纠缠光子符合计

仪器信息网纠缠光子符合计专题为您提供2024年最新纠缠光子符合计价格报价、厂家品牌的相关信息, 包括纠缠光子符合计参数、型号等,不管是国产,还是进口品牌的纠缠光子符合计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纠缠光子符合计相关的耗材配件、试剂标物,还有纠缠光子符合计相关的最新资讯、资料,以及纠缠光子符合计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纠缠光子符合计相关的厂商

  • 成立于1953年的日本滨松光子学株式会社(简称滨松公司),是具有高科技水平、高市场占有率的光科学、光产业公司。滨松集团的光电产品被广泛的应用在医疗生物、高能物理、宇宙探测、精密分析、工业计测、民用消费等领域,其中滨松的光电倍增管、光电半导体产品曾三次助澜诺贝尔物理学奖的诞生,为中微子、希格斯波色子的探测做出重要贡献。滨松公司于1988年与北京核仪器厂共同投资兴建了北京滨松光子技术有限公司(简称北京滨松),现为国内著名的光产业基地。为了进一步贡献于中国光产业,并应对中国国内需求的不断扩大,于2011年10月在北京成立全资子公司“滨松光子学商贸(中国)有限公司”(简称滨松中国),次年滨松中国上海分公司成立,2017年深圳分公司成立滨松中国全面负责滨松公司产品以及北京滨松部分产品在中国的销售、技术支持、售后服务等市场活动,为中国客户提供更好、更贴近的服务。发展的原点滨松光子学株式会社(简称滨松公司)的发展原点,需要追溯到一个非常重要的人物,那就是滨松创始人的恩师——“日本电视机之父”高柳健次郎先生。高柳先生曾说,当他在开发为未来10年乃至20年社会服务的技术时,脑海中偶尔会浮现出一个有着前额留海的美丽幸运女神。他认为,为了抓住幸运女神,就必须在她前面一步等着她追上来,然后转身抓住她的留海。而技术的发展也是如此,当技术应用的机会来临时,技术应当已经领先一步并做好了准备。而这样的精神也被滨松公司传承至今,致力于光子技术的发展,探索未知未涉,为机遇随时做好准备。左:高柳健次郎先生 右:1926年高柳先生的课题组成功地在世界首个电视机屏幕上产生了一个日本字符。(图片展示了在滨松科学博物馆里再现这个字母的装置)名字的由来 最初滨松公司的社名为“滨松电视株式会社(Hamamatsu TV)”。当时创始人堀内平八郎受教于恩师高柳先生,走进了探索光科学和光子技术的大门。在当时,老师的名字就是“电视机”的代名词,所以堀内先生希望以此命名来使人们铭记和纪念高柳先生。有意思的是,这个名字常常被误解为是电视台,并且不时会有受到一些电视人物、艺人的拜访,或者常收到家用电视的维修请求。公司直至1983年才更名为如今的“滨松光子学株式会社(Hamamatsu Photonics K. K)”滨松电视株式会社抓住机遇 创立的前两年时间里,只是一个街道工厂级别的小公司。不过在艰难的境地中,抓住了一个政府资助项目的机会。在该项目中,滨松进行了闪烁体测量放射性的试验研究,虽然是一个刚刚起步的公司,但是凭借技术实力最终轻松通过了测试,并获得了研究经费用,这也为滨松的初期发展提供了很好机会。“滨松电视大人” 在光电探测器件里,光电倍增管具有极其优异的性能。1955年初,滨松已经可利用光电倍增管来生产化学分析仪器,同时日本国内对光电倍增管的需求也日益扩大。当时一个客户说:“如果滨松电视能生产光电倍增管,那我们将尊称它为‘滨松电视大人’(浜松テレビ様,“様”是日本人对高地位人的敬称)”。客户的话促使了我们对光电倍增管研发的投入,并将这种意志渗透到项目执行里。在经历了无数试验和磨难后,终于开发出了远远优于其他公司同类产品的光电倍增管,而第一支用于分析仪器的侧窗光电倍增管R105也于1969年诞生。光电倍增管的开发为滨松成长为一个光电技术公司打下了坚实的基础。滨松生产的用于分析仪器的第一支光电倍增管R105 沾满黄色粉末的日子 持续不断开发电子管技术的滨松,同时也进入了光电半导体的研发中。硫化镉(CdS)则是其进入半导体市场的第一个产品。负责产品开发的铃木左喜雄每天埋头试验,满身都沾满了黄色的硫化镉粉末,最终成功开发了硫化镉元件。1958年末的一天,滨松获得了每月1000支的硫化镉元件订单,用于调整电视机阴极射线管的亮度。作为一个之前一直小批量生产的公司,这是第一次接到如此大规模的订单。半导体技术的积累和员工的辛勤带了硫化镉元件的丰硕成果,也为今后滨松光电半导体的发展奠定了基础。硫化镉元件开发制造团队 昼马循环 滨松的前任社长——昼马辉夫对于滨松的发展影响深远,他认为培养创造新Science的能力十分重要。人类通过对未知未涉领域的探求,利用新的并且正确的知识孕育出了Science。将这个知识按科目分类形成了新科学后,与现有的技术相结合,这样新技术就诞生了。接下来就是如何在实践中应用新技术。如果它符合社会需求,就会被社会所接受而形成新的市场。这个市场经过逐渐扩大便会成为新的产业固定下来。然而,新市场和新产业虽然降生了,但也不能因为在一段时间内找到了赚钱的途径而沾沾自喜,否则这个技术仅仅是企业和经营者赚钱的一个手段而已。产业应该赋予新技术以新的生存方式。通过新的生存方式,可以诞生出了新的价值观,而后又可以诞生出了新的Science,这个的循环意味着“真正的价值观存在于新的并且正确知识中”。昼马社长的理论被其友人归纳,并命名为“昼马循环”,这样的思想也为滨松公司所秉承:昼马循环大事件(主要于分析应用相关):1948 东海电子实验室(滨松公司前身)创立1953 滨松电视株式会社成立1958 硫化镉(CdS)元件投放市场1959 侧窗型光电倍增管投放市场1967 电子倍增管投放市场1969 美国成立美国滨松1970 空心阴极灯和氘灯投放市场1973 西德-滨松电视联合欧洲公司成立1978 微通道板(MCP)、镓砷磷光电二极管和硅PIN光电二极管投放到市场1983 更名为“滨松光子学株式会社(Hamamatsu Photonics K. K)”1984 氙灯投放市场1985 筑波研究所创立、法国分公司成立1988 英国和瑞士分公司成立;“北京滨松光子技术股份有限公司”成立1990 中央研究所成立,光电倍增管在中国投产1996“超级神冈实验”的11200个20-英寸光电倍增管的供应完成2001 中国上海办事处成立2002东京大学小柴昌俊教授获诺贝尔物理学奖,小柴昌俊教授“中微子”实验所用的20英寸光电倍增管是由滨松光子学株式会社提供的2008 超小型的微型光谱仪开发完成2010 滨松光子欧洲有限公司成立2011 滨松光子学商贸(中国)有限公司成立2012 下一代微型光电倍增管(μ-PMT)投放市场2013 Francois Englert和Peter W.Higgs教授因成功预测“希格斯玻色子”被授予诺贝尔物理奖。滨松的光电半导体、光电倍增管产品助澜了“希格斯玻色子”的研究的欧洲大型强子对撞机实验;世界上第一个基于MEMS、与超小型FTIR引擎集成的MEMS-FTIR研发成功;指尖大小微型光谱仪投放市场2014 用于中微子探测的滨松20英寸光电倍增管被授予“IEEE里程碑”荣誉2015 指尖大小微型光谱仪C12666MA获SPIE国际光学“棱镜奖”(Prism Award)
    留言咨询
  • 广东骏楠光子科技有限公司是一家立足于科研第一线,集测试、研发、生产、销售、服务为一体的高科技公司。公司致力于高端成像类设备研发,产品涵盖生物光子、光学、光谱类、波谱类设备,应用于生物、药物、材料,光学,化学等领域。目前已经研发高速动态扫描光片显微镜,光声多模态小动物成像系统,小动物核磁共振成像系统,激光直写光刻机,低场核磁共振分析仪等设备。
    留言咨询
  • 400-860-5168转2482
    鼎信优威光子科技有限公司专业从事光谱,生物与物理影像及相关应用的科学仪器的销售,目前我们代理多家国外仪器、设备及系统产品均为各自领域内的技术领先产品。美国PRINCETON INSTRUMENTS公司:科研级CCD,红外CCD,各种研究型光谱系统。 德国 Becker & Hickl GmbH 公司: TCSPC单光子计数器 ,弱信号处理产品, 荧光寿命影象系统 , 多波长荧光寿命影象分析系统。美国ISS公司:瞬态/稳态荧光磷光光谱分析系统,荧光关联光谱分析系统。我们还代理光纤超快激光器,脉冲可调光纤激光器,宽光谱激光器,显微镜宽光谱光源,LED光源。美国 Semrock公司:高性能荧光滤光片, 喇曼滤光片,激光反射镜,窄带滤光片。 美国ANDOVER公司:荧光滤光片,窄带滤光片,衰减片等。我们可以根据用户的具体要求,提供完整的系统解决方案,包括集成、设计等。 我们的商务人员具有丰富国际贸易经验,力争让用户在最短的时间内收到订购的仪器。
    留言咨询

纠缠光子符合计相关的仪器

  • &ldquo 单光子计数技术&rdquo 是利用在弱光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,可把淹没在背景噪声中的弱光信号提取出来。当弱光照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲,而&ldquo 单光子计数技术&rdquo 可测得低至单个不重叠的光子能量脉冲,通过精密的鉴别手段进行工作,从而实现探测&ldquo 单光子&rdquo 级别微弱信号的目的。 主要技术参数:◆ 光子计数器计数率:100Mcps◆ 四个模拟采样通道: 采样速率:1MB/s 信号输入范围:0-10V电压输入 A/D转换精度:16bits◆ 两个模拟输出通道:输出范围:0-10V◆ 标准USB接口◆ CE认证◆ 电源需求: DC 24V,0.3A◆ 尺寸:240(L)× 240(W)× 120(H)◆ 重量:3.3Kg
    留言咨询
  • 单像素光子成像教学仪 单像素光子成像教学仪是基于压缩感知理论和光子计数成像技术,利用数字微镜器件完成随机空间光调制目标物进行快速成像的教学仪器。产品利用压缩感知技术信号稀疏的特性,超越传统香农采样定理,可以通过较少的测量值在极弱光条件下还原出高空间分辨率高信噪比的图像。 单像素光子成像教学仪具有丰富的硬件模块,支持学生动手调节和搭建,方便学生了解空间光调制技术及设备使用方法;理解压缩感知原理以及成像方式;知悉光子计数成像特点及噪声处理方法。 配备完整的压缩感知理论教学讲义和实验内容,帮助高校在近代物理实验课、通信类、计算数学等方向开设课程,推动学科建设发展。产品硬件可调,教学功能丰富桌面型设计,使用更加方便完善的配套教学资料 遮光性能优越,具有强光保护自由算法编码,可视化实验效果实验内容仪器调节实验光路搭建和仪器模块连接;单帧图像显示实验;光本底测量实验; 频率位移关系实验含目标靶成像实验;分辨率靶成像实验;自制目标靶成像实验;单像素光子成像调制方法实验不同矩阵调制成像实验;不同算法调制成像实验;实验原理图
    留言咨询
  • 小型量子纠缠源实验系统上海昊量光电推出一款商业化小型量子纠缠源实验系统。这款小型量子纠缠源实验系统是一套完整的产生和分析偏振纠缠光子对的装置。它的设计结合了量子光学的新成果,易于大学老师及研究人员使用。这套装置完全匹配高等院校量子实验应用,也可以集成到现代科学实验和商业应用中。小型量子纠缠源实验系统的核心采用自发参量下转换过程生产偏振纠缠光子对。光纤耦合单光子探测器结合偏振滤波器探测光子对,分析偏振方向以及验证相关性。小型量子纠缠源实验系统包含一个计数器和符合计数模块记录单光子事件,并显示相应的计数率。关键特性:高准确度偏振纠缠光子对产生与分析验证贝尔不等式违背实验完备系统量子现象亲身动手研究学习容易使用,无需专业技能要求定制化配置方式应用实验(请查看参考文献):光粒子性/量子随机产生 Franson干涉 光波粒二象性/量子擦除 HOM干涉+HBT测量 系统配置:光纤耦合偏振纠缠光子源两个硅基雪崩二极管准直模块(含辅助低功率激光模块)集成符合逻辑单元的三通道计数器两个偏振旋转光学支撑架控制和读出电路模块主要技术参数标准型高计数型单一计数率10kHz50kHz符合计数率1kHz5kHz纠缠质量S2.2S2.2工作波长810nm810nm泵浦激光功率15mW50mW相位匹配TyPe I and TyPe IITyPe I and TyPe II
    留言咨询

纠缠光子符合计相关的资讯

  • 加利用量子纠缠开发超精密测量技术
    加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。  研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马· 李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。  现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。  干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。  科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用&ldquo 光纤带&rdquo 的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。  这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。  研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。
  • 两个量子光源首次实现量子纠缠
    丹麦和德国科学家在最新一期《科学》杂志上发表论文指出,他们携手解决了一个困扰量子科学家多年的问题——在两块纳米芯片上,首次同时控制两个量子光源,并让其实现量子力学纠缠。最新进展对量子硬件的突破性应用至关重要,将促进量子技术发展到更高水平,是计算机、加密和互联网加速“量子化”的关键一步,将为量子技术的商业利用打开大门。多年来,研究人员一直致力于开发稳定的量子光源,并实现量子力学纠缠,也就是两个量子光源可远距离地立刻相互影响。纠缠是量子网络的基础,也是开发高效量子计算机的核心。哥本哈根大学尼尔斯玻尔研究所彼得洛达尔教授表示,其团队一直在研究使用光子作为微传送器传输量子信息。一个量子光源发射的100个光子所包含的信息将超过世界上最大的超级计算机所能处理的信息。使用20—30个纠缠的量子光源,科学家们就有可能构建出一台通用的纠错量子计算机。但实现上述目标面临的最大挑战是,从控制一个量子光源到控制两个量子光源。因为光源对外界的“噪音”非常敏感,因此很难复制。历经20年努力,在最新研究中,洛达尔团队成功创造出两个相同的量子光源,并开发出先进的纳米芯片,对每个光源进行精确控制,实现了量子力学纠缠。最新研究主要作者、博士后阿列克谢蒂拉诺夫解释道:“纠缠意味着控制一个光源,就可立即影响另一个光源,使我们可创建出一个量子光源组成网络,其中的所有光源相互作用,能以与普通计算机中的比特相同的方式来执行量子运算,从而获得当今计算机技术无法实现的处理能力。”
  • 中科大首次实现远距离量子纠缠纯化,效率比国际水平提升6000多倍
    中国科大郭光灿院士团队在量子通信和量子网络的研究中取得重要进展。该团队李传锋、柳必恒研究组与南京邮电大学盛宇波等人合作,利用高品质的超纠缠源,首次实现了11公里的远距离量子纠缠纯化,纯化效率比此前国际最好水平提升了6000多倍。该成果2021年1月8日发表在国际知名期刊《物理评论快报》上。量子中继是在噪声信道中实现长距离量子通信的重要途径,而量子纠缠纯化是量子中继中的关键操作,利用量子纠缠纯化操作可以从两份纠缠度较低的纠缠态中提炼出一份纠缠度较高的纠缠态。此前的纠缠纯化协议都是利用两对低纠缠度的光子对实现,而研究组与合作者提出仅需一对超纠缠光子对的纠缠纯化方案。他们实验上制备出偏振和路径分别处于纠缠态的超纠缠光子对,并在11公里长的多芯光纤里进行纠缠分发,然后进行量子纠缠纯化操作。实验结果表明,分发后的偏振纠缠和路径纠缠初始保真度均为约0.665时,纯化得到的纠缠态的保真度可以提升到0.774,而初始保真度均为约0.771时,纯化后的保真度则可提升到0.887。他们还首次将纠缠纯化用于量子密钥分发,纯化前纠缠态的纠缠度太低,产生的有效密钥率为0,而经过纯化后,有效密钥率则提升到0.371。此外,由于只需要使用一对超纠缠光子对,该方案的纯化效率(每秒大约输出400对)比此前国际上的最好水平提升了6000多倍。该成果迈出了纠缠纯化从实验室平台到远距离的关键一步,同时大幅提升了纠缠纯化效率,为将来实现高效率的量子中继提供了有力的技术保障。论文第一作者为中科院量子信息重点实验室特任副研究员胡晓敏。该研究得到科技部、国家基金委、中科院、安徽省的支持。(a)实验概念图,(b)实验原理图。文章链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.010503

纠缠光子符合计相关的方案

  • 同位素碳化硅中单个核自旋的纠缠和控制
    固态材料中的核自旋既是消相干的原因也是自旋比特的来源。在这项工作中,芝加哥大学David D. Awschalom通过在碳化硅(SiC)中控制单个的29Si核自旋,在一个具有光学活性的空位自旋和强耦合的核寄存器之间创造了一个纠缠态。此外,作者还展示了如何利用SiC的同位素加工来实现弱耦合核自旋的控制,并提出了一种性原理计算方法来预测优同位素分数,使可用核存储器的数量大化。总的来说,作者展示了在固态系统中控制核环境的重要性,实现了工业尺度材料中的单光子发射器与核寄存器的连接。
  • L波段EDFA掺铒光纤放大器系统技术方案 - 筱晓光子
    EDFA采用掺铒离子光纤作为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。铒离子有三个能级,在未受任何光激励的情况下,处在最低能级E1上,当用泵浦光源的激光不断激发光纤时,处于基态的粒子获得能量就会向高能级跃迁。如由E1跃迁至E3,由于粒子在E3 这个高能级上是不稳定的,它将迅速以无辐射跃迁过程落到亚稳态E2 上。在该能级上,相对来讲粒子有较长的存活寿命,此时,由于泵浦光源不断的激发,则E2能级上的粒子数就不断的增加,而E1能级上的粒子数就减少,这样,在掺铒光纤中实现了粒子数反转分布,就具备了实现光放大的条件。当输入信号光子能量E=hf正好等于E2和E1 的能级差时,即E2-E1=hf,则亚稳态上的粒子将以受激辐射的形式跃迁到基态E1上,并辐射处和输入信号中的光子一样的全同光子,从而大大加大了光子数量,使得输入光信号在掺铒光纤中变为一个强的输出光信号,实现 了对光信号的直接放大。
  • 氦质谱检漏仪和真空泵组应用于超导量子芯片装置中
    氦质谱检漏仪和真空泵组应用于超导量子芯片装置中前段时间, 浙江大学, 中科院物理所, 中科院自动化所, 北京计算科学研究中心等国内单位组成的团队通力合作, 开发出具有 20个超导量子比特的量子芯片, 并成功操控其实现全局纠缠, 刷新了固态量子器件中生成纠缠态的量子比特数目的世界记录.

纠缠光子符合计相关的资料

纠缠光子符合计相关的试剂

纠缠光子符合计相关的论坛

  • 科学家成功使两根填充500个光子的光纤发生纠缠

    中国科技网讯 据物理学家组织网7月26日(北京时间)报道,量子物理学似乎一直涉及的是一些无限小的事物。而多年以来,瑞士日内瓦大学的研究人员一直试图在更大规模甚至宏观层面上观察到量子物理的性质。最近该研究团队成功让两根填充了500个光子的光纤发生纠缠,不同于以往只有1个光子的光纤纠缠实验,向实现宏观层面的量子纠缠迈出了重要一步。相关研究成果发表在最新一期的《自然·物理学》上。 30年以来,物理学家已经能够使光子对发生纠缠。不管两个光子之间存在的距离和障碍如何,第一个光子的动作会在瞬间冲击第二个光子。这种状况发生时,好像是一个单光子存在于两个不同的地方。 似乎可以直观地认为,应用于原子水平上的物理规则也可转移到宏观世界当中。然而,试图证明这一点并不容易。事实上,当一个量子系统大小增加,其与周围环境就会进行越来越多的互动,而这样却会迅速破坏其量子特性,这种现象被称为量子消相干。 尽管有这些限制,在技术的不断进步下,该研究团队一直在努力寻求突破。2011年1月,他们设法实现了晶体纠缠,从而超越了原子的维度。现在,该大学理学院教授尼古拉斯率领的团队成功使两个填充了500个光子的光纤发生纠缠。 为了做到这一点,他们先在微观层面上创建两个光纤之间的纠缠,然后将其移到宏观层面。这种微观量子纠缠态的生存过渡到更大规模世界的现象,甚至可以用传统的检测手段,即肉眼观察得到。而为了验证在宏观世界的纠缠存活,他们可以将其重新转换回微观水平。 尼古拉斯说:“这次大规模实验为许多量子物理学的应用铺平了道路。在宏观层面的纠缠是该领域的主要研究方向之一,我们希望在未来几年可以实现大型对象间发生的纠缠。”(记者 华凌) 总编辑圈点 尽管量子学还是“上帝跟宇宙玩掷骰子”,但物理学家们早已证实神秘现象不仅仅局限于极度微观领域中。好比本文中的量子纠缠,其实不像人们通常以为的那么“脆弱”,还曾在全固体材料中实现过,它最终走入到电子设备中是迟早的事。目前这一成果,在将来能为研制适用于量子通信的全光纤纠缠光源和单光子源带来益处,对于量子密钥的分发系统也起到重要作用。

  • 科学家首次用相机拍下量子纠缠图像

    中国科技网讯 据物理学家组织网8月9日(北京时间)报道,英国格拉斯哥大学、赫瑞-瓦特大学以及加拿大渥太华大学的研究人员携手合作,首次利用照相机拍摄到量子纠缠的图像。量子加密通信、量子计算等技术的发展都需要依靠量子纠缠的物理特性,最新研究成果朝着开发这类应用迈进了一步。相关论文发表在《自然·通讯》杂志上。 量子纠缠是一种量子力学现象,处于纠缠态的两个粒子即使距离遥远,也保持着特别的关联性,对一个粒子的操作会影响到另一个粒子。简单来说就是,当其中一个粒子被测量或者观测到,另一个粒子也随之在瞬间发生相应的状态改变。这种仿佛心有灵犀一般的一致行动超出了经典物理学规则的解释范畴,被爱因斯坦形容为“鬼魅似的远距作用”。 在此次实验中,研究小组使用了一个具有高灵敏度的照相机来测量光子的高维空间纠缠。光子的纠缠态是用一种特殊的晶体将一个单光子一分为二来创建的。通过给这些光子对拍照,研究人员可以对光子位置之间的关联进行测量,这是经典物理学所无法实现的。借助201×201像素阵列,照相机可在同一时刻观察到量子光场的全景,研究小组也得以看到多达2500种不同的纠缠态。 参与该项研究的格拉斯哥大学物理学和天文学学院教授迈尔斯·帕吉特说:“一张图片胜过千言万语,这句格言用在此处再恰当不过了。每个像素都含有自己的信息,从而可能给量子加密通信的数据容量带来革新。” 他表示:“这项研究是朝着未来量子技术迈进的重要一步,同时也显示了照相机的一个重要新功能,那就是在量子信息科学方面的应用。”(记者 陈丹) 总编辑圈点 在量子世界中,与奇怪的定理相联系的是许多奇怪的现象,比如测不准原理,比如薛定谔的猫,再比如这个爱因斯坦的“幽灵”——量子纠缠。一副万物皆可能有默契的样子,让人无论站在人文还是科学的高度上,仅靠言语都难于描述一二。幸好,现在科学家把它拍下来了,当嘴巴因无力选择缄默时,我们还可以靠眼睛,直观的对视那无比奇妙的微观世界,期盼着从中窥探更多的可用信息,以完成宏观世界中对量子通信及量子计算的建设。 《科技日报》(2012-8-10 一版)

  • 加利用量子纠缠开发超精密测量技术

    科技日报多伦多6月6日电 (记者冯卫东)加拿大物理学家们首次利用量子力学克服了测量科学中的一个重大挑战。新开发的多探测器方法可测量出纠缠态的光子,实验装置使用光纤带收集光子并将其发送到由11个探测器组成的阵列。此项研究为使用量子纠缠态开发下一代超精密测量技术铺平了道路。 研究报告主要作者之一、多伦多大学物理系量子光学研究小组博士生罗泽马·李称,新技术能利用光子以经典物理学无法达到的精度进行测量。此项研究成果在线发表在《物理评论快报》上。 现存最灵敏的测量技术,从超精确原子钟到世界上最大的望远镜,均依赖于检测波之间的干涉,这种干涉发生于两个或更多个光束在相同空间的碰撞。罗泽马及其同事使用的量子纠缠态包含N个光子,它们在干涉仪中均被保证采取同样的路径,即N个光子要么全部采取左手路径,要么全部采用右手路径。 干涉效应可用干涉仪进行测量。干涉装置的测量精度可通过发送更多的光子加以改善。当使用经典光束时,光子数目(光的强度)增加100倍,干涉仪的测量精度可提高10倍,但是,如果将光子预先设置在一个量子纠缠态,干涉仪在同等条件下的测量精度则同步增长100倍。 科学界虽已了解到测量精度可通过使用纠缠光子加以改善,但随着纠缠光子数的上升,所有的光子同时到达相同检测器的可能性微乎其微,因此该技术在实践中几无用处。罗泽马及其同事于是开发出一种使用多个探测器来测量纠缠态光子的新方法。他们设计了一种使用“光纤带”的实验装置,用以收集光子并将其发送到11个单光子探测器组成的阵列。 这使研究人员能够捕捉到几乎所有最初发送的多光子。罗泽马称,同时将单光子以及两个、三个和四个纠缠光子送入检测设备,测量精度可得到显著提高。 研究人员表示,两个光子好于一个光子,探测器阵列的效果则远远好于两个。随着技术的进步,采用高效探测器阵列和按需纠缠的光子源,此项技术可被用于以更高精度测量更多的光子。《物理评论快报》的评论指出,该项技术为提高成像和光刻系统的精度提供了一种行之有效的新途径。 总编辑圈点 光子纠缠态,早已经不再拘束于当初爱因斯坦等人提出的玄妙理论,而被应用到如量子光刻、量子图像学等技术领域。也正是这些应用,让抽象的量子力学概念能较为实在地体现在人们面前。本文中研究者以超越经典物理学的精度测量出纠缠态光子,这种高分辨率的量子态测量,不仅能带动以上应用领域的发展,亦将有助于实现相关物理参数的高精度。来源:中国科技网-科技日报 2014年06月07日

纠缠光子符合计相关的耗材

  • 超低暗计数(< 0.01cps)超导单光子探测器
    超低暗计数(0.01cps)超导单光子探测器所属类别: ? 探测器/光子计数器 ? 单光子计数器 所属品牌:俄罗斯Scontel公司 产品简介超低暗计数(0.01cps)超导单光子探测器 超低暗计数超导单光子探测器 ----最低暗计数低于0.01cps,是量子密钥分发应用的最理想选择! 俄罗斯SCONTEL公司作为世界领先的超导单光子探测器制造商,其开发出的超低暗计数超导纳米线单光子探测器彻底颠覆了常规超导单光子探测器的技术指标,最低暗计数低于0.01cps,是量子密钥分发单光子探测的理想选择。超低暗计数单光子探测器,超导单光子探测器, SSPD, 超导单光子计数器, 俄罗斯Scontel公司, Superconducting Nanotechnology,红外单光子计数器,高灵敏度单光子计数器;超导纳米线单光子探测器,SNSPD,超导纳米线,低温超导单光子探测器 超导纳米线单光子探测器应用: 超导纳米线单光子探测器技术优势:光量子计算 超低暗计数:0.01cps光子相关性测量 高探测频率:100MHz-500MHz量子密码 超高时间分辨率: 25ps-45ps自由空间通信 死时间: 2ns-10ns激光雷达 超宽探测范围:600nm~1700nm时间分辨荧光寿命测量 无后脉冲单量子点/单分子荧光特性 1~4通道可选皮秒级集成电路检测分析 全程服务支持光学断层摄影 超低暗计数超导纳米线单光子探测器的冷却系统有两种类型: a.外接低温液氦杜瓦瓶 b.闭合循环冷藏室 相关产品 超高量子效率超导单光子探测器(65%@500~1700nm) 纠缠光子对发生器(纠缠光子源) 超导单光子探测器(SSPD) 400~1700nm 时间相关单光子计数器(TCSPC)
  • 2um 掺铥光纤放大器_TDFA_筱晓光子
    TDFA-2000-MP高功率掺铥光纤放大器筱晓光子自主开发的高功率掺铥光纤放大器TDFA-2000-MP具有输出功率高、工作波长范围宽等技术特点,与传统固态激光器相比具有结构紧凑、稳定性高、易使用,无需维护等优点。TDFA-2000-MP可以与MP-19xx-Osci系列激光器共同使用,用以产生高平均功率和高脉冲功率的超快激光。 TDFA-2000-LP 掺铥光纤放大器TDFA筱晓光子开发的掺铥光纤放大器TDFA-2000-LP具有输出功率高、工作波长范围宽等技术特点,与传统固态激光器相比具有结构紧凑、稳定性高、易使用,无需维护等优点。产品参数:
  • 药铲特氟龙铲子四氟铲子PTFE铲子耐腐蚀耐高温药铲
    四氟铲子四氟铲子:又称PTFE铲子、聚四氟乙烯铲子、F4铲子,特氟龙铲子;常用于制药厂,我公司可根据客户要求定制,携带手柄和杆部的长度均可定制。1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和各种有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。 9.机械性质较软,具有非常低的表面能。我公司专业生产、加工、研发聚四氟乙烯系列产品:如四氟消解瓶,四氟离心管、消解管、烧瓶、布氏漏斗、药勺、铲子、反应装置、微波消解管,接头、阀门、球磨罐等等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制