克斯太赫兹透镜

仪器信息网克斯太赫兹透镜专题为您提供2024年最新克斯太赫兹透镜价格报价、厂家品牌的相关信息, 包括克斯太赫兹透镜参数、型号等,不管是国产,还是进口品牌的克斯太赫兹透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合克斯太赫兹透镜相关的耗材配件、试剂标物,还有克斯太赫兹透镜相关的最新资讯、资料,以及克斯太赫兹透镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

克斯太赫兹透镜相关的厂商

  • 博微太赫兹信息科技有限公司是由中电博微电子科技有限公司控股的高科技企业,注册资本共8200万,团队成员具备太赫兹安检基础技术、系统技术和应用技术的研发设计能力,研发团队90%以上具备硕士及以上学历,平均年龄30岁。 公司依托中国电子科技集团公司军工背景,率先成为央企改革试点单位,布局公共安全大产业。在掌握核心技术基础上,与时俱进、自主研发,以“中国智造”太赫兹高科技产品,成为我国的安检安防行业的领跑者。 首创的“TeraSnap”太赫兹人体安检仪,采用了国际领先的被动式太赫兹人体成像技术,是目前国内唯一具有自主知识产权,并率先获得公安部认证的采用太赫兹技术的安检产品。公司致力于打造“更安全、更可靠、更文明、更高效”的人体安检产品,引领和带动未来安检的技术革新,提供更完美的人体安检解决方案。
    留言咨询
  • OBE太赫兹作为一家专注于智能安防和智慧安检的专业服务商,致力于为全球范围内的政府、机场、公安司法、海关口岸、会议会展中心等多领域的客户,提供门控、智能出入口及科技安检的整体解决方案。 ????通过与中科院、航天院所、高等院校等国内一流科研机构合作,OBE太赫兹研发并生产了适用于多领域应用的被动式太赫兹、主动式毫米波人体安检设备,并结合全球领先的潜在情绪智能分析系统,帮助客户解决出入口管理及安全保障的问题,用世界一流的科学技术,让世界更安全更美好!
    留言咨询
  • 浙江万旭太赫兹技术有限公司于2015年07月14日成立。法定代表人陈家标,公司经营范围包括:太赫兹波技术及产品研发、销售及运用推广;从事生物技术、医药技术、农业技术、污水处理技术领域内的技术研发、技术服务、技术转让;第二类医疗器械的研发、生产;从事商品及技术的进出口业务;化妆品、纺织品、服装、鞋帽、日用百货、第一类医疗器械、消毒产品的批发、零售等
    留言咨询

克斯太赫兹透镜相关的仪器

  • 太赫兹透镜TPX (THz Lenses)我们提供TPX和HRFZ-Si材料的THz透镜。品牌:俄罗斯Tydex1、TPX透镜Tydex技术参数:材料 TPX形状 平凸, 双凸最大直径, mm to 100直径公差, mm + /-0.25通光口径, % =90有效焦距公差, % +/- 1表面质量 (两面抛光), scr/dig 80/50表明精度, mm +/- 0.01 和理想球面和平面的差 所有有效焦距都是针对300μm波长而计算的。在THz波段(30-3000 μm)边界和可见光下,折射率色散产生有效焦距公差和生产产生的有效焦距公差相比是可以忽略不计的。 1、 HRFZ-Si透镜Tydex技术参数:材料 HRFZ-Si外型 spherical, hyper-hemispherical, hemispherical, hypo-hemispherical, and bullet直径, mm 2-150直径公差, mm +/-0.1通光口径, % =90表面质量, scr/dig 80/50表面精度, mm +/-0.01和理想球面和平面的差膜层 高透膜3.HRFZ-Si半月透镜Tydex技术参数:材料 HRFZ-Si外型 平行平板最大直径, mm 150直径加工公差,mm 0厚度公差, mm +/0.1通光口径, % =90平行度, arc. min 3表面质量, scr/dig 60/40表面精细度, mm +/-0.01和理想平板的差异膜层 高透膜层
    留言咨询
  • Thorlabs TPX平凸非球面太赫兹透镜特性材料:TPX(聚甲基戊烯)非常适合0.1到3 THz的波段提供的尺寸:Ø 1英寸、Ø 50.0 mm和Ø 2英寸后焦距:15.0 - 100.0 mm这些TPX(聚甲基戊烯)非球面透镜适合聚焦或准直从0.1到3 THz的波段。与PTFE透镜相比,这些透镜在这个频段的透过率更高。TPX非球面透镜特别适用于PCA800 THz天线发出的太赫兹波,并且比离轴抛物面反射镜更易对准,光束质量更高。请注意,用于准直的透镜NA应与输出波的NA匹配,以免截断频谱,因为太赫兹天线的发射频率与角度有关Common SpecificationsMaterialTPX (Polymethylpentene)Index of Refraction1.45 at 1 THzShapePlano-Convex (Aspheric)Thorlabs TPX平凸非球面太赫兹透镜Item #aDiameterBack Focal LengthNumerical ApertureCenter ThicknessEdge ThicknessClear ApertureRadius of Curvature (R)bConic Constant (k)bAL1151"15.0 mm0.5910.0 mm2.5 mm22.4 mm9.9337 mm-0.57635AL1251"25.0 mm0.388.0 mm3.1 mm22.4 mm13.878 mm-0.57699AL1501"50.0 mm0.217.0 mm4.4 mm22.4 mm24.9368 mm-0.59181
    留言咨询
  • 总览一, ZNTE(碲化锌)太赫兹晶体110晶向的ZnTe(碲化锌)晶体常通过光学整流来产生太赫兹振荡。光学整流效应是一种二阶非线性效应,也是一种特殊的差频效应。一定宽度的飞秒激光脉冲,拥有非常宽的频率分量,这些分量间的相互作用(主要是差频)将会产生从0到几个太赫兹的电磁波。太赫兹脉冲可通过另一个自由空间的110晶向ZnTe实现光电探测。太太赫兹光脉冲会使ZnTe晶体产生双折射,因此当太赫兹光脉冲和可见光脉冲同时在ZnTe晶体中直线传播时,可见光的偏振状态将会因此发生变化。使用λ/4波片,偏振分光体,以及平衡光电二极管,我们可以完成对可见光的偏振状态的监控,从而得知太赫兹光脉冲的振幅,延迟等各种参数。而这种监测太赫兹光脉冲的完整电磁场信息(振幅和相位延迟)的能力,是时域太赫兹光谱仪最具吸引力的特性之一。ZNTE(碲化锌)太赫兹晶体,ZNTE(碲化锌)太赫兹晶体产品特点● 太赫兹振荡能达到有非常宽的频域● 抗损伤阈值高● 非线性系数大● CO2激光的SHG● 多种尺寸可选● 客户导向的解决方案● 接受客户定制服务产品应用● 太赫兹时域系统● 太赫兹源晶体● 中远红外气体探测● CO2激光的SHG● THZ实验光源● 太赫兹成像应用领域红外光学 基板 用于真空沉积的晶体片 THz探测器 THz 发射器 光学限位器生产方法HPVB or HPVZMCAS #1315-11-3结构Cubic zincblende密度5.633 g/cm3Specific Heat0.16 J/gK例如(300 K)2.25 eVMax. 透射 (l =7-12 mm)60 %Max. specific resistivity109 Ohm´ cm折射率 (l =10.6 mm)2.7光电系数r41 (l =10.6 mm)4.0´ 10-12 m/VMax. IR-optic blank diameter/lengthÆ 38´ 20 mmMax. 单晶直径/长度:Æ 38´ 20 mm碲化锌晶体(ZnTe) 5*5*1mm Ø 25.4mm碲化锌(ZnTe)晶体,是一种具有优异电光性能的II-VI族化合物半导体,自然条件下是闪锌矿(ZB)结构,室温下带隙宽度为2.3eV,其二阶非线性系数与电光系数均较大,辐射和探测THz电磁波的效率比其他电光晶体高,因此ZnTe晶体被认为是比较好的THz辐射源和探测器材料。ZnTe晶体110方向在 800nm附近激光脉冲作用下相位匹配*****,为ZnTe晶体作为太赫兹辐射产生和探测的常规使用方向。此外,ZnTe晶体还可以广泛应用于各种光电子器件中,如绿光发光二极管、电光探测器、太阳能电池等碲化锌晶体(ZnTe) 5*5*1mm Ø 25.4mm,碲化锌晶体(ZnTe) 5*5*1mm Ø 25.4mm产品特点应用于THz产生、探测和光学限幅器晶体纯度高 99.995%-99.999%表面质量优通用参数晶格结构立方闪锌矿密度5.633g/cm3比热0.16j/gK带隙(300K)2.25eV透过率(λ=7-12um)60%电阻率109 Ohm*cm折射率(λ=10.6um)2.7电光系数r41(λ=10.6um)4.0×10-12m/V电阻率(1) Low:103Ohm*cm(2) High:109Ohm*cm封装尺寸5*5*1nmØ 25.4mm二, GaSe(硒化镓)太赫兹晶体GaSe(硒化镓)晶体的太赫兹振荡能达到有非常宽的频域,至41THz。GaSe是负单轴层状半导体晶体,拥有六边形结构的62m空间点群,300K时禁带宽度为2.2eV。GaSe晶体抗损伤阈值高,非线性系数大(54pm/V),非常合适的透明范围,以及超低的吸收系数,这使其成为中红外宽带电磁波振荡的非常重要的解决方案。因宽带太赫兹振荡和探测使用的是低于20飞秒的激光光源,GaSe发射-探测系统能获得与ZnTe可比的甚至更好的结果。通过对GaSe晶体厚度的选取,我们可以实现对THz波的频率可选择性控制。注:GaSe晶体的解理面为(001),因此对该晶体使用的一个很大限制在于质软,易碎。GaSe(硒化镓)太赫兹晶体,GaSe(硒化镓)太赫兹晶体产品特点● 太赫兹振荡能达到有非常宽的频域● 抗损伤阈值高● 非线性系数大● CO2激光的SHG● 多种尺寸可选● 客户导向的解决方案● 接受客户定制服务产品应用● 太赫兹时域系统● 太赫兹源晶体● 中远红外气体探测● CO2激光的SHG● THZ实验光源● 太赫兹成像三, CVD金刚石微波太赫兹窗片/透镜/分束镜微波等离子体CVD金刚石圆片:掺硼盘(蓝色)、光学级金刚石、机械级、未抛光盘。CVD金刚石最重要的性能是无与伦比的硬度,高的导热系数(1800 W/mK,是铜的五倍)宽带光学透明度,极度化学惰性,不受任何酸或其他化学物质的影响。仅在非常高的温度下(T700°C,含氧环境下)石墨化,在惰性环境中为1500℃)CVD金刚石微波太赫兹窗片/透镜/分束镜,CVD金刚石微波太赫兹窗片/透镜/分束镜产品特点● 宽光谱透射范围● 高透射率产品应用● 太赫兹波传输窗片● X射线检测● 红外光学● 外延基片技术参数PropertyValueVickers hardness*10,000 kg/mm2Young's modulus*1050 GPaPoisson's ratio0.1Density3.515 g/cm3Atom density*1.77×1023 1/cm3Thermal expansion coefficient1.0*10-6/K @300KSound velocity*17,500 m/sFriction coefficient0.1Specific heat @ 20°C0.502 J/gKDebye temperature*1860 10KBandgap5.45 eVResistivity1013 - 1016 ohmmPropertyValueTransmission225nm to far IR , 70% @ 10µ mRefractive index2.38 @ 10µ m, 2.41 @ 500nmAbsorption coefficient0.10 cm-1 @ 10µ mBandgap5.45 eVTensile strength (0.5mm thick)Nucleation surface in tensionGrowth surface in tension600 MPa400 MPaLoss tangent (tan @140 GHz) 2.0×10-5Dielectric constant5.7PropertyValueDimensionsThicknessDiameter10 - 2000 µ mup to 100 mmSurface finishShapeflat, spherical (convex & concave)Roughness 5 nm*Flatness1 fringe/cm*Wedge0 – 1°*Antireflection Coatings (visible and infrared)Spec. Transmission at 10.6 µ m 98.6 %Wavefront distortion 4 fringes at 633 nm over 30 mm*MountingDiamond windows mounted e.g. in UHV flanges (bakeable at 250°C, vacuum tight 10-10 mbar l/s)*四, 太赫兹透镜(TPX,Tsurupica,HRFZ-Si)Terahertzlabs提供TPX和HRFZ-Si等不同太赫兹材料的THz透镜。我们拥有不同的标准尺寸以及不同的焦距EFL可供客户选择。同时我们也接受定制服务,我们会根据客户提供的具体尺寸图以及所需要的THZ材料提供特殊定制服务。TPX是很硬的固体材料,可以用来加工成不同的光学元件,如透镜和窗口镜。而且通常TPX还可用在CO2激光泵浦分子激光的系统中作为输出窗口镜。因为它对整个THZ波段都是透明的,并且可以反射10微米的泵浦光。TPX窗口镜还可以在低温保持器中作为“冷”窗口。因为TPX在THZ波段的透明度和温度无关,折射率的温度系数3.0*10-4 K-1 (for the range 8-120 K)。太赫兹透镜(TPX,Tsurupica,HRFZ-Si),太赫兹透镜(TPX,Tsurupica,HRFZ-Si)产品特点● TPX,Tsurupica,HRSi材料可供选择● 不同标准尺寸1inch,2inch● 多种焦距可供客户选择● 高透射率,高平坦度● 宽谱透射范围0.02-5 THz● 高抗张强度● 接受客户定制服务产品应用● 太赫兹时域系统● 太赫兹源窗片● 中远红外气体探测● 科学实验室研究● THZ量子级联激光器波片● 中远红外滤波片技术参数TPX主要参数:密度(g/cm3)0.83抗张强度4100psi~28.3MPa拉伸模量280000psi~1930.5MPa抗拉伸模量(%)10绕曲强度6100psi~42.1MPa绕曲模量210000psi~1447.8MPa热偏温度(℃)100融化温度(°F/℃)464/240吸收率(ASTM-D1228)(%)<0.01透水汽性(thk25μm,40C,90%RH)(g/m2*24h)110透气性(thk100μm)(cm3/m2*d*MPa)120000TPX透镜参数:材料TPX形状平凸、双凸最大直径(mm)100mm直径公差(mm)±0.25mm有效焦距公差(mm)±1%通光口径(mm)≥90%表面直径(双面抛光)80/50 Scr/Dig表面精度(mm)±0.01mm(和理想球面和平面的差)五, THz太赫兹TPX窗片我们提供由晶体和聚合物材料制成的太赫兹窗片。同时我们也接受定制服务,我们会根据客户提供的具体尺寸图以及所需要的THZ材料提供特殊定制服务。TPX是很硬的固体材料,可以用来加工成不同的光学元件,如透镜和窗口镜。而且通常TPX还可用在CO2激光泵浦分子激光的系统中作为输出窗口镜。因为它对整个THZ波段都是透明的,并且可以反射10微米的泵浦光。TPX窗口镜还可以在低温保持器中作为“冷”窗口。因为TPX在THZ波段的透明度和温度无关,折射率的温度系数3.0*10-4 K-1 (for the range 8-120 K)。THz太赫兹TPX窗片,THz太赫兹TPX窗片通用参数产品特点:TPX,HRFZ Si,ZEONEX材料可供选择不同标准尺寸1inch,2inch接受客户定制服务产品应用:太赫兹时域系统太赫兹源窗片中远红外气体探测科学实验室研究THZ量子级联激光器波片中远红外滤波片技术参数: 1,晶体材料1.1 HRFZ Si窗片材料HRFZ-Si类型平面-平面可用尺寸, mmto 150直径或横切公差, mm+0.0 / -0.1厚度公差, mm+/-0.1通光孔径, %=90平行度, arc. min3表面质量 (双面抛光), scr/вig60/40表面精度, mm+/-0.01偏离理想平面涂层应要求提供AR涂层以下窗片可从库存中获得No.直径, mm (inches)厚度, mm125.4 (1.0)1.0238.1 (1.5)1.0350.8 (2.0)1.0476.2 (3.0)1.05101.6 (4.0)1.0可根据要求定制尺寸 1.2 THz级石英晶体和THz级蓝宝石窗片材料THz级石英晶体 (z-cut) and THz 级蓝宝石窗片类型平面-平面尺寸公差, mm+/-0.1通光孔径, %=90平行度, arc. min5表面质量 (双面抛光), scr/dig80/50表面精度, mm+/-0.01 偏离理想平面涂层 (对于石英晶体)应要求提供AR涂层太赫兹级石英晶体窗片尺寸如下:No.直径, mm (inches)厚度, mm125.4 (1.0)1.0, 2.0, and 3.0238.1 (1.5)1.0, 2.0, and 3.0350.8 (2.0)1.0, 2.0, and 3.0 其他尺寸和定制设计可根据要求制造。以下尺寸的太赫兹级石英晶体可用:对于沿Z轴生长的晶体Z-axis: X =100 mm, Y=150 mm and Z up to 35 mm对于沿X轴生长的晶体 X-axis: X up to 30 mm, Y=100 mm and Z=125 mm. 可根据要求提供太赫兹级蓝宝石窗片。不同尺寸的成品可现货供应或在一周内供应。 2. 聚合物2.1 TPX windows材料TPX类型平面-平面,楔形(楔形为6mrad)可用直径, mmto 300尺寸公差,1mm+ /-0.25通光孔径, %=90表面质量, scr/dig80/50 (双面抛光)表面粗糙度Rz 0.025 (TPX)表面精度, mm±0.01 偏离理想平面以下TPX窗片有现货供应:No.直径, mm (inches)厚度, mm125.4 (1.0)2.0238.1 (1.5)3.0350.8 (2.0)3.5定制尺寸(最大厚度30 mm)可根据要求定制 2.2 ZEONEX 窗片材料ZEONEX类型平面-平面,楔形可用直径, mmto 120尺寸公差,1mm+ /-0.25通光孔径, %=90表面质量, scr/dig80/50 (双面抛光)表面粗糙度Rz 0.05表面精度, mm±0.01 偏离理想平面 ZEONEX窗户可根据要求制造。库存材料的最大厚度为33 mm。五, BATOP 太赫兹 非球面TPX透镜(直径1英寸/2英寸,焦距10-200mm)德国BATOP公司供应TPX和硅两种材质的太赫兹透镜,尺寸一般为1英寸或2英寸,包括超半球形和椭圆形硅质太赫兹透镜,以及具有不同直径和焦距的非球面TPX太赫兹透镜。BATOP的TPX透镜可用于太赫兹波段中发射器和探测器之间的太赫兹光束引导,还有专用于PCA应用的TPX太赫兹透镜,能够实现太赫兹光束的准直和聚焦。 在代理Tydex太赫兹透镜和BATOP公司TPX透镜的基础上,筱晓上海光子也提供自主开发的太赫兹透镜和窗镜,包括太赫兹透镜和石英透镜,尺寸可以为1英寸至4英寸,为用户提供更大的定制自由度。BATOP 太赫兹 非球面TPX透镜(直径1英寸/2英寸,焦距10-200mm),BATOP 太赫兹 非球面TPX透镜(直径1英寸/2英寸,焦距10-200mm)通用参数PCA专用TPX透镜特点:使用高透过率TPX(聚甲基戊烯)透镜,可以对太赫兹光束进行整形。搭配一个TPX透镜可以准直来来自超半球形基板透镜的发散太赫兹光束。搭配两个TPX透镜,可以实现清晰的THz聚焦。1英寸直径的TPX透镜可被容易地安装到具有超半球形硅透镜的PCA光导天线上。 PCA专用TPX透镜规格参数PCA专用TPX透镜分为3个型号,其通用参数一致 CTL-D25mm - 已安装的准直非球面TPX透镜,直径25.4 mm以上.. CTLF-D25mm - 用于光纤耦合PCA的安装准直非球面TPX透镜,直径25.4 mm以上.. FTL-f32.5mm - 聚焦平凸TPX透镜 PCA专用TPX透镜 通用参数透镜直径25.4 mm透镜厚度8.0 mm焦距32.5 mm通光孔径 22.4 mm折射率1.45 at 1 THz吸收系数0.3 cm-1材质TPX(聚甲基戊烯)太赫兹透镜面形平凸(非球面)PCA兼容外壳 以下为BATOP聚焦平凸TPX透镜 标准品型号TPX透镜,直径1英寸和2英寸,其中TPX-D25.4-f10,专门用于空间高分辨率的应用1英寸直径TPX透镜,焦距F:10mm~32.5mm型号TPX-D25.4-f10 TPX-D25.4-f15TPX-D25.4-f25TPX-D25.4-f32.5透镜直径25.4 mm25.4 mm25.4 mm25.4 mm焦距10 mm15.0 mm25.0 mm32.5 mm通光孔径 20 mm 23.4 mm 22.4 mm 22.0 mm折射率1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz数值孔径NA0.640.590.380.3中心透镜厚度11.2 mm8.0 mm8.0 mm8.0 mm边缘厚度3.3 mm1.6 mm3.1 mm4.2 mm材质TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)形状平凸(非球面)平凸(非球面)平凸(非球面)平凸(非球面) 注意,价格区分为已装配价格及未已装配价格1英寸TPX透镜,焦距F:50mm~150mm型号 TPX-D25.4-f50 TPX-D25.4-f67 TPX-D25.4-f100 TPX-D25.4-f150透镜直径25.4 mm25.4 mm25.4 mm25.4 mm焦距50.0 mm67 mm100 mm150 mm通光孔径 22.4 mm 22.4 mm 22.4 mm 22.4 mm折射率1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz数值孔径NA0.210.160.1070.072中心透镜厚度7.0 mm6.94 mm7.0 mm6.0 mm边缘厚度4.4 mm5.0 mm5.7 mm5.1 mm材质TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)形状平凸(非球面)平凸(非球面)平凸(非球面)平凸(非球面) 注意,价格区分为已装配价格及未已装配价格2英寸TPX透镜,焦距F:35mm~200mm型号TPX-D50-f35 TPX-D50.8-f65 TPX-D50.8-f100TPX-D50.8-f200透镜直径50.0 mm50.8 mm50.8 mm50.8 mm焦距35.0 mm65.0 mm100 mm200 mm通光孔径 47.0 mm 47.8 mm 47.8 mm 47.8 mm折射率1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz1.45 at 1 THz数值孔径NA0.540.330.230.12中心透镜厚度18 mm13 mm10 mm8.3 mm边缘厚度3.0 mm4.1 mm4 mm5.0 mm材质TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)TPX(聚甲基戊烯)形状平凸(非球面)平凸(非球面)平凸(非球面)平凸(非球面) 注意,价格区分为已装配价格及未已装配价格 六, BATOP 太赫兹超半球 Si硅透镜对于发射器和探测器之间的太赫兹光束引导,我们提供不同直径和焦距的超半球和椭圆硅透镜以及非球面TPX透镜。BATOP 太赫兹超半球 Si硅透镜 , BATOP 太赫兹超半球 Si硅透镜通用参数标准型号1:HSL-12超半球形硅衬底透镜与GaAs PCA芯片相结合,确保THz辐射的大立体角Ω=1.25 sr。由于该透镜提供发散太赫兹光束,因此必须通过附加透镜进行准直。超半球硅透镜:&bull 直径:12 mm&bull 厚度:7.1 mm&bull 折射率:3.41&bull 材料:未掺杂HRFZ硅&bull 比电阻 ρ:10 kΩcm&bull 表面:抛光&bull PCA芯片厚度:0.6 mm太赫兹光束收集角α73°发散角ß 17°虚拟焦距L 26.5 mm标准型号2:CSL-20-12准直硅透镜椭圆准直硅透镜设计用于连接0.6 mm厚的天线芯片。&bull 直径:20 mm&bull 厚度:13.8 mm&bull 折射率:3.41&bull 材料:未掺杂HRFZ硅&bull 比电阻ρ:10 kΩcm&bull 平面和椭圆形表面:抛光&bull PCA芯片厚度:0.6 mm太赫兹光束直径为20mm的准直收集角α 54.6°标准型号3:FSL-D20-f50-聚焦硅透镜聚焦椭圆硅透镜,直径20 mm,焦距50 mm。&bull 直径:20 mm&bull 厚度:14 mm&bull 折射率:3.41&bull 材料:未掺杂HRFZ硅&bull 比电阻:10 kΩcm&bull 平面和椭圆形表面:抛光&bull PCA芯片厚度:0.6 mm太赫兹光束焦距f 50 mm收集角α 52.7°收敛角ß 10°艾里盘直径at 300 GHz 3.6 mmat 1 THz 1.1 mmat 3 THz 0.36 mm
    留言咨询

克斯太赫兹透镜相关的资讯

  • 德国将研制新太赫兹透镜
    2011年9月7日报道 德国马尔堡大学将与德国塑料中心合作研究用于太赫兹和亚毫米波的新聚合物透镜。这种透镜可以改进图像质量,并降低材料和生产成本。 太赫兹和微波系统在过去二十年发展迅速,相关技术已经逐渐成熟,近年来更出现了一些创新性技术,如低成本塑料光学技术。新项目将开发以聚合物和二氧化钛或氧化铝粉末等添加物的混合物为基础的太赫兹透镜。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.

克斯太赫兹透镜相关的方案

  • 基于太赫兹时域光谱的邮件检测
    太赫兹时域光谱突出的应用之一是对可见不透明物体覆盖的材料进行光谱研究。因此,太赫兹波非常适合于检查邮件的内容。我们报告了我们在这一光谱范围内的邮件检查工作,包括机器设计、光学布局、数据分析和实施。
  • 太赫兹技术无损检测非金属材料的内部缺陷
    检测方法优势:非接触式无损检测方法;太赫兹具有穿透性,能穿透多种非极性材料,比如塑料、纸盒、陶瓷等包装材料,查看到内部金属与非金属异物的存在;没有电离辐射方案性能优势:高功率太赫兹源—低频120G/150G,高频2~5T,功率都在mW以上,穿透能力优异完整成像方案—包括源和探测器的分立系统,或者是收发一体的雷达系统,满足多种应用场景穿透成像—能够实现多信息维度的穿透成像效果,分辨率从250um到mm级别成像多方式—有实时成像的方式,也有点扫描成像
  • 太赫兹技术测量车身涂层的厚度
    检测方法优势:非接触式无损测厚;太赫兹对于非极性材料具有优异穿透性,可以穿透多种涂层,适配多种基底(金属、塑料和复合材料);可测多层厚度;没有电离辐射方案性能优势:快速精确—测厚精度最优1um,单点测量时间0.5-5s全层厚度—专利测厚算法,一次测量得到每一层涂层的厚度,可测层数高达5层精准定位—三角激光定位系统,结合振动补偿软件系统,保证垂直表面的法向误差小于0.2°易于自动化—测量头仅3kg,适合任何传统机械手臂集成大数据分析—专业的大数据分析平台软件,收集生产和制造过程中所有信息,可追溯,输出报告与警报通知操作简单—测量过程无需停止重新校准,有新颜色自动校准系统

克斯太赫兹透镜相关的资料

克斯太赫兹透镜相关的试剂

克斯太赫兹透镜相关的论坛

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

克斯太赫兹透镜相关的耗材

  • TYDEX太赫兹透镜
    太赫兹透镜我们提供由TPX和HRFZ-Si制成的太赫兹透镜。1. TPX透镜常用规格材质TPX类型plano-convex, bi-convex可用直径,毫米to 100直径公差,毫米+ /-0.25perture, %通光孔径,%EFL公差(镜头),%+/- 1表面质量(双面抛光),scr / dig80/50表面精度,毫米+/- 0.01 deviation from ideal sphere and plane以下TPX镜片有现货供应:No.直径EFLmminchesmmmm125.41.025.0225.41.050.0325.41.0100.0425.41.0200.0538.11.550.0638.11.575.0738.11.5100.0838.11.5150.0938.11.5200.01050.82.050.01150.82.075.01250.82.0100.01350.82.0150.01450.82.0200.0*所有EFL的波长均为300μm。 与制造的EFL公差相比,在太赫兹范围(30-3000μm)和可见光范围内的边缘处的折射率色散的EFL偏差可以忽略不计。2. HRFZ-Si透镜我们提供不同类型的HRFZ-Si透镜:超/低/半球,zi弹和弯月面。常用规格:材质HRFZ-Si类型spherical, hyper-hemispherical,hemispherical,hypo-hemispherical, and bullet可用直径,毫米2-150尺寸公差,毫米+/-0.1通光孔径,%=90表面质量,scr / dig80/50表面精度,毫米+/-0.01 deviation from ideal sphere and plane镀膜AR coatings upon request通用规格材料HRFZ-Si类型positive meniscus可用直径,毫米to 100尺寸公差,毫米+0.0 /-0.1厚度公差,毫米+/-0.1边缘厚度变化,毫米通光孔径, %90EFL容差, %+/-1表面质量,scr / dig80/50表面图varies depending on radius涂层AR coatings upon request以下HRFZ-Si弯月形透镜有现货供应:No.直径EFLmminchesmm125.41.025.0225.41.050.0325.41.0100.0425.41.0200.0538.11.550.0638.11.575.0738.11.5100.0838.11.5150.0938.11.5200.01050.82.025.01150.82.050.01250.82.075.01350.82.0100.01450.82.0150.01550.82.0200.0直径*所有EFLs的计算波长为300微米。 与制造的EFL公差(+/- 1%)相比,在太赫兹范围(30-3000微米)和可见光范围内,与折射率色散相关的EFL偏差可以忽略不计。
  • 太赫兹透镜 THz Lenses
    Tydex公司专业订制生产THz光学镜片,可以提供太赫兹专用离轴抛物镜、滤波片、偏振片、窗片、透镜、棱镜、波片、分束片、反射镜和菲涅尔透镜等,同时还提供太赫兹衰减器、太赫兹宽带相位变换器。 太赫兹透镜THz Lenses We offer THz lenses made of TPX and HRFZ-Si.1. TPX Lenses Commom specification: The following TPX lenses are available from stock: .*All EFLs are calculated for wavelength 300 µ m. EFL deviations related with refraction index dispersion at the edges of THz range (30-3000 µ m) and within visible range are negligible in comparison with EFL tolerances manufactured.Alternate sizes (max thickness 30 mm) and custom design are manufactured upon request. TPX lens (diameter 101.6 mm) For price quotation and delivery please fill in our Request Form. 2. HRFZ-Si Lenses We offer HRFZ-Si lenses of different types: hyper-/hypo-/hemispherical, bullet, and meniscus.Common specification: The polished ' ball-shaped' blanks of HRFZ-Si (with diameters 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0 mm) are always in stock. Upon your request hyper-/hypo-/hemi-spheres will be supplied within 2 weeks as the flat surface of the lens can be polished for the required thickness. HRFZ-Si hyper-hemispherical lens (diameter 101.6 mm) The finished parts of different dimensions are available from stock and supplied within a week.For price quotation and delivery please fill in our Request Form. Also we offer HRFZ-Si meniscus lenses.Commom specification: The following HRFZ-Si meniscus lenses are available from stock: *All EFLs are calculated for wavelength 300 µ m. EFL deviations related with refraction index dispersion at the edges of THz range (30-3000 µ m) and within visible range are negligible in comparison with EFL tolerances manufactured (+/-1%).
  • 太赫兹元件 太赫兹光栅 太赫兹衍射光栅
    Tydex生产的衍射光栅用于太赫兹频率范围的光谱测量。它们是凸面相位传输光栅。这种光栅的规则结构是通过在透明衬底上切割平行的破折号(凹槽)来实现的。衬底由太赫兹范围内透明的材料制成,如TPX(聚甲基戊烯)和ZEONEX(环烯烃聚合物)。光栅可用于:• 太赫兹光谱 • 太赫兹诊断仪器 • 光电设备 • 天文学和天体物理应用,包括天基 • 材料研究。光栅在0.3-3太赫兹范围内的以下传输频段有四个标准选项:0.28-0.55太赫兹 0.49 - -0.98太赫兹 0.87 - -1.75太赫兹 1.56 - -3.12太赫兹。其他频段0.3-3太赫兹范围内的光栅可根据客户要求生产。TPX和ZEONEX板在切割槽前的两侧抛光后的透射光谱如下图所示。 太赫兹光栅通常做成方形,一面35毫米到70毫米。其他形状和尺寸可根据需要提供。根据预期的应用,衍射光栅可以用于各种光学安排,有或没有聚光透镜。用夫琅禾费近似法计算了单色波的光栅参数、衍射波强度和一阶最大角。为了验证操作,并比较计算和实际参数,测量了光栅在不同太赫兹辐射源下的各种光学排列方式下的特性。使用了两个光源。第一种是远红外激光,这是一种亚毫米的甲醇蒸汽激光,由可调谐的CO2激光(Peter the Great St. Petersburg Polytechnic University)泵浦。第二个是自由电子激光器(FEL),一种自由电子激光器(Siberian Synchrotron and THz Radiation Center, Budker Institute of Nuclear Physics, RAS)。图3和图4描绘了使用FIR激光器作为辐射源时,间距d=250 μm的TPX和ZEONEX光栅的单色波强度(λ=118 μm)与衍射角的关系。图5和图6给出了单色波的强度(λ=141 μm)对衍射角的影响。在第二种情况下,一个会聚透镜被放置在光栅和辐射传感器之间。这些图的比较表明,在第一种情况下,零阶和一阶极大值比透镜排列更宽。这是由会聚透镜使平行光束聚焦的结果。用户在根据自己的意图设计实验时,必须考虑到这一点。当光栅用于研究辐射源的特性(功率、光束形状、能量分布等)时,透镜是多余的。但当光谱线需要分辨时,透镜就变得必不可少。对于使用瑞利准则确定特定透射带的衍射光栅,衍射单色波的强度与波长有关。它在山脉中部达到最大值,在边界附近下降。例如,数据3-6结果表明,对于间距为250 μm的TPX和ZEONEX衍射光栅(透射波段为1.56 ~ 3.12 THz或96 ~ 192 μm), λ=141 μm单色波的一阶最大光强是λ=118 μm单色波的几倍。(第一个在传输带的中间,而第二个更接近边缘。)它与用夫琅和费近似计算的单色波理论衍射波强度和一阶最大角相匹配。由于测试光栅时使用的辐射源和光学安排不同,下面的强度以任意单位给出。研究数据表明,该方法具有较高的光学效率和运算最大值的分辨率。因此,这种光栅可以有效地用于研究辐射源的光谱,包括低功率源,这是研究太赫兹频率范围的一个重要能力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制