当前位置: 仪器信息网 > 行业主题 > >

克斯太赫兹透镜

仪器信息网克斯太赫兹透镜专题为您提供2024年最新克斯太赫兹透镜价格报价、厂家品牌的相关信息, 包括克斯太赫兹透镜参数、型号等,不管是国产,还是进口品牌的克斯太赫兹透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合克斯太赫兹透镜相关的耗材配件、试剂标物,还有克斯太赫兹透镜相关的最新资讯、资料,以及克斯太赫兹透镜相关的解决方案。

克斯太赫兹透镜相关的资讯

  • 德国将研制新太赫兹透镜
    2011年9月7日报道 德国马尔堡大学将与德国塑料中心合作研究用于太赫兹和亚毫米波的新聚合物透镜。这种透镜可以改进图像质量,并降低材料和生产成本。 太赫兹和微波系统在过去二十年发展迅速,相关技术已经逐渐成熟,近年来更出现了一些创新性技术,如低成本塑料光学技术。新项目将开发以聚合物和二氧化钛或氧化铝粉末等添加物的混合物为基础的太赫兹透镜。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 英国科学家发现控制太赫兹波新方法
    英国研究人员2006年112日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。  英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。  理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。  要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 英研究人员发现一种控制太赫兹波的新方法
    2006年11月,英国研究人员近日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。  英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。  理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。  要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p  中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。/pp  频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。/pp  天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。/pp  石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。/pp  如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。/pp  此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。/pp  图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。/pp  该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title="1.jpg"/ /pp style="text-align: center "图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title="2.jpg"//pp style="text-align: center "图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title="3.jpg"//pp style="text-align: center "图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。/p
  • 校园招聘 I 青岛盛瀚-青岛青源峰达太赫兹科技有限公司
    面对当下内卷的就业环境,这届年轻人开启了“找工作不看钱看什么”的人间清醒模式。那对于应届生同学来讲,想要一份高薪工作,投递什么岗位才合适呢? 目前我国正在大力发展高技术制造、新能源等产业,这些行业目前缺乏高技术人才,具备薪酬优势。机械工程、材料科学与工程、电子科学与技术,生物,化学,环境,材料,食品等业有机会进入高薪行业。 近期小编整理了一些理科工科好岗必投企业~欢迎大家来投递。 今日主推青岛盛澣关联公司【青岛青源峰达太赫兹科技有限公司】。 青岛青源峰达太赫兹科技有限公司由中国工程物理研究院流体物理研究所与青岛盛瀚色谱技术有限公司共同组建,属于国家级高新技术企业。青岛盛瀚色谱技术有限公司专业从事离子色谱仪及其核心部件的研发、 生产、销售和技术服务,在离子色谱细分领域国内仪器占有率 50%以上,产品远销世界 60 多个国家和地区,并建有面向仪器产业配套的公共服务平台,在仪器产业化领域具有深厚的积累。 青源峰达太赫兹科技有限公司高度重视研发工作,建有绵阳技术研发中心和青岛产品研发中心,汇聚海内外专业人才,硕、博士学历占比 90%以上,具备太赫兹基础技术、集成技术和应用技术的设计、研发能力。青岛青源峰达太赫兹科技有限公司成立以来以太赫兹相关技术研发为核心,积极与外部机构开展合作,现为“中国工程物理研究院博士定向委培单位”、“中物院流体物理研究所博士生实践基地”、“青岛市太赫兹光谱成像专家工作站”、“山东省计量测试学会会员单位”、“青岛大学产学研合作基地”以及“海洋观测与宽带通信技术协同创新中心”。 通过与外部科研机构的广泛合作,青源峰达公司已形成了立足太赫兹技术和产品研发,辐射其他波段光电产品研发能力的综合研发平台。公司已顺利完成高精度太赫兹时域光谱系统、快速太赫兹时域光谱系统、太赫兹三维层析成像系统等三款太赫兹系统的成果转化,并随后相继推出了太赫兹时域光谱教研系统、高速太赫兹时域光谱系统以及自动随形太赫兹无损检测系统三款新产品。在实现太赫兹光谱及成像系统产品化基础上,开展了高精度光纤延迟线、快速光纤延迟线、太赫兹源和探测器、飞秒激光器、集成太赫兹镜头、高精度二维扫描平台、样品仓单元、信号采集和处理单元、锁相放大器等核心部件的开发工作,是国内少数具备全链条太赫兹核心部件自主研发和生产能力的企业之一。 【岗位需求 1:光学工程师】 岗位职责:1.光学零件(透镜、棱镜、反射镜、光栅等)的仿真;2.光学零件(同上)的公差分析、图纸绘制、加工厂家寻找;3.光学零件的测试与验收;4.根据公司产品与研发需要,设计透射光路、反射光路和分光光路等;5.对设计的光路或系统进行仿真、分析与加工等;6.对设计的光路或者系统进行装调、实验与验收等。任职要求:1.光电工程、精密仪器、仪器仪表、测控技术与仪器等相关专业;2.精通 zemax 或 code v;SolidWorks 或者 CAD,Tracepro3.熟悉几何光学、光谱测量等基本原理;4.主导或参与过光谱仪或者紫外检测器或者荧光检测器全过程者优先考虑;5.硕士及以上学历。【岗位需求2:应用研发工程师】 岗位职责:1、调研行业应用需求,并做相关技术验证,就新应用场景制定全方位解决方案;2、客户现场考察,技术交流等,针对客户需求不断改进应用方案;3、产品整机及应用端测试与改进。任职条件:1.硕士及以上学历,光学、太赫兹、光电子等相关专业,了解光纤光学、光电探测原理;2、熟悉各种光纤光学仪器、器件,有光学系统搭建、调试与系统应用测试经验;3、协助销售开拓新的应用市场4、具有行业应用调研、开发经验优先考虑;5、具有 MATLAB,python,SolidWorks 等多种专业软件操作及数据挖掘能力。【岗位需求3:算法工程师】岗位职责:1.研究太赫兹前沿算法论文与代码复现2.熟悉机器学习与深度学习算法及原理3.之前熟悉python、matlab 、C++中任意两种编程语言任职条件:1.物理学、数学等理科背景优先考虑,接收应届硕士毕业生。【岗位需求4:FPGA工程师】岗位职责:1、FPGA的项目需求分析,任务书、概要设计、详细设计等开发文档的编写;2、负责根据系统设计要求进行FPGA代码的设计、验证与测试、维护;3、配合软硬件工程师进行产品设计过程中的软硬件联调和验证;任职条件:1、通信、信号与信息处理、计算机、电子技术及自动化等相关专业;2、有丰富FPGA设计经验,熟悉主流厂家芯片、国产FPGA芯片系列和开发工具;3、熟悉相关语言,能独立进行FPGA时序设计/分析/仿真;4、熟悉相关通信接口;5、熟悉DDR、PCIe、1000Basex、高速serdes等常用接口者优先录用。6、能够读懂原理图,有一定的硬件电路基础。 【联系方式】应聘公司:青源峰达太赫兹科技有限公司公司地址:山东省青岛市崂山区澳柯玛智慧产业园2号楼3层联系人:人力资源经理 王先生简历投递通道:https://www.instrument.com.cn/job/activity/toSoleIndex?id=143成立20周年,聚焦科学仪器行业&检验检测行业的,行业专属垂直招聘平台,让找工作变轻松。轻松选公司,每家都和行业相关专注于服务仪器厂商/代理商,检测机构,科研院所/高校,工业企业,学会/协会,政府机构等组织。轻松选职位,每个都和专业相关专注于提供真实有效的行业专属职位,覆盖高级管理,市场营销,技术研发,售前售后,检测分析,科研学术等就业机会。行业精英内推通道,欢迎联系“仪小才”,加微信rencaizhaopin1717。
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。  看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。  在扫描和成像领域应用潜力大  把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。  该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。  为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。  新研究克服了诸多技术限制  事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。  科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 中国首台太赫兹人体安检仪投用 连蚂蚁都不放过
    鼠标轻点,仅需2.8秒即完成人体360度立体成像,实现无辐射、无接触安检通关“秒过”。国内首台具有完全自主知识产权的太赫兹人体安检仪在深圳问世,昨日起,全天候服务于深圳机场安检。  昨日中午12点50分,记者经许可来到出港安检11号通道。只见在过道一侧,摆放着一台银灰色立式圆形“怪物”。在安检人员引导下,一位乘客走进这台通透式物体,乘客站立不动,只需双手举过肩。随着工作人员轻点鼠标,仪器无声地开合一次。不足3秒钟,旅客即放行通过。而在显示仪器上,该旅客的360度人体影像被清晰地记录下来,并显示“右侧裤袋有一只手机”。因为该旅客已经通过常规安检,因此,可以放行。  记者在记录器上看到,被记录的有“左臂有纹身”、“上装领口有珍珠装饰物”、“左裤袋有一枚硬币”等等。  现场执勤的工作人员也好奇地围过来看新鲜。现场技术人员介绍说,乘客只需要站立约两三秒钟,身上携带的任何物品都会暴露无遗。  负责现场安检执勤的宝安国际机场安全检查站旅检二大队副大队长林春宣告诉记者,目前,这台仪器尚属于常规安检后的一个“保险”,从试运行效果看,完全可以识别肉眼无法直接“透视”的非金属携带物。“一旦民航局颁布统一标准,待仪器软件完善及人员培训完成后,将来可以完全取代常见的旅客安检门,且效率更高、准确性更强。”  据悉,这台太赫兹人体安检仪的问世,标志着我国在太赫兹安检领域已达到国际领先水平。据介绍,目前,基于标本库的不完整性,这台仪器只能自主识别出70%的携带物,随着数据库的充实,将来完全可以实现100%智能识别。  记者获悉,该检测仪的辐射剂量为日常使用手机的十分之一,可忽略不计 成像分辨率小于5毫米,即一个蚂蚁大小的物体都能被辨识。未来可广泛用于机场、海关、高铁、地铁等领域。目前,该仪器我们已在国内申请40余项发明专利,且正在向美国申请9项国际发明专利。  深圳机场有关人士介绍,根据民航局及省市相关要求,G20杭州峰会期间深圳机场安保升级,从9月4日至6日,每天5:30至23:30,这台太赫兹人体安检仪全天投入使用,从而间接为G20杭州峰会安保贡献一份力量。
  • “太赫兹”再惊四座,国内首次应用于人参皂苷精准测量
    p style="text-align: justify text-indent: 2em "9月27日,“产业计量(上海)论坛”开幕。论坛上,由中国工程院院士庄松林领衔的太赫兹科研团队,将太赫兹技术在全国首次应用于人参皂苷的精准定性与定量检测,并可有效识别西洋参的不同产地,解决了现有药典液相质谱法专业技术要求高、耗时长、专业仪器成本高、损耗样本等难题。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/7f40c026-292f-4480-a95d-9735d9f202e2.jpg" title="NEM1_20200928_C0325712796_A2461042.jpg" alt="NEM1_20200928_C0325712796_A2461042.jpg"//pp style="text-align: justify text-indent: 2em "“不同的物质有着不一样的波谱,就像人类的指纹一样。以‘三七’为例,我们用太赫兹技术来检测三七的有效成分含量,省去了以往粉碎、烘干、化学提取耗时7个多小时的繁琐流程,实现了药材检测耗时以‘分钟’为单位的方法,同时做到样本仅需一片且无损的高效能检测。”团队成员彭滟教授介绍,经过两年多的研发,太赫兹人参皂苷检测仪正式问世,解决了肉眼识别难度大、专业仪器成本高的难题,提高三七产品检测能力的同时,加强了“高端中药材”的质量监管,使假“三七”无所遁形。/pp style="text-align: justify text-indent: 2em "此外,太赫兹技术还可促使“地沟油”查出率进一步提高。团队成员朱亦鸣教授介绍:“地沟油多次使用后会含有动物脂肪酸、过氧化物等物质,新鲜的油主要是植物脂肪酸,两者振动频率不同,只需要把每次检测出的油品的共振吸收峰和数据库对比,就能有效地判断出油脂内含有哪一种成分,从而判断出油的种类。”运用该技术,目前“地沟油”的检测已由原来近3小时,缩短到仅需10秒钟。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/d0409556-7888-4bfe-b29a-cc856a74bac3.jpg" title="NEM1_20200928_C0325712796_A2461045.jpg" alt="NEM1_20200928_C0325712796_A2461045.jpg"//pp style="text-align: center text-indent: 0em "strong太赫兹人参皂苷检测仪/strong/pp style="text-align: justify text-indent: 2em "时间频率的计量水平是国家核心竞争力的重要体现,高准确度时间频率已经成为一个国家科技、经济和社会生活中至关重要的参数。太赫兹技术的应用和高精度时间频率技术的融合,将有望实现太赫兹源频率测量的分辨率由100kHz提高到1Hz左右,提升约10万倍,为基础科学领域研究、维护金融市场的交易秩序、提高卫星导航的测量精度提供坚实计量技术保障。/pp style="text-align: justify text-indent: 2em "上海市市场监督管理局表示,太赫兹技术在计量测试技术发展、食品药品监管等领域的应用,不仅是以高端科研成果作为技术支撑,应用于日常市场监管工作开展、促进本市市场监管成效提升的重要方法,也是市场监管部门自行政体制改革后,各领域职能交互、融合、再次迸发“火花”的又一体现。/pp style="text-align: justify text-indent: 2em "太赫兹目前正处于产业化节点,目前还存在一些问题亟待解决,但其在医学、成像、军工、通信等领域的巨大潜力吸引着众多科研专家钻研,中国工程院院士庄松林领衔的上海理工大学太赫兹团队就是其中的一只。中国科学仪器较西方发达国家起步较晚,落后较大,但太赫兹技术相比于西方发达国家,我国的技术水平并无太大落后,或称为我国屹立世界定点的又一领域。/pp style="text-align: justify text-indent: 2em "strong什么是太赫兹波?/strong/pp style="text-align: justify text-indent: 2em "太赫兹波是指频率范围为0.1~10.0THz的电磁波,波长范围为0.03~3.00mm,介于微波频段与红外之间,属于远红外波段,此波段是人们所剩的最后一个未被开发的波段,兼具二者的优点——穿透性好、安全性好、可无损检测等等。/pp style="text-align: justify text-indent: 2em "太赫兹波段自从19世纪后期正式命名之后,受到中欧美日多个国家的高度关注,各国纷纷将其入选改变世界的技术评比之中。而我国,太赫兹技术的研究在理论方法、元器件、实验测量技术等方面的成果基本保持在国际最先进水平。/pp style="text-align: justify text-indent: 2em "目前,国内太赫兹研究已经从理论研究发展到技术应用阶段,并在国家战略领域发挥了重要作用。如在探秘宇宙方面,可利用太赫兹技术探测近地星际的水、氧和碳,同时进行行星表面土壤、岩层成分分析;在航天材料领域,太赫兹技术可以分析宇宙空间中不同国家卫星的组成、结构甚至材料。同时。由于太赫兹波有较强的穿透率,因而可用于安全的无损检测,尤其是对一些塑料泡沫等绝缘材料内部的缺陷和裂纹等进行无损检测和成像,在战略导弹及航空、航天结构材料的检测和评估方面具有重要的应用价值。/p
  • 大恒科技牵头的国家重大仪器专项之太赫兹时域光谱仪开发通过验收
    3月13日,大恒新纪元科技股份有限公司(简称“大恒科技”)宣布,由公司牵头承担的国家重大科学仪器开发专项“基于飞秒激光的太赫兹时域光谱仪开发”项目进展顺利,进度和成果产出达到任务书要求的考核指标,顺利通过综合验收。“基于飞秒激光的太赫兹时域光谱仪开发”项目概述项目编号:2012YQ140005;项目组织单位:北京市科学技术委员会;项目牵头单位:大恒新纪元科技股份有限公司;项目第一技术支撑单位:首都师范大学;项目协作单位:北京大学、南京大学、中国科学院电子学研究所、上海理工大学、北京理工大学、清华大学、中国农业大学、北京农产品质量检测与农田环境检测技术研究中心、中央民族大学、北京中医药大学东直门医院、中国石油大学(北京)、东莞理工学院、中国科学院半导体研究所;项目起止年限:2012年10月至2017年9月;项目总体目标: 攻克太赫兹源、探测器等模块联用和集成关键技术,研发纳米金属薄膜宽频谱太赫兹源、Nb5N6超薄膜的室温太赫兹探测等关键部件,开发仪器操作平台软件与谱解析系统软件,通过系统集成和工程化开发,研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪;通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。该项目国家给予重大科学仪器设备开发专项资金人民币6,780万元,分阶段拨付,由牵头单位、第一技术支撑单位和协作单位共同使用。“基于飞秒激光的太赫兹时域光谱仪开发”项目验收情况该项目主要针对太赫兹时域光谱仪及各个关键模块进行了研究和开发,先后开发出具有自主知识产权的超快激光器、太赫兹源、太赫兹探测器等一系列核心产品,形成了四款各具特色的太赫兹时域光谱仪,打破了国外太赫兹技术在国内的价格垄断地位,具有较强的市场竞争力。目前太赫兹光谱仪已经在无损检测形成销售,该项目还在食品安全、民族医药、肾病检测、石油勘探、半导体材料等五个领域进行太赫兹的示范应用研究,进一步拓展了太赫兹时域光谱仪的应用,为太赫兹技术的产业化奠定了基础。关于大恒新纪元科技股份有限公司大恒科技于1998年12月14日注册成立,原名新纪元物产股份有限公司,1999年9月9 日更名为大恒新纪元科技股份有限公司;于2000 年11月29日在上海证券交易所上市(600288)。公司主营业务为光机电一体化产品、信息技术及办公自动化产品、数字电视网络编辑及播放系统、半导体元器件。据大恒科技业绩报告,2019年度实现营业收入33.06亿元,归属于上市公司股东的净利润7,308.76万元;2020上半年公司实现营业收入8.74亿元,实现归属于上市公司股东的净利润-2,201.73万元。
  • 中科院紫金山天文台牵头完成中国南极科学考察太赫兹实验
    中国第39次南极科学考察期间,中国科学院紫金山天文台牵头完成了南极内陆太赫兹天文试观测和通信收发等实验。紫金山天文台科考队员已乘坐极地考察船离开南极中山站,返航回国。中国南极昆仑站所在的冰穹A是独一无二的地面太赫兹天文观测优良台址,也是具有重要战略意义的科学考察地。中国第39次南极科学考察队于2022年10月先后随“雪龙2”号和“雪龙”号极地考察船从上海出发赴南极,并在时隔三年后再次派遣内陆队赴昆仑站、泰山站考察。紫金山天文台科研人员参加了此次南极内陆科学考察,携带一套我国自主研发的南极太赫兹探测实验系统,包括太赫兹超导接收机、太赫兹信号源、低温制冷机和小型高精度天线等自主研制的关键核心设备。科研人员分别在昆仑站和泰山站开展了太赫兹天文试观测和通信收发演示实验,首次实现我国自主研制太赫兹探测设备在南极内陆极端环境下的成功运行,并精确测定冰穹A地区0.5THz观测窗口大气透过率,进一步完善了前期太赫兹天文台址测量结果,对未来南极内陆太赫兹天文观测具有指导意义。本次实验还首次实现南极内陆地区公里级0.5THz频段太赫兹信号收发实验,为今后在南极深入开展下一代通信技术研究和实验验证奠定了基础。本次实验由紫金山天文台和中国极地研究中心联合组织实施。实验设备由紫金山天文台牵头,中国科学院理化所、中国电科集团54所、中国工程物理研究院和上海师范大学“史生才院士工作站”联合研制。相关工作得到国家自然科学基金委和中国科学院的支持,以及中国第39次南极科学考察内陆队的通力协作。2022年10月31日,紫金山天文台科考队员乘坐极地考察船启航
  • 太赫兹器件研究取得系列进展
    p  中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。/pp  太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。/pp  通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。/pp  另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。/pp  此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。/pp  上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title="1.png"//pp style="text-align: center "硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title="2.png"//pp style="text-align: center "金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title="3.png"//pp style="text-align: center "La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系/ppbr//ppbr//p
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 首个可弯曲、可穿戴太赫兹扫描仪问世
    碳纳米管制成的可弯曲太赫兹扫描装置  据美国电气与电子工程师协会(IEEE)网站14日报道,日本东京工业大学川野由纪夫(音译)和同事利用碳纳米管研发出首个可移动、可弯曲、可穿戴的太赫兹扫描仪,能对包括人体在内的三维卷曲物体进行成像检测。相关研究细节发表在《自然光学》杂志网络版上。  太赫兹射线对应的频率范围在电磁光谱的红外和微波之间,能穿透几乎各种材料且不会造成损害,因此,太赫兹摄像头在非侵入性高分辨率成像领域运用潜力广泛,可检测暗藏的武器、识别爆炸物及检查机械部件缺损等。  但传统太赫兹成像技术用不可弯曲的材料制成,只适用于检测平面样本,难以对大多数三维卷曲结构进行扫描,很多安检场所使用的太赫兹扫描仪需旋转360° 才能拍摄到人体各个角度,这使得安检系统体积过于庞大。  川野和同事利用碳纳米管薄膜设计研制出的首个可弯曲太赫兹成像装置,能在室温下探测到频率在0.14到39太赫兹范围内的所有射线,并且可包裹起来方便携带。利用这种成像仪,他们成功检测出隐藏在多张纸下的纸屑和锗盘堆中的金属线圈,并找出塑料盒内潜藏的一块口香糖。他们还识别出塑料瓶内的金属杂质和注射器上的细微裂口。上述结果表明,新太赫兹扫描仪可用在工业企业中对非平面产品如塑料瓶和药品进行快速和多角度检测。  另外,他们开发出可穿戴扫描仪并成功检测到人手发出的太赫兹射线。川野认为,不需外来太赫兹射线就能给一只手成像,是太赫兹扫描仪向医学运用迈出的重要一步,未来可用来检测癌细胞、汗腺和虫牙等各种健康问题,实时监控自身日常健康状况。  川野表示,接下来他们会将这些新太赫兹成像仪和信号识别电路与无线通信装置一起集成到单个芯片上,从而开发出高速太赫兹监控系统。之后会启动实时医用监控设备的开发工作。
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style="text-indent: 2em text-align: justify "strong仪器信息网讯 /strongspan style="text-indent: 2em "太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。/span/pp style="text-align: justify text-indent: 2em "太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。/pp style="text-align: justify text-indent: 2em "国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title="会议照片.jpg" alt="会议照片.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "会议现场/strong/pp style="text-align: justify text-indent: 2em "在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。/pp style="text-align: justify text-indent: 2em "会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title="刘海瑞.jpg" alt="刘海瑞.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "毫米波太赫兹产业发展联盟秘书长 刘海瑞/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-indent: 2em text-align: justify "随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title="揭牌.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌.jpg"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title="揭牌2.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌2.jpg"//pp style="text-indent: 0em text-align: center "strong揭牌仪式/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title="lingjiang .jpg" width="600" height="400" border="0" vspace="0" alt="lingjiang .jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong颁发理事单位牌匾/strong/pp style="text-indent: 2em text-align: justify "天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title="院长.jpg" alt="院长.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "天津大学精密仪器与光电子工程学院 院长 曾周末/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title="hemingxia.jpg" width="600" height="400" border="0" vspace="0" alt="hemingxia.jpg"//ppbr//pp style="text-align: center text-indent: 0em "strong赫兹光谱与测试工作组组长、天津大学 教授 何明霞/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title="张存林.jpg" width="600" height="400" border="0" vspace="0" alt="张存林.jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong首都师范大学 教授 张存林/strong/pp style="text-indent: 2em text-align: justify "大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title="年夫顺.jpg" alt="年夫顺.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国电子科技集团有限公司 首席科学家 年夫顺/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展/strong/pp style="text-align: justify text-indent: 2em "在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title="朱亦鸣.jpg" alt="朱亦鸣.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong上海理工大学 教授 朱亦鸣 /strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹波谱技术进展及其应用/strong/pp style="text-indent: 2em text-align: justify "太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title="黎华.jpg" alt="黎华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海微系统与信息技术研究所 研究员 黎华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:新型太赫兹激光光频梳及光谱应用/strong/pp style="text-indent: 2em text-align: justify "科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title="曲秋红.jpg" alt="曲秋红.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱检测应用研究及莱仪特检测平台/strong/pp style="text-indent: 2em text-align: justify "太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title="赵红卫.jpg" alt="赵红卫.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海高等研究院研究员 赵红卫/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱技术在生物化学中的应用研究/strong/pp style="text-indent: 2em text-align: justify "太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title="张彦华.jpg" alt="张彦华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:“蒲公英花开”——太赫兹谱数据共享平台/strong/pp style="text-indent: 2em text-align: justify "目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title="叶伟斌.jpg" alt="叶伟斌.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:测试太赫兹材料与器件电磁参数的技术与方法/strong/pp style="text-indent: 2em text-align: justify "毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title="邓玉强.jpg" alt="邓玉强.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院计量院 研究员 邓玉强/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹计量研究/strong/pp style="text-indent: 2em "太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title="heying.jpg" alt="heying.jpg"//pp style="text-align: center text-indent: 0em "strong全体与会代表合影/strongbr//p
  • 零辐射太赫兹人体安检仪年内北京试运用
    前不久,成都双流机场“弱光子人体安检仪”引发轩然大波。经查,所谓“弱光子人体安检仪”实际采用的是X射线检测。因使用X射线人体安检设备对公众进行无差别安检扫描,不具备正当性,环保部于10月10日正式下文叫停使用该类安检设备。  据了解,今年年底春运期间,北京部分火车站或将试用一种没有辐射的太赫兹人体安检仪。  现状 人体安检有盲区 G20峰会启用人体安检仪  据了解,目前,我国公共场所的安检主要是针对行李物进行检测,采用的技术都是比较成熟的X射线检测技术 适用于人体的安检方式,除了人工手检外,就是金属探测门及手持探测器。而对金属之外的物品,并没有特别有效的检测技术。如何能兼顾人身安全与安检效率,成为公众关注的问题。实际上,国外已经出现了无辐射风险同时又能准确检测的新技术,即太赫兹人体安检技术。这类安检新技术,国内也已经从实验室走向应用。在今年的G20峰会上,就出现了我国自主研发生产的适用于人体安检的“被动式太赫兹人体安检仪”。  该类设备已经在国内多地完成场地实验。很快将会在一些火车站进行试点测试。安检仪样子  专家 新型太赫兹安检技术对人体无害  太赫兹波是什么?它对人体无害的科学原理是什么?未来它将如何影响世界?为此,记者采访了中科院院士、我国最早致力于太赫兹波研究的著名激光与非线性光学专家姚建铨。姚院士详细介绍了太赫兹波的特性及科学原理,以及未来的应用前景。  为了便于理解,姚院士还特意在纸上画了一张图,将目前人类已知的各种波段在上面标注。据他介绍,2004年,太赫兹技术首次被美国提出,并且美国政府将太赫兹技术评为 “改变未来世界的十大技术”之一 2005年,日本更是将其列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。太赫兹,因此成为本世纪最为重要的新兴学科之一。  姚院士  “人类社会中存在声波、电磁波、震动波、伽马射线、X射线等各种各样的波。各种波频率有高低。声波的位置比较低,最高频的是伽马射线、X射线。太赫兹波在电子波段里不长不短,正好比光波要低一些,比声波和电磁波要高一些。”  姚院士解释说,太赫兹波之所以对人体无害,与其单光子能量低相关。太赫兹波在频谱图里的位置,位于微波和红外之间,其最大特点是单光子能量很低,仅仅相当于X射线单光子能量的1/124。姚院士说,由于它释放的能量很小,不会对人体产生有害的光致电离 而为什么伽马射线、X摄线对人体有一定的影响?因为它频率高,频率越高对人体的影响越大。所以说,安全性好,是太赫兹波的特性之一。也就是说,太赫兹波用于人体安检,无论主动式还是被动式,它对人体都是安全无害的。也正因为如此,世界上一些发达国家都在利用太赫兹技术在安检和安防领域。  其次,由于人体体温即可发射出太赫兹波,人体和物体之间的温度差,形成强弱不同的太赫兹波,机器接收后进行处理转换,最终实现探测成像 此外,太赫兹波对于某些电介质材料具有很强的穿透效果,除了可测量由材料吸收而反映的空间密度分布外,还可以通过相位测量得到折射率的空间分布,从而获得与材料相关的的更多信息。特别适合于可见光不能透过、而X射线成像的对比度又不够的场合。所以,利用太赫兹电磁波可检查机场通关的旅客与行李,检查邮件中是否藏有毒品、炭疽菌粉或炸弹等违禁物品。也就是说,利用太赫兹波不仅能检测成像,还可以检测物质成分,让毒品、爆炸物等无所遁形。可以预见,太赫兹技术未来将在反恐领域得到广泛应用。  另外,太赫兹和电磁波频谱中其它波段不一样,它几乎兼具通信、雷达和遥感测距等所有功能,而且每项应用的表现都比现有技术占优。因此,通信、军事、航天、生物诊断都是其大显身手的领域。  但是,姚院士也坦言,目前中国乃至全世界对于太赫兹波的了解还不是很深入,只是最近五年研究和应用的速度比较快。而民用方面,主要是在安全检测上。一些发达国家已经出现了太赫兹波人体安检仪,而我国也开始从实验室阶段进入到实际应用。今年,杭州举办的G20峰会期间,一种被称为“被动式太赫兹人体安检仪”的设备就已经投入测试使用。  进展 零辐射人体安检或春运期间北京试用  为了直观感受新型太赫兹人体安检设备的效果与效率,记者特意前往设立在北京亦庄锋创科技园的北京市科协院士专家工作站,现场观摩了在G20峰会期间使用过的被动式太赫兹人体安检仪的检测过程。  当随身携带金属刀、陶瓷刀、速溶奶茶、水、发胶等物品的被检人员,与没有携带物品的人员,依次从一台如银行ATM机般的机器前走过时,现场技术人员随即通过屏幕上人体图像的明暗对比,准确地排查出携带物品的可疑人员。 他介绍说,“今天演示的是双机对扫,人站在两台机器中间,这样就不用转身,大约3秒即可完成检测,非常便利。而且因为是非接触机器检查,避免了手检的尴尬和麻烦。”  据了解,检测是通过屏幕上明暗不同的成像效果来分辨人体是否携带异物。在演示现场,记者看到,一位携带陶瓷刀具的被检人员,其检测图像上能明显看出裤兜处阴影部分,技术人员说,阴影部分就是可疑物品,在实际安检中,这种情况会被要求做进一步人工安检   现场技术负责人赵光贞博士介绍,之所以该设备命名为“被动式太赫兹人体安检仪’,是相对于X射线和毫米波等主动式安检仪而言的。所谓主动式,都是由机器主动发射出光源穿透物体(或者反射回来),而被动式则是由机器被动接收人体发射出来的太赫兹波,本质上决定了“被动式太赫兹人体安检仪”是一种零辐射、零伤害的检测方式。“不同物品的温度不一样,利用温差,检测仪显示出不同颜色的呈像。”  另外,现场技术人员还告诉记者,被动式太赫兹人体安检仪还可实现动态检测,即对正在行进中的人进行扫描检测。据了解,动态扫描检测适用人流密集、安检级别高的场所,比如机场的旅客安检。但技术人员也告诉记者,这套设备虽然能实现动态检测,但是在动态模式下,成像的清晰度会受到一些影响。不过,让人期待的是,研发生产该仪器的航天十一院相关单位已经研发出第二代太赫兹人体安检设备,动态检测效果更佳。而且,新设备的示范应用点已经确定。将在今年春运期间完成测试应用。
  • 太赫兹技术在澳门海关“大显神通”,现在有个免费了解太赫兹的机会,赶紧来!
    近日,澳门海关利用太赫兹人体成像安检系统,以非入侵的检查方式,于关闸口岸截获多宗以隐藏方式偷运香烟入境个案,合共检获3,800支未完税香烟,海关已依法对涉案人员作出起诉。12月18日及19日,澳门海关于关闸口岸查获3起利用身体及随身背包作掩饰偷运未完税香烟个案,合共检获2,200支未完税香烟,涉案人士企图以隐藏方式蒙混过关,将香烟偷运入澳,最终被海关查获。针对有关情况,海关透过资料分析,加强关检执法力度,堵截私烟流入本澳。随后,于12月24日及25日,澳门海关再次透过太赫兹人体成像安检系统及X光机设备协助下,于上述同一口岸分别截获2名入境本澳人士,将香烟藏于身上、随身行李及手提汤壶藏香烟等方式,企图规避海关检查,2宗案件合共检获1,600支未完税香烟。想从原理到应用,系统地了解“太赫兹”吗?现在机会来了!会议介绍2021年1月5-6日(周二、周三),中国仪器仪表学会光学仪器分会、中国光学学会工程光学专委会、上海理工大学及仪器信息网将联合举办“太赫兹前沿进展国际交流论坛2021”网络会议。同时,本次会议也受到了庄松林院士的大力支持。会议围绕太赫兹光谱核心器件研发与应用进展,邀请国内外太赫兹领域的科研工作者、相关领域厂商研发及应用专家,聚焦太赫兹光谱研发、应用及技术转化的最新前沿进展。点击图片报名报名通道扫描下方二维码会议日程点击查看大图参会嘉宾(按报告时间排序)点击查看大图— END —
  • 我国大力发展太赫兹技术!太赫兹技术(大同)研究院揭牌成立
    p style="text-indent: 2em text-align: justify "太赫兹波又称远红外波,曾被评为“改变未来世界的十大技术”之一,它是电磁波段中最后一段未被人类充分认识和应用波段。由于频率高、脉冲短、穿透性强,且能量很小,对物质与人体的破坏较小,所以与X射线相比,太赫兹成像技术和波谱技术更具优势,在空间探测、医学成像、安全检查、宽带通信等方面具有广阔的前景。/pp style="text-indent: 2em text-align: justify "7月7日,太赫兹技术(大同)研究院、大同东华科技有限公司在山西省大同市正式揭牌成立,为大同转型发展蓄势赋能。山西省委常委、大同市委书记张吉福,大同市市长武宏文,山西省投资促进局党组书记、局长杨春权及两大平台相关负责人进行揭牌。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 537px height: 356px " src="https://img1.17img.cn/17img/images/202007/uepic/03fdaf1d-fe27-44c3-be23-ef3886ecd362.jpg" title="88ca67ee0af44026a65ab96cdb949524.jpg" alt="88ca67ee0af44026a65ab96cdb949524.jpg" width="537" height="356"//pp style="text-indent: 2em text-align: justify "据了解,太赫兹技术(大同)研究院是大同聚力建设12大科技创新平台的重要平台之一,主要由毫米波与太赫兹技术北京市重点实验室和毫米波太赫兹产业发展联盟组建;大同东华科技有限公司的总部东华软件股份公司成立于2001年1月,以应用软件开发、计算机信息系统集成、信息技术服务等为主要业务,拥有千余项自主知识产权的软件产品。/pp style="text-indent: 2em text-align: justify "武宏文表示,大同将致力把太赫兹技术(大同)研究院打造成一流的国家级研究院。同时,大同将与大同东华科技有限公司在高端制造、信息技术应用、大数据等领域进行深度合作,加强技术研发、加快成果转化、加速产业孵化,着力打造大同成功转型的“四梁八柱”。/pp style="text-indent: 2em text-align: justify "据悉,大同近年来启动建设了大同市国际能源革命科技创新园,引进了12大科技创新平台,集聚了28名两院院士、77名高科技领军人才,转化落地了太赫兹技术测温安检门、煤矿废弃巷道压缩空气储能等一大批高科技转型项目,推动大同发展步入创新驱动快车道。/pp style="text-indent: 2em text-align: justify "揭牌仪式上,杨春权表示,全省投资促进系统将以项目招商、落地为核心,坚持“项目为王”理念,精准招商,为大同项目落地投产见效提供全方位“保姆式”服务。/p
  • 太赫兹技术助力空间技术仰望“芯”空
    他们,研制了我国第一台毫米波天文超导接收机;他们,在国际上首次实现高能隙氮化铌超导隧道结的天文观测;他们,研制了目前世界上最前沿的超导热电子混频器;他们,实现了我国首例千像元太赫兹超导成像阵列芯片… … 他们是中国科学院紫金山天文台太赫兹超导空间探测技术研究青年团队(以下简称太赫兹团队),多年来专注国际前沿太赫兹超导探测技术和空间天文应用研究,目前正在承担中国空间站巡天望远镜“高灵敏度太赫兹探测模块”研制任务,有望实现我国太赫兹超导探测技术在空间应用“零”的突破。 近日,这支年轻的团队被授予“中国科学院青年五四奖章集体”称号。仰望星空 探索未知 仰望星空是人类探索未知的本能,而宇宙的绮丽无法靠想象感知,只有“看见”才能了解。 “太赫兹天文探测能探索宇宙最久远的过去,为我们解释现代天文学中最重要的前沿问题提供先端手段。”太赫兹团队负责人、紫金山天文台研究员李婧告诉《中国科学报》。 在电磁波谱中,太赫兹波段包含部分毫米波、全部亚毫米波和部分远红外,其波长从3毫米到30微米,频率覆盖0.1~10太赫兹(太,T=1012)。太赫兹位于微波和红外之间,其研究手段也处于电子学向光子学过渡的区域,具有指纹性、穿透性和安全性等重要特性。 关于指纹性,李婧解释道,物质的晶格振动和分子转动等引起的能级跃迁都对应在太赫兹谱段,而不同物质的光谱位置、强度、形状均有差异,具有指纹般的唯一性,常被称作为太赫兹“指纹谱”。 不同于X射线对人体可能存在伤害,由于水对太赫兹具有强烈的吸收,因此太赫兹不会对物体尤其是生物组织产生有害的电离反应。 李婧介绍,当前,太赫兹超导探测技术可分为相干探测和非相干探测两大类。其中,太赫兹相干探测器可以同时探测信号的幅度和相位信息,主要应用于高频率分辨率的分子和原子谱线观测,以及具有高空间分辨率的天线干涉阵列;太赫兹非相干探测器则只能探测信号的幅度信息,而不获取其相位信息,主要应用于连续谱成像观测和宽频带中低分辨率谱线观测。 “成像还是光谱?天文学家都要。”李婧指出,根据科学目标的不同,天文学家对观测技术的需求也不尽相同:有时会需要大天区的多色成像,有时也需要高频率分辨率的谱线观测。坚守初“芯” 攻坚克难 据了解,地球大气层对太赫兹信号的强烈吸收一定程度上制约了太赫兹地面观测的能力,为了让中国在该领域站在国际前沿,将观测平台从地面移到太空几乎是必经之路。 李婧向《中国科学报》介绍,太赫兹探测技术的核心是“超导探测器”,是人类关于星空梦想的基石,更是重要的关键核心技术。 几十年来,从薄膜生长,到芯片制备,再到接收机系统集成与表征,太赫兹团队坚持自主的研发与研制路线,突破重重技术关卡。 李婧还记得当年团队在开展研究之初,一些发达国家已经在超导芯片的研制方面具备明显优势。“虽然我们实验室有超导探测技术研究方向的国际知名专家,但工作中仍然会遇到很多困难,比如:缺乏配套的超导芯片制备平台和实验仪器条件等。” 随着实验条件的逐步改善,太赫兹团队坚守初“芯”,攻坚克难,通过持续潜心研究,解决了技术瓶颈背后的基础物理问题。 “目前,我们已经成为国际上少有的完全掌握四种太赫兹天文主流探测技术的团队。”李婧说,“有了这些自主的关键核心技术支撑,我国的太赫兹天文发展之路上,就没有了关于探测器的后顾之忧,更不会受制于人。” 现在,太赫兹团队承担“高灵敏度太赫兹探测模块”研制任务,其技术指标达国际前沿。但李婧也指出:“作为我国首次空间太赫兹超导探测技术应用,其难度和挑战可想而知。”绽放芳华 无悔青春 这些年来,在中国科学院院士史生才的指导下,太赫兹团队迅速成长,曾获江苏青年五四奖章集体,其科研成果获国家科技进步奖二等奖、中国电子学会科技进步二等奖等奖励。 在太赫兹团队成员25人中,李婧是仅有的3名女性之一。她还记得自己2002年来到紫金山天文台读博士研究生,也是在那时首次接触到太赫兹超导空间探测技术研究。 “当时感觉这项工作不太适合女生,不仅需要经常拆装和搭建很重的低温实验仪器,有时还需要出野外。”这是李婧对该研究的第一印象。 但她没有知难而退,李婧带领太赫兹团队经常身裹实验服,“泡”在无尘实验室里,一待就是数个小时。与她为伴的是设备运行的嗡嗡轰鸣声、是化学试剂散发的刺鼻气味、是口干舌燥却不能饮水的坚持与隐忍。 惟其艰难,方显勇毅;惟其磨砺,始得玉成。历经挫折与荆棘,太赫兹团队终于研制出高性能的氮化铌超导隧道结混频器芯片,将我国太赫兹高能隙低温超导探测的水平推进到国际前列。 “高灵敏度超导探测器的测试,经常会收到轻微振动的干扰。”李婧说,为排除周边环境引起地面振动给实验结果带来的影响,我们经常选择凌晨做实验,白天进行数据分析。” 为了能选出适合太赫兹天文观测的优良台址,太赫兹团队成员无数次登上5100米以上的高海拔地区,顶着强风、忍着高反,他们在零下几十度的环境中调试设备,一干就是十几天。这些坚守的背后,是家里牙牙学语、蹒跚学步的孩子,是年近高龄、甚至身缠重病的老人。
  • 太赫兹波识别邮件炸弹
    2011年12月12电 不断发生的邮件和包裹炸弹事件令人神经紧绷,因此对邮递物加强检查迫在眉睫。德国弗劳恩霍夫物理测量技术研究所12日推出一款太赫兹信件扫描仪,人们可以借助这台机器在不侵犯通信隐私的前提下,及时发现信中所含危险物品。  与通常使用的X射线检查仪不同,太赫兹信件扫描仪借助太赫兹波“窥探”信件“内容”。太赫兹波为一种波长介于微波与红外线之间的电磁波,可轻易穿透衣物、塑料和皮肤。与X射线相比,太赫兹波光子能量较低,一般不会对生物组织造成损害。  研究人员介绍说,如果在邮件递送环节推广使用这种太赫兹信件扫描仪,就可提早发现邮件或包裹炸弹,避免惨剧发生。这种太赫兹信件扫描仪几乎可以“服役”于任何地方,邮局、监狱、私人住宅……与耗资较高、辐射较大、无法识别具体爆炸物的X射线扫描仪相比,太赫兹扫描仪具有独特优势。
  • 国防军工行业:太赫兹,不再是黑科技
    太赫兹波技术-改变未来世界的十大技术之一。太赫兹波是人类迄今为止了解最少、开发最少的介于无线电波和光波之间一个波段。太赫兹波拥有低能量,宽频谱,强穿透,瞬态性等技术特点,在国防、国土安全、天文、医疗、生物、计算机、通信等科学领域有着巨大的应用价值。  太赫兹应用技术研究主要分为太赫兹波谱,成像,通信,军事等方向。  细分领域涉及基础科学研究,质量检测,医学成像,材料无损检测,安全检查,室内局域无线通信,高速局域网络通信,军事国土安全等。  高功率太赫兹辐射源,高灵敏度太赫兹波探测器,以及太赫兹波器件等关键组件是太赫兹波应用技术推广的基础。  国际太赫兹市场较为成熟,国内市场处于发展初期。国际太赫兹技术较为成熟,已经逐步进入产业化应用,国际市场高速扩容。全球太赫兹组件和系统的市场将从 2015年的5600万美元增加到2023年的4.15亿美元,2015-2023年复合增长率为25.9%。 (TransparencyMarketResearch)截止到2014年,组件方面,太赫兹源占据较大的市场份额。  系统方面,光谱系统占据最大市场份额。应用领域方面,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场应用。  我国处于太赫兹技术应用拓展初期,政策支持与研发成果落地有望带动相关产业。  太赫兹技术在国防军工和民用领域具有丰富的下游应用,国防军工领域主要涉及太赫兹雷达,爆炸物、毒气战剂和生物战剂的感测,军工通信(战术通信网,天基通信系统等),军用无损检测等。民用领域主要涉及人体安检,工业无损检测,生物医学(生化检测,医学成像,组织检测)等。  投资建议:我们建议短期内关注安检和无损检测方向,中期关注太赫兹通信,长期关注太赫兹全产业链化发展。中国电科国产化率达到90%的中国首台太赫兹安检仪研制成功,打破了国外垄断,填补国内空白,目前已经试点推广,随着使用范围进一步扩大,并带动安防安检上下游行业,未来将形成千亿规模。太赫兹波在无损检测非金属复合材料方面相比传统的工业手段有着明显的优势。无线通信带宽已经无法满足物联网迅速发展,无线载波必将进入太赫兹波谱范围,支撑物联网万亿市场规模。  太赫兹相关主要上市公司:四创电子(股东中国电科38所研发太赫兹人体安检仪),同方股份(子公司同方威视发展了在毫米波/太赫兹波领域业务-安检设备),华讯方舟(研发石墨烯太赫兹芯片,发展太赫兹成像和生物检测业务),大恒科技(太赫兹时域光谱仪),天瑞仪器(太赫兹波谱技术,液相色谱仪检测地沟油),聚光科技(太赫兹技术的地沟油快速检测仪合作研发单位),凤凰光学(太赫兹技术的地沟油快速检测仪合作研发单位),TCL(太赫兹通信)等。
  • 国内首套真空太赫兹波段近场光学显微系统在电子科技大学太赫兹中心成功安装
    太赫兹有着光明的应用前景,还是一片未开垦的处女地。电子科技大学太赫兹中心自成立以来,为太赫兹科学研究搭建了更高的合作发展平台,也标志着我国以“国际前沿、”为目标的太赫兹科学研究迈入了崭新阶段。2018年6月,应电子科技大学太赫兹中心对真空环境下进行太赫兹近场光学研究的需求,QD中国工程师配合德国neaspec公司立即展开积响应并为客户量身定制了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM),并已成功安装。 图1:电子科技大学太赫兹中心安装调试现场 图2:真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM) 电子科技大学太赫兹中心原有一套大气环境太赫兹波段近场光学显微系统(THz-neaSNOM),空间分辨率~50nm、宽太赫兹时域近场响应波段0.5-2.2THz。由于更进一步的科研需要,客户需在更加严格的真空条件下进行太赫兹实验。为了满足客户的实验需求,德国neaspec公司在原有大气环境THz-neaSNOM的基础上,结合新的低温散射式近场光学显微镜(Cryo-neaSNOM)技术,设计了新的真空腔体系统,改进了原子力显微镜布局,并重新设计了光路,终成功研发出了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)。该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。 图3:系统理论培训 图4:现场实时操作培训 太赫兹波有强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
  • 首届全国太赫兹技术与应用交流会召开
    首届全国太赫兹科学技术与应用学术交流会日前在京召开。6位两院院士、23名特邀报告专家,及近300名全国专业学者和科研人员,共同探讨这项“改变未来世界”的新兴科技领域。  太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。作为我国太赫兹领域的首次学术“峰会”,大会交流领域涵盖太赫兹物理与基础理论、太赫兹产生与放大技术、太赫兹传输与检测技术,以及太赫兹在光谱学、通信、雷达、成像中的应用技术等多个学科领域。据悉,我国近年来在太赫兹源、检测器件等领域进展显著,已有数十个高校和科研院所启动太赫兹相关研究。本届大会由中国兵工学会太赫兹应用技术专业委员会主办,太赫兹科学技术研究中心承办。  相关概念股包括大恒科技、天瑞仪器、四创电子等。昨天,受太赫兹概念利好影响,大恒科技开盘即一字封停,天瑞仪器盘中涨停,四创电子涨4.20%。  太赫兹技术可检测潜在的地沟油  据京华时报报道,23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出“基于太赫兹技术的地沟油快速检测仪”。该仪器基于太赫兹电磁波可以与油脂中的有机物产生共振的原理,能找出潜在的地沟油。  合生财富首席分析师梁万章认为,昨天二级市场对太赫兹概念的追捧力度较大,大恒科技大单封死涨停,但此类涨停有非常明显的游资炒作痕迹。  目前来看,市场对太赫兹概念相对陌生,且此技术从实验室走向民用还需一段时间,而传闻涉及该概念的大恒科技、四创电子等上市企业在未来能否拿到订单实现业绩也是未知数,因此,该类个股“一日游”行情的可能性非常大。  对于市场传闻,记者采访了大恒科技董秘严宏深,他表示公司的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。  大恒科技:太赫兹时域光谱仪开发尚处实验室阶段  据仪器信息网报道,2012年8月8-10日期间,由中国仪器仪表学会、“ 太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办,中国分析测试协会、中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会多家单位支持的“太赫兹科学仪器及前沿技术专题研讨会”在北京紫玉饭店成功召开。  教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒新纪元科技股份有限公司作为牵头单位,首都师范大学作为第一技术支撑单位。太赫兹光谱作为太赫兹应用技术之一,对经济社会发展及民生改善有支撑作用,而且产业化前景非常可观,据Thintri, Inc. 2010年度太赫兹市场报告预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万至数亿美元,市场份额可达到数十亿美元,而张存林教授太赫兹时域光谱仪项目预期为中国带来经济效益数亿美元(以中国市场占10%的全球市场份额估算),产品将拉动中关村高科技示范区高端仪器制造业及相关产业年约10亿元人民币的产值。项目融合宽普、高能量、小型化的趋势特点,以光谱范围0.1-10THz、光谱分辨率7.5GHz、太赫兹脉冲能量10μJ为技术指标,在现有原理样机的基础上进行完善来实现工程化,使整机性能指标达到国际先进水平,并预期实现在2014年小批量试产25台、2016年批量投产100台的目标。  据中国证券报最新报道,参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。  太赫兹安检技术具有巨大的市场前景  据仪器信息网报道,中国电子科技38所研发的太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。  太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  目前在公共场所的安检是以X射线成像为主,辅助以金属探测器及人工检查,但无法有效检测出人体隐藏的非金属危险物品,进而可能导致恶性暴力及恐怖袭击事件。太赫兹安检技术不仅对人体更加安全,且增加了物联网技术,实现了对被检测对象的智能化识别、定位跟踪、自动报警、管理监控以及信息存储分析和区域网络覆盖,其应用将显著增强城市中公共场所的安全防御能力,有效减少公共安全事件的发生率。  太赫兹安检技术具有巨大的市场前景,预计国内市场潜力在100亿元左右,在世界范围内,太赫兹成像产品潜在的市场销售额可达1000亿元以上。  附:太赫兹(地沟油检测)概念股一览  天瑞仪器、大恒科、四创电子、百利电气、同方股份都进入太赫兹领域,四创电子控股股东38所曾研制出样机。TCL则是介入下一代手机太赫兹研究。  大恒科技:公司表示的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。市场传言,教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒科技作为牵头单位,首都师范大学作为第一技术支撑单位。  天瑞仪器:目前公司出产的LC310高效液相色谱仪可以应对地沟油黄曲霉毒素b1的限量检测。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  四创电子:此前有报道称,四创电子大股东华东电子工程研究所(中国电子科技集团公司第三十八研究所)太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  TCL:2011年深圳先进科学与技术国际会议第三届会议上,公司称目前工业界已全面进入太赫兹开发及应用领域,太赫兹已在通讯领域崭露头角,TCL通讯期待与各位专家学者一起开发与研究太赫兹科学技术,带动通讯产业的技术发展。  百利电气:传百利旗下公司投资上游实验室研发的集成THz医学成像设备比东芝最高端成像效果清晰100倍。  凤凰光学、聚光科技:上述“基于太赫兹技术的地沟油快速检测仪”由上海现代光学系统重点实验室与上海市分析检测协会合作研发,拥有自主知识产权。其中,上海现代光学系统重点实验室的合作单位包括凤凰光学(上海)有限公司、聚光科技(杭州)有限公司。  概念解析:太赫兹  太赫兹(Terahertz,1THz=1012Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。  太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高 又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 国外太赫兹无损检测技术已趋成熟
    太赫兹技术属于一种新型无损检测技术,能够对某些组件及表面进行无损测试分析。但是这种检测装置,尤其是传感器探头,不仅价格昂贵,而且相当笨重。  现在,来自于德国弗劳恩霍夫协会的研究人员已经成功研制出一种非常紧凑、简单的传感器探头,其成本也因此变得更低,装置操作也变得更加容易。他们设计的第一种传感器探头原型已经被用于在塑料管的生产线上检测管壁的厚度。此外,这种装置还非常适用于分析纤维复合材料上的涂层等。  这种新型传感器探头将会于2016年4月25至29日在德国汉诺威工业博览会上进行展出。  十多年以前,当人们谈论最多的还都是人体扫描仪的时候,太赫兹技术就被视为“下一个大事件”。科学家们希望利用太赫兹辐射技术研发出一种能够用于材料测试与分析方面的测量体系 虽然人们对于太赫兹技术一直都抱有很大的期望,但太赫兹技术并没有取得人们所期待的进展。与传统的无损检测技术相比,例如X射线检测、超声检测等,太赫兹技术成本太高,装置笨重、不灵活。  搭配新型传感器探头的测量体系  现在,德国柏林的弗劳恩霍夫海因里希赫兹研究所在太赫兹技术方面取得了一项巨大的进步。由该研究所里Thorsten G?bel领导的太赫兹技术研究小组已经成功的研制出了首例标准太赫兹设备,而且成本更低,操作更为简便。  弗劳恩霍夫海因里希赫兹研究所激发太赫兹辐射的原理是基于一种光电方法 通过使用一种特殊的半导体,激光脉冲被转换成太赫兹电脉冲。而以前太赫兹技术一直没有取得实质性成功的原因主要就在于这种特殊半导体需要具备一些特殊的性质。  “我们研制出了一种半导体材料,能够被波长为1.5微米左右的激光刺激,” G?bel说道:“在光通信领域中,这是一种标准波长,这也是为什么市场上有那么多廉价但高质量的光学组件和激光器”。  但是,要研制出一种能够用于材料测试方面,且成本较低、操作便利的太赫兹体系仍然存在一个大障碍——迄今为止,用于扫描待测试组件的传感器探头太大而且非常笨重,并不便于使用。原因是太赫兹发射器和接收器是两个独立的组件,必须要精确的安装在套管里。这种排列的主要缺点在于测试样品只能在一个角度上进行测量。因此,测试对象必须准确的位于接收器和发射器的焦点上,这样经样品由发射器发出的太赫兹信号才会显示在接收器上。如果传感器探头和样品之间的距离发生了变化,例如发生轻微震动等,测量都会变得更加困难。  如今,研究人员制造了一个能够同时发射和接收信号的集成芯片,这使得操作距离可以更加灵活。人们将发射器和接收器“打包”成一个收发器,并置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部。  研究人员将太赫兹辐射中的发射单元与接收单元“打包”置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部  塑料管的壁厚检测  这种太赫兹传感器体系目前已经被一些制造厂商用于塑料管材的生产监测,这些传感器能够直接在生产线上检测塑料管壁的厚度 这项检测在生产过程中也是非常重要的,管壁太薄,塑料管就会变得非常不稳定 管壁太厚,无疑会浪费许多宝贵的原材料。  直到现在,塑料管生产线上一般都是采用超声检测体系。但超声检测不能准确的在空气中进行测量,通常需要用到水等耦合剂来起到超声传感器探头和塑料管材之间的耦合介质作用。正是由于这个原因,接近250℃的塑料管材必须通过水箱,才能完成检测。此外,超声检测技术并不能有效检测由不同材料层构成的所谓的智能管材。  纤维增强复合材料上的涂层检测  这种新型太赫兹传感器探头的另一个应用是验证纤维增强复合材料上的油漆以及涂料等。  人们能够利用涡流检测技术对一些金属基材料进行检测,例如在汽车行业中对金属薄片进行检测 但是涡流检测技术并不适用于导电性不好的纤维复合材料。“因此,随着复合材料在汽车、航空、航天以及能源等领域内的应用越来越广泛,人们迫切的需要一种可靠的检测方法”,G?bel说道,而这种新型太赫兹传感器探头可以解决这个问题。  虽然这种新型的太赫兹传感器体系来自于廉价的标准光学元件,可它目前的价格仍然高于一些超声检测装置,但是,G?bel预测,在不久的将来,随着逐步批量生产,其价格肯定会大幅降低。考虑到这种检测方法的优势及其目前的研究进展,G?bel相信太赫兹技术在未来几年将会取得更多的成功,很快成为一种成熟的无损检测手段。译自:sciencedaily
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。  研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。  利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。  研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。  据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。  参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。  据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 通知|太赫兹光谱与测试应用研讨会 暨“太赫兹光谱与测试工作组”成立大会 邀请函
    p style="text-align: justify text-indent: 2em "strong太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。/strong随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,strong正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景/strong。/pp style="text-align: justify text-indent: 2em "在多家科研机构与相关企业的努力下,strong毫米波太赫兹产业发展联盟拟成立“太赫兹光谱与测试工作组”/strong,将会对太赫兹光谱技术的应用及其标准化工作产生非常积极的影响,并促进加快太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。为了进一步推进太赫兹光谱与测试应用的相关工作,加快服务平台建设,strong联盟将于2020年1月12日举办“太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会,旨在分享科研成果,加强企业交流,探讨产业发展道路。/strong欢迎各位联盟成员积极参与,献言献策,共同推进太赫兹产业发展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/55c27dd3-a921-420e-9149-f3c3928176fe.jpg" title="捕获1.JPG" alt="捕获1.JPG"//pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会组织/strong/span/pp style="text-align: justify text-indent: 2em "strong主办单位/strong:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "strong承办单位:/strong莱仪特太赫兹(天津)科技有限公司/pp style="text-align: justify text-indent: 2em "strong协办单位:/strong爱德万测试(中国)管理有限公司 中国科学院上海微系统与信息技术研究所 天津大学精密仪器与光电子工程学院/pp style="text-align: justify text-indent: 2em "strong支持媒体:/strong仪器信息网/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会信息/strong/span/pp style="text-align: justify text-indent: 2em "strong会议规模:/strong120人/pp style="text-align: justify text-indent: 2em "strong时间:/strong2020年1月12日 13:30-17:40/pp style="text-align: justify text-indent: 2em "strong地点:/strong天津高新区党群活动中心三层会议大厅举行(天津市西青区海泰发展三道8号)/pp style="text-align: justify text-indent: 2em "strong会议签到:/strong13:00-13:30,三层会议大厅走廊/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 633px height: 546px " src="https://img1.17img.cn/17img/images/201912/uepic/93942039-2a47-4988-acab-22f423d5b644.jpg" title="捕获2.JPG" alt="捕获2.JPG" width="633" height="546"//pp style="text-align: center text-indent: 0em "span style="font-size: 24px "strongspan style="font-family: 黑体, SimHei "报名方式/span/strong/span/pp style="text-align: justify text-indent: 2em "如您需要报名,请扫描下方二维码,填写报名信息,期待您的到来!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 194px height: 197px " src="https://img1.17img.cn/17img/images/201912/uepic/89c5de2e-48e4-4e9e-a3b6-675b1c6e2800.jpg" title="捕获.JPG" alt="捕获.JPG" width="194" height="197"//pp style="text-align: center "span style="text-indent: 0em "扫描二维码,填写报名信息/span/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong会议赞助/strong/span/pp style="text-align: justify text-indent: 2em "本次研讨会的会场外侧具有上百平米的展示区域,strong赞助单位/strong可展示易拉宝、产品、宣传手册等,感兴趣的单位请与strong联盟/strong(下方主办单位)取得联系。/pp style="text-align: justify text-indent: 2em "strong联系方式/strong/pp style="text-align: justify text-indent: 2em "主办单位:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "联系人:王贺娟/pp style="text-align: justify text-indent: 2em "联系方式:17810282650/pp style="text-align: justify text-indent: 2em "微信公众号:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "邮箱:service@chinamta.org.cn/ppbr//pp style="text-align: justify text-indent: 2em "strong承办单位:莱仪特太赫兹(天津)科技有限公司/strong/pp style="text-align: justify text-indent: 2em "联系人:崔鹤峰/pp style="text-align: justify text-indent: 2em "联系方式:13672188587/pp style="text-align: justify text-indent: 2em "微信公众号:莱仪特太赫兹 /pp style="text-align: justify text-indent: 2em "邮箱:let@letthz.onaliyun.com/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strong关于毫米波太赫兹产业发展联盟(附入会指南及申请表)/strong/pp style="text-align: justify text-indent: 2em "毫米波太赫兹产业发展联盟(下文简称:联盟)于 2019 年 4 月 26 日上午在京成立,其宗旨是加快我国毫米波太赫兹产业发展,搭建产业协作与孵化平台,充分运用政用产学研,提高产业创新能力,提升我国在通信、自动驾驶、航空航天、安全防护、生物医学、工业互联网等应用领域的技术水平与产业化能力。在政府、产业界、学术界之间发挥桥梁和纽带作用,分享学术界的科研成果,对接企业需求解决实际问题,实现毫米波太赫兹产业创新发展。/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/e81299b1-fd2d-4fc1-b803-5ff83253195d.pdf" title="指南 毫米波太赫兹产业发展联盟入会指南.pdf"指南 毫米波太赫兹产业发展联盟入会指南.pdf/a/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/3ad5e21e-d5a3-4fc7-858e-9a0e1619cf8c.docx" title="申请表 毫米波太赫兹产业发展联盟.docx"申请表 毫米波太赫兹产业发展联盟.docx/a/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制