异常现象

仪器信息网异常现象专题为您整合异常现象相关的最新文章,在异常现象专题,您不仅可以免费浏览异常现象的资讯, 同时您还可以浏览异常现象的相关资料、解决方案,参与社区异常现象话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

异常现象相关的耗材

  • 富兰德 GB/T 17144微量残炭测定仪试样管 玻璃容器
    富兰德 GB/T 17144微量残炭测定仪试样管 玻璃容器适用范围自动微量残炭测定仪是按照GB/T 17144、ISO 10370和ASTM D4530的技术要求制造的石油产品自动测试仪器。自动微量残炭测定仪其测定残炭的范围是 0.10%(m/m) ~ 30.0%(m/m)。对残炭值超过0.10%(m/m)的石油产品本试验仪的测定结果与康氏残炭法(GB/T 268)测定结果等效。  自动微量残炭测定仪也适用于测定残炭值低于0.10%(m/m),由馏分油组成的石油产品。对于这种产品,首先用GB/T 6536方法制备10%(V/V)蒸馏残余物,然后再用自动微量残炭测定仪进行测定。 富兰德 GB/T 17144微量残炭测定仪试样管 玻璃容器功能特点 1、自动微量残炭测定仪采用程序自动控温、自动恒温系统 2、自动微量残炭测定仪采用自动切换流量、方便快捷 3、自动微量残炭测定仪采用一键式操作,整个试验过程均可全自动进行 4、自动微量残炭测定仪采用保护程序,试验过程中出现异常现象以及炉内温度超高后仪器会自动停止并报警 5、自动微量残炭测定仪采用了不锈钢导气管进行废气的排放、低碳、环保 6、自动微量残炭测定仪采用提示系统,实验结束时自动报警提示 富兰德 GB/T 17144微量残炭测定仪试样管 玻璃容器 技术参数1、燃烧室工作温度范围: 室温 ~ 500℃2、燃烧室恒温精度: 500℃±2.0℃ 恒温15min3、设定时间误差: 0.1S4、压力调节范围: 0 kPa(0 kg/cm2)~ 392 kPa(4kg/cm2) 5、流量调节范围: 100 ml/min ~ 1000 ml/min;150 ml/min 和 600 ml/min自动切换;6、加热器功率:1000W7、控温方式:数显程序温控仪控温
  • 美国Hygiena 海净纳 ATP表面检测拭子US2020
    美国海净纳Hygiena仪器与Ultrasnap ATP拭子US2020配套使用可对ATP进行检测。ATP(三磷酸腺苷)作为一种能量分子,普遍存在于动物、植物、细菌以及酵母菌和霉菌中。制品的残留物,特别是食 物残渣中存在着大量的ATP。微生物的污染中也存有少量的ATP。清洗后,ATP的数量将明显减少。当ATP与Ultrasnap取样装置US2020中的液态稳定的荧光素酶试剂接触时,可反射出一种荧光,荧光的强度与ATP存在的数量成一定比率。海净纳Hygiena仪器在数秒内通过测定荧光信号的强度可得知待测目标被污 染的程度。1.采集样本确保使用无菌技术采集样本。请勿用手指触摸拭子以及里面的取样装置。握住拭子管,拧拉拭子管的头部,拔出湿润的拭子棒。拭子管内可能出现凝结物,并非异常现象。对于平坦表面,标准操作的涂抹区域为 10*10cm(4*4英尺),旋转涂抹表面会增加样本数量。对于不规则的物表,确保每次擦拭的方法一致。擦拭完待检面积后,将拭子棒插回拭子管内。在装 置***前,样本可在拭子管头内***多保存4个小时,一旦装置被***,样本必须在60秒内用光度仪读取。 提示:本测试是用来检测低出肉眼分辨率的物质残留物。采样时,应确保拭子棒头部不可有太多样本。某些生物荧光可能发生反应。海净纳ultrasnap US2020美国海净纳ATP表面取样棒-表面拭子使用说明◆打开检测管,拿出棉拭子,取样,所有的swabbing溶液都需接触棉试子 ◆不要触摸棉试子或棉试棒 ◆Ultrasnap检测管US2020从冰箱中取出后,检测之前需放置5分钟左右,使其恢复到室温状态 ◆避光情况下棉拭子样品可放置4小时左右 ◆Ultrasnap棉试子US2020中样品和溶液反应后,需放置在发光仪中,并于两分钟之内读数。◆棉试子溶液已经稀释,可安全用于是食品表面。注意:使用前请避光保存。握住球管,从试管中拿出沾湿了的棉拭子US2020,涂抹检测区域。将棉试子插入检测管中,4小时内进行检测。握住吸阀,倒转装置并用另一只手的拇指和中指捏住球管,从吸阀处折断。轻挤球管两次,挤出球管内液体,清洗检测管内标本,轻摇两到三次。应用于食品、饮料、化妆品、制药、造纸、环保、石油电力工业和医疗卫生等不同行业领域.UltraSnap(US2020)ATP Test表面ATP检测拭子 ATP表面采样棒 ATP采样器 ATP取样棒 ATP取样笔固体表面采样棒 取样笔采样笔取样拭子 表面检测试剂Ultrasnap表面采样棒US2020操作说明Ultrasnap含有一种高敏感的 Hygiena的***的液体样试剂。Ultrasnap检测物体表面上的细菌或其它微生物所含的总ATP活性,给出快速***的洁净性检测结果。海净纳Ultrasnap与二级管发光仪配合使用。表面洁净度采样棒使用说明 ◆ 打开检测管,拿出棉拭子,取样,所有的 swabbing溶液都需接触棉试子;◆ 不要触摸棉试子或棉试棒;◆ Ultrasnap检测管从冰箱中取出后,检测之前需放置5分钟左右,使其恢复到室温状态;◆ 避光情况下棉拭子样品可放置4小时左右;◆ 海净纳Ultrasnap棉试子中样品和溶液反应后,需放置在发光仪中,并于两分钟之内读数。◆ 棉试子溶液已经稀释,可安全用于是食品表面。注意:使用前请避光保存。握住球管,从试管中拿出沾湿了的棉拭子,涂抹检测区域。将棉试子插入检测管中, 4小时内进行检测。Ultrasnap ATP采样器|US2020表面采样棒|表面洁净度采样器|细菌总数测试棒|表面洁净度涂抹棒|Hygiena涂抹棒US2020|菌落总数采集器|细菌检测采样棒|细菌检测涂抹棒US2020|
  • PWS100天气现象传感器
    PWS100是一种基于激光原理的传感器,通过准确的测定大气中雨滴的大小和速度测量降雨能见度。它可用在道路,机场,和海事上的气象站中。采用了先进的测量技术和运算程序来计算降水粒子的性状。 特点:能识别许多降水参数,包括细雨、降雨量、雪、冰雹、霰;连续、长期野外无人值守;兼容多种数据采集器。 技术原理:PWS100是一款基于激光原理测量降水能见度参数的天气现象传感器,可用于道路、海事、机场的自动气象站上。基于先进的测量技术和模糊逻辑算法,PWS100能测出包括精密尺寸、速度值和接收信号结构的个体降水粒子类型。温度和相对湿度辅助测量功能提供了良好的粒度分级。PWS100包含一个数位讯号处理器(DSP)单元连接于传感器臂上,包含一个激光头和两个探头。每个探头都基于激光单元有一个20°的轴偏离(一个在水平面,另一个在垂直面)。配备有一个安装支架用于连接DSP 单元到杆上。 规格:测量范围:40 cm2/ ls;IP等级:IP 66(NEMA 4X);外壳材质:Iridite NCP,涂层铝(RoHS认证),硬质阳极氧化铝,部件均覆有海洋防护级漆;电源要求:DSP:9 to 24 Vdc;或者9 to 16 Vdc(附带CS215-PWS温湿度传感器时);电流消耗:200 mA to 1 A;罩加热器:24 Vac or dc, 7 A; 通讯:RS-232, RS-422, or RS-485;传输速率:300 bps to 115.2 kbps(可选);控制单元:DSP定制面板;电磁兼容性:检测符合BS EN61326:1998标准。光学特性:激光源:近红外二极管, 1M级人眼安全单元输出;峰值波长:830 nm; 调制频率:96 kHz;接收器:光电二极管,基于带通滤波器;光谱响应:最大光谱敏感度在850nm,0.62 A/W (830 nm为0.6 A/W);镜头检测光源:近红外LED。测量参数:粒径:0.1 mm to 30 mm;尺寸精度:±5%(大于0.3 mm的粒子);颗粒速度:0.16 m/s to 30 m/s;速度精度:±5%(大于0.3 mm的粒子);降水监测类型:细雨、降雨、雪粒、雪花、冰雹、冰粒、霰及上述混合体;降雨强度范围:0 to 400 mm/h;降雨分辨率:0.0001 mm。降水综合精度误差:典型±10%(参考粒子和标准实验条件下),精度在刮风、冰冻,强降雨时会降低。能见距离:0 to 20,000 m;能见精度:±10% to 10,000 m;能见度测量间隔:10s-2h(用户可选); 外接传感器:SDI-12传感器,比如CS215-PWS温湿度传感器。 产地:美国

异常现象相关的仪器

  • 维护保养1、正确地使用和注意保养仪器,使其处于良好的工作状态,可延长仪器使用寿命。2、仪器正常工作时,重心稳定,噪声较小,当发现仪器噪声异常时,应停机检查各紧固件是否松动。3、仪器在连续工作期间,应每季度做一次检查:检查是否有水滴、污物附着在仪器器件上,如有,需及时清理。4、仪器经长期使用,自然磨损属于正常现象。仪器在使用一、两年之后,若发现不正常噪声、器件不灵敏现象,应及时进行维修。5、使用过程中如触摸仪器感觉有麻电、发现异常声响、刺鼻气味、冒烟等异常现象,请立即切断电源停止使用,并及时与本公司售后服务部门联系。6、切勿擅自拆卸、修理和改造。7、经常检查电源线插头和插座应接触良好、可靠,且接地良好,无过热现象。8、仪器不带防水功能,禁止仪器本体遇水,否则会引起绝缘不良,导致漏电,发生故障。如遇特殊情况导致仪器内部进水,请立即切断电源停止使用,并及时与本公司售后服务部门联系。 9、仪器应避免较多的湿气,减少金属部件生锈的机会。
    留言咨询
  • 性能特点:l 将加热、循环、抽真空三种方法合而唯yi,实现对溶出介质的脱气;l 同时具备自动与手动功能,自动功能下,一键实现进液、加热、循环、脱气功能;手动模式下,用户可自由控制各项操作,满足不同溶出介质的需求;l 采用8英寸全彩触控屏设计,操作软件全中文设计,操作过程一目了然;l 具有故障自诊断功能,对于仪器运行中出现的异常现象自动提示与报警;l 具有校准功能,可对于温度和压力进行校准,确保仪器运转正常;l 采用独有的加热循环方式,有效的缩短了溶出介质的脱气时间; l 采用罐体体积高达35L,满足多种实验需求用量;l 采用微电脑话控制技术,自动化程度高;l 采用紫外线灭菌装置,溶出介质脱气同时具有灭菌功能。
    留言咨询
  • GC-ZEC型在线总烃色谱分析仪是用来监控生产过程的分析仪器,是大规模工业生产安全、高效运转的保证。通过在线色谱分析,工艺技术人员可以随时掌握生产情况, 及时发现工艺工程中的异常现象l具有无人操作、灵敏度高、稳定性好的特点,检测信号可直读显示,也可远传,l各项技术指标完全能够满足国家标准中的相关规定。l仪器工作需用燃烧气氢气和助燃气空气,形成稳定的氢气火焰,样品气以固定流量进入火焰燃烧,产生离子流被收集检测。l因而本仪器分析的是气体中常温下可挥发的总烃总量。l检测显示最小值0.1ppm,最大值200ppm。
    留言咨询

异常现象相关的试剂

异常现象相关的方案

异常现象相关的论坛

  • 空心阴极灯异常现象及处理方法

    1. 【异常现象】:阴极辉光变(充氖灯由橙红-粉红-白光),充氢灯由淡紫变白。使发射线减弱,可能同时有背景发射。【原因】:灯内有杂质气体;【解决办法】:将灯在10-20mA电流下反向放电几分钟到半小时,如无效,再在80-150mA下反向放电,激活吸气剂。2. 【异常现象】:屏蔽管发光。使发射减弱不稳定。【原因】:溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通。【解决办法】:振动灯壳,使接通处断开。3. 【异常现象】:阳极光闪动。【原因】:阳极表面放电不均匀;【解决办法】:一般不影响使用;如有影响,可在10—20mA下反向放电半小时。4. 【异常现象】:阴极外侧和后部发光。使发射线略有减弱。【原因】:屏蔽管与阴极距离过大,或有杂质气体。【解决办法】:发射稳定仍可使用,必要时按1反向处理。5. 【异常现象】:阴极内发生跳动的火花状放电,无测定线发射。从而恢复正常放电前不能使用。【原因】:阴极表面有氧化物或有杂质气体。【解决办法】:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧。6. 【异常现象】:灵敏度降低。不能正常测定。【原因】:灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方。【解决办法】:检查灯的背景发射,观察阴极光色调,不正常,处理同l。7. 【异常现象】:不发光。不能使用。【原因】:灯头漏气或灯头接线脱落;电源有故障。【解决办法】:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯);有氖光为接线脱落。8.【异常现象】:只在阴极口外发光。不能使用。【原因】:惰性气体压强降低,不能保持正常放电。【解决办法】:更换新灯。9. 【异常现象】:发光色调正常,特征铺线发射很弱或不能检出。不能正常测定。【原因】:长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适。【解决办法】:不能复活,应换灯或重新选择合合适的光电倍增管或放大器

  • ARL一3460型常见异常现象(来之版友提供的文献)

    1.异常现象:激发声音不连续,中间有间隔;逻辑控制板上红灯亮。2.异常现象:激发点为白点或灼斑。3.异常现象:铝的分析数据异常。4.异常现象:不断出现①Info155#ICS:IVFC EBS Electonic Bg value is over or under—flow,②Info156#ICS:IVFC EBSElectonicBg valueissetoverflow,(Info 157#ICS:IVFCEBS ElectonicBg valueissetunderflow,④Info903#ICS:Excepion eventon channelorconditId#3,⑤Info904#ICS:Excepioneventonchannel or conditId#4的警报。5.异常现象:①描迹时,多数或所有元素通道未出现最佳位置;②标准化时,各元素高低两个点的强度差别不大,且校正系数值异常。③浓度分析时,标样仪器分析值与其化学成分偏差较大。6.异常现象:仪器激发时不断出现“#4一IO00V powersupplyOUT(Status)”警报。7.异常现象:拆激发台清扫火花室后,打了几个废点后,即进行标准化,某些元素校正系数值异常。

  • 【原创】空心阴极灯异常现象及处理方法

    1.异常现象:阴极辉光变(充氖灯由橙红-粉红-白光),充氢灯由淡紫变白。使发射线减弱,可能同时有背景发射。  原因:灯内有杂质气体;  解决办法:将灯在10-20mA电流下反向放电几分钟到半小时,如无效,再在80-150mA下反向放电,激活吸气剂。  2.异常现象:屏蔽管发光。使发射减弱不稳定。  原因:溅射的金屑针状结晶或片状脱落,使阴极与屏蔽管接通。  解决办法:振动灯壳,使接通处断开。  3.异常现象:阳极光闪动。  原因:阳极表面放电不均匀;  解决办法:一般不影响使用;如有影响,可在10—20mA下反向放电半小时。  4.异常现象:阴极外侧和后部发光。使发射线略有减弱。  原因:屏蔽管与阴极距离过大,或有杂质气体。  解决办法:发射稳定仍可使用,必要时按1反向处理。  5.异常现象:阴极内发生跳动的火花状放电,无测定线发射。从而恢复正常放电前不能使用。  原因:阴极表面有氧化物或有杂质气体。  解决办法:在30-50mA下反向放电,或加大与灯串联的稳流电阻到2-10千欧。  6.异常现象:灵敏度降低。不能正常测定。  原因:灯有背景发射、波长选择错误、单色器通带过宽、喷射器堵塞,燃气不足、燃烧器狭缝不在光轴下方。  解决办法:检查灯的背景发射,观察阴极光色调,不正常,处理同l。  7.异常现象:不发光。不能使用。  原因:灯头漏气或灯头接线脱落;电源有故障。  解决办法:先用其它灯检查电源,再用高频真空查漏器检察,如灯壳内无氖光就是漏气(更换新灯);有氖光为接线脱落。  8.异常现象:只在阴极口外发光。不能使用。  原因:惰性气体压强降低,不能保持正常放电。  解决办法:更换新灯。  9.异常现象:发光色调正常,特征铺线发射很弱或不能检出。不能正常测定。  原因:长期使用后阴极金属耗尽或所用光电倍增管或放大器不合适。  解决办法:不能复活,应换灯或重新选择合合适的光电倍增管或放大器

异常现象相关的资料

异常现象相关的资讯

  • 罗氏被指隐瞒死亡报告 药监局称国内未发现异常
    跨国制药企业罗氏近日被英国媒体曝出因隐瞒包括1.5万份患者死亡的药品不良反应报告而被欧洲药品监管部门紧急调查。对此,国家食品药品监督管理局10日表示密切关注,并称从我国药品不良反应监测情况看,该事件涉及药品尚未发现异常现象。   据了解,此次事件共涉及到八种药物,主要治疗乳腺癌、肠癌、肝炎、皮肤和眼睛等疾病。其中,乳腺癌药物赫赛汀、恶性淋巴瘤药美罗华、丙肝药物派罗欣、直肠癌药物安维汀、肺癌药物特罗凯等药在中国有售。   国家食品药品监管局表示高度关注罗氏公司瞒报事件,要求罗氏公司说明该事件有关情况,并将密切跟踪罗氏公司对相关病例的评价工作 同时部署加强了罗氏相关药品不良反应监测工作,深入分析有关监测数据。从目前情况看,该事件涉及药品在我国不良反应监测中尚未发现异常现象。   罗氏10日发表声明称,媒体报道中提及的1.5万例未经安全性评估的不良反应事件仅限于美国一个患者支持项目。罗氏公司基于目前的评估,未发现对罗氏产品的安全性产生影响。   上海罗氏制药公司同时表示,将积极配合我国政府部门进行相应的问询和调查。
  • 太赫兹光谱有望解释水的异常性质
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/ce83a30b-4cc7-4eaf-8986-3042bceab55b.jpg" title=" 微信图片_20180709110801.jpg" / /p p br/ /p p   液态水维持着地球上的生命,但其物理性质对于研究人员来说仍是个谜。最近,一个瑞士研究团队利用已有的太赫兹光谱技术测量了液态水的氢键。利用这种技术开展的工作,未来或许能帮助解释水的特殊性质。该团队在美国物理联合会(AIP)出版集团所属《化学物理学报》上报告了他们的发现。 /p p   研究人员利用超短可见激光脉冲激发了溶解在水中的染料分子,从而改变了它们的电荷分布。随后,太赫兹脉冲测量了周围水分子的反应。频率相对较低的太赫兹光谱使研究人员得以分析水分子之间存在的力。观察这些分子间的力或能帮助研究人员理解水的异常现象,因为液态水分子中的氢键构成了水的很多意想不到的性质,比如水在4℃时密度最大。 /p p   “我们在太赫兹频率范围内看到的反应极其缓慢。水通常被视为非常快的溶剂,能在亚皮秒量级内作出反应。但我们在太赫兹波段发现了10皮秒左右的时间尺度。”论文作者之一Peter Hamm介绍说。 /p p   但Hamm警告不要对此过分乐观。“结果经常有点令人失望,因为像水一样的液体的太赫兹光谱非常宽,并且极其模糊。这导致从里面提取信息很困难。”最新研究采用的时间分辨技术,或能克服这一限制。下一步,研究人员计划利用该方法探寻水仍处于液态但低于冰点时的结构和动力学机制 。 /p p br/ /p
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 零电位:无荷电;负电位:异常亮;正电位:异常暗 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但这个解释存在以下几个步进式的问题: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " C)样品如果真的存在正电位,将会出现怎样结果? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 实际情况是样品的荷电现象,存在三种表现形式 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么? /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px " 一、荷电现象的形成 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 荷电现象的形成过程 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 样品的漏电能力和导电性 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title=" AA.png" alt=" AA.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 二、拆解样品荷电现象的三种形态 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 那是什么原因酿成了荷电现象出现这三种表现形式呢?& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品出现细节磨平这种荷电现象的几率较异常暗高。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗& gt 磨平& gt 异常亮& gt 正常。这个变化趋势会有跳跃式的变动,但不会逆转。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title=" 9.png" alt=" 9.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 三、小 & nbsp 结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 作者简介: /strong /span /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200817/556801.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11) /span /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /strong /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制