状与市场动态”主题约稿活动,本篇文章为北京爱唯施环境科技有限公司回稿内容。生产生活中工业运营的噪声会导致一系列问题,从居民健康污染到居民不动产贬值等。减轻工业噪音污染的一揽子方法往往导致更大更贵的一揽子工程。那么,运营者在部署噪声管理策略时,首先的难点是如何在最低的投入下减少系统的总监控成本和资源。工程噪音控制、声屏障和限制营业时间只是有效噪音管理实践的几个例子,这些方法通常需要大量投资,而精确智能化部署可以减少超额监测成本,确保更有效地缓解噪音。澳大利亚Envirosuite公司(简称:EVS),旗下子公司爱唯施,有30多年的环境管理经验,以自主开发的智能环境管理软件和噪声监测设备为平台,向客户提供实时及持续的噪声监测,分析报告,溯源预测等功能为一体的专业噪声管理方案。(1)智能噪声监测软件实现环境数据可视化和自动化:EVS 的Omnis和Anoms是基于云的数据管理平台,提供24/7的噪声监测与数据分析,以专用算法和建模将远程设备的数据可视化,实时设定、监控和导出报告,以实现自动管理其辖区的多个环境参数。包括预测潜在的环境噪音问题,跟踪噪音水平随时间的变化,以及环境影响评估等。同时提供噪声事件回放以及噪声阈值警报功能,可用于即时调查违规的噪声事件(频谱图或波形格式),还可以根据导致超标的原因进行噪声分类,帮助了解哪些噪声源不合规,以便进行降噪措施调整以提高噪音合规性。图:EVS 的智能噪声监测软件实现环境数据可视化和自动化(2)适用于任何环境的全天候实时噪声监测设备:EVS 提供专业的全天候噪声监测设备EMU3700 ,可部署在机场、工业、市政运营区内或周边社区的任何场地。EMU3700能够捕获准确的噪音和天气数据,这些数据与EVS噪音监测软件的专有算法相结合。为用户提供可视化的数据分析与见解。用户友好界面可实时查看噪音和天气数据。使操作人员能监控从设备端到远程的数据。包括测量指数,多种标准的报告格式,警报和报告的触发级配置。产品符合AS/NZS 62368-1 CE & FCC等安全性和合规性标准,独立IEC61672:2013 1级型批认证。Envirosuite的NMT 3700系列专门设计用于在恶劣环境中进行永久、移动和便携式的无人值守操作和噪声监测。产品可以安装部署于采矿作业、工业设施,机场,城市环保和建筑工地等各种行业应用。案例1:北京首都国际机场噪声监测项目北京首都国际机场于2005开始使用EVS为其安装25个噪声监测终端NMT和ANOMS 机场噪声管理软件,通过不同站点安装NMT噪声监测设备,实时监测记录站点周边的噪声数据, 并通过ANOMS远程管理软件进行噪声监测与分析报告,管理雷达、飞行计划、天气和投诉等一系列环境管理解决方案。爱唯施对后期运维方面的站点校准、硬件软件使用和技术支持、对硬件故障进行判断和排除、对软件服务进行定期维护和检测。用我们的解决方案跟踪噪声、航班,解决投诉,有效处理了机场与居民、航空公司和其他利益相关者的关系。为机场环境管理和噪声合规提供了稳定而有力的支持。图:Envirosuite 噪声监测智能化管理系统案例2:北京生态环境监测中心 声环境质量自动监测项目北京生态环境监测中心采用EVS噪声管理方案进行城市声环境监测,监测系统于 2007 年安装、2008 年 2 月通过最终验收,已经过多年连续工作,系统在全市包括 1 个监控中心(C/S 架构,服务器及系统软件、客户端软件)、18套噪声监测设备(16套设备在线运行, 2套设备备用),爱唯施提供专业技术人员和团队,对本系统提供运行维护服务保障。为项目提供专业的噪声监测管理和报告,运行多年来以其专业性和运行稳定性为国家站噪声采集和分析提供了重要数据,获得了一致的好评和认可。噪声监测市场在全球范围内呈现出增长的趋势,中国噪声监测系统行业也在不断发展壮大。&zwnj 这些趋势反映了社会对噪声污染问题的关注度提高以及对噪声监测和管理需求的增加。Envirosuite使用专有技术和实时可视化数据来帮助行业和社区的噪声监测管理并保持合规性,EVS的环境智能技术提供灵活和量身定制的解决方案来帮助您应对噪音及振动的挑战,通过改善环境性能使世界变得更加美好。
  • 科学岛团队双模态传感策略用于氨基甲酸酯类农残可视化快速检测
    近期,中科院合肥物质院固体所蒋长龙研究员团队在可视化检测环境中的西维因检测研究方面取得新进展。相关研究成果作为主封面发表在国际著名期刊ACS Sustainable Chemistry & Engineering 上。西维因作为一种有效的广谱氨基甲酸酯杀虫剂,已广泛用于防治农作物害虫。然而,过量使用或错误的使用方式会导致西维因残留,西维因在土壤、水果、粮食等介质中留存时间长,且易通过呼吸道和皮肤接触进入人体内,会对人体造成严重危害。因此,西维因残留的检测研究引起了极大的关注。近年来,农药残留的定性定量检测仍然侧重于仪器检测,如表面增强拉曼光谱、电化学分析、色谱等,但这些技术由于检测耗时长和复杂的样品预处理,不能满足现场快速检测需求,限制了它们的实际应用。因此,开发便携式和可靠的实时分析方法来检测西维因残留,对环境污染物监测和农业食品安全具有重要意义。为此,研究人员利用氨基修饰的金纳米颗粒、硅量子点和碲化镉量子点作为传感中心,设计了一种双模态(比色-比率荧光)传感体系,能够可视化定量检测痕量西维因残留。当西维因进入传感体系后,会通过静电效应触发金纳米颗粒团聚,导致紫外可见吸收光谱变化,伴随着肉眼可观察到的自然光下的溶液颜色变化。同时,金纳米颗粒的团聚引发荧光共振能量转移(FRET)效应,硅量子点的蓝色荧光发射强度逐渐增加,而碲化镉量子点的红色荧光强度显著降低,从而导致体系荧光颜色由红到蓝的显著转换。研究发现,双模态传感体系具有更高的检测灵敏度与准确性,比色模式下检测限为49.6 nM,比率荧光模式下检测限为16.3 nM,实现了对实际样品中痕量西维因残留的高灵敏度、即时可视化检测。此外,结合3D打印技术与颜色识别应用(APP),研究团队还构建了具有高兼容性的便携式智能荧光检测平台,以扩展其实际应用。该工作为氨基甲酸酯类农药残留检测提供新策略,并拓宽了便携式可视化定量检测装置在化学传感中的应用。上述研究工作得到了国家自然科学基金项目、国家重点研发计划以及安徽省重点研究与开发计划项目的支持。图1. 双模态传感体系快速可视化定量检测西维因残留的机理示意图,该工作受邀作期刊封面报道。图2. (A)智能传感平台的检测示意图;(B)智能手机对荧光图像的RGB分析;(C)具有高兼容性的便携式传感平台;(D)紫外光下,荧光传感体系在加入浓度为0至200 μM的西维因后的图像;(E)荧光颜色变化(B值/R值)与西维因浓度的线性关系图。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制