丙烯酰胺溶液蛋白组学级

仪器信息网丙烯酰胺溶液蛋白组学级专题为您提供2024年最新丙烯酰胺溶液蛋白组学级价格报价、厂家品牌的相关信息, 包括丙烯酰胺溶液蛋白组学级参数、型号等,不管是国产,还是进口品牌的丙烯酰胺溶液蛋白组学级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烯酰胺溶液蛋白组学级相关的耗材配件、试剂标物,还有丙烯酰胺溶液蛋白组学级相关的最新资讯、资料,以及丙烯酰胺溶液蛋白组学级相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

丙烯酰胺溶液蛋白组学级相关的资料

丙烯酰胺溶液蛋白组学级相关的论坛

  • 免脱盐柱除盐的蛋白组学前处理方法

    免脱盐柱除盐的蛋白组学前处理方法

    [align=center]免脱盐柱除盐的蛋白组学前处理方法[/align][align=center]季学猛,史爱莹,张 燕,王 硕[/align][align=center](南开大学 医学院, 天津 300071)[/align]摘 要:现有的蛋白组样品前处理中脱盐柱除盐的方法存在步骤繁多、易损失微量样品等缺点。这里,一种超滤管辅助酶解及加热潮解除盐的蛋白组学前处理方法被提出。具体而言,是利用超滤管辅助,通过离心在酶解前将缓冲液置换成碳酸氢铵溶液,酶解后多肽溶液中的碳酸氢铵被加热除去,最终得到脱盐的纯净多肽。该方法操作简便,无需洗脱步骤,可以方便地与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]直接衔接,而且可以减少前处理引起的氨基酸残基去酰胺和氧化修饰,有利于蛋白组学及其蛋白修饰分析。关键词:蛋白组学;样品前处理;脱盐柱 加热 碳酸氢铵中图分类号:O657.63 文献标识码:[align=center]An Improved Proteomic Pretreatment Method without Desalination Column [/align][align=center]JI Xuemeng,SHI Aiying,ZHANG Yan,WANG Shuo[/align][align=center](School of Medicine, Nankai University, Tianjin 300071, China)[/align]Abstract: The existing method for desalting protein samples in pre-processing is associated with several drawbacks, including a high number of procedural steps and the potential loss of minute sample quantities. In this context, a novel protein sample pre-processing method is proposed, which utilizes ultrafiltration tubes to assist in enzymatic digestion and employs heat-induced desalting. Specifically, the ultrafiltration tubes are employed to facilitate the replacement of the buffer solution with an ammonium bicarbonate solution via centrifugation before enzymatic digestion. Subsequently, following enzymatic digestion, the ammonium bicarbonate within the peptide solution is removed through a heating process, ultimately yielding desalted and pure peptides. This method offers simplicity in operation, eliminates the need for elution steps, enables seamless integration with [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url], and serves to mitigate the formation of amino acid residue deamidation and oxidation modifications that may be induced during pre-processing, thereby benefiting both proteomics and protein modification analyses.Key words: Proteomic analysis Sample pre-treatment Desalting column Heating Ammonium bicarbonate通过高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱对生物系统中全蛋白进行定性定量,已经成为一种主流的分析工具。通过高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱对生物系统中全蛋白进行定性定量,已经成为一种主流的分析工具。大规模的蛋白组研究依赖于蛋白被切割成肽段,然后进行后续的定性定量分析。目前,蛋白组学样品前处理方法通常使用胰蛋白酶将蛋白质样品切割成多肽。胰蛋白酶的最适作用pH为7.5-8.5[sup][back=yellow][1][/back][/sup],碳酸氢铵是质谱预处理中最常用到的一种盐,50mM碳酸氢铵水溶液可以提供酶解过程需要的弱碱性环境。然而,碳酸氢铵在酶解过程中大量存在,容易影响后续质谱分析。目前常用反相C18树脂去除盐和缓冲液[sup][back=yellow][2-4][/back][/sup]。多肽在高水相流动相中与反相柱结合,盐和缓冲液被洗去,然后用高有机相流动相洗脱多肽。然而,多肽对C18吸附性有差异,包括磷酸化多肽在内的亲水肽可能不能与C18树脂很好地结合,疏水性强的多肽与C18树脂可能结合牢固,不易被洗脱[sup][back=yellow][5-7][/back][/sup],这些问题可能导致样品的损失;而且,用来洗脱多肽的有机溶剂还需进一步通过真空离心干燥去除,极性较小的有机溶剂还可能溶解塑料制品中聚合物,造成多肽样品的聚合物污染,导致质谱峰偏移[sup][back=yellow][8,9][/back][/sup]。这些问题可能导致蛋白质检出种类减少、重复性差、甚至无检出信号等问题。基于这种临床和科研上的需求, 需要对蛋白组学样品前处理方法进行改进。1? 实验原理蛋白质组学是后基因组时代的产物。基因需要依赖于转录和翻译后后的产物蛋白质行使功能。基因组是固定不变的,而蛋白质组会响应环境的变化。因此,同一生物在生物体不同部位、生命的不同时期以及不同的环境中,具有不同的蛋白质表达。人类基因组测序计划的完成并没有给人提供解开生命的密钥,科学家把兴趣转到蛋白质,希望通过蛋白质组的研究来进一步解开生命的本质。目前鸟枪法是蛋白质组学分析应用最广的分析策略[sup][back=yellow][10-12][/back][/sup]。该方法先将蛋白酶解成肽段,然后通过色谱分离肽段混合物,再用质谱的电喷雾电离(ESI)技术将肽段碎裂,根据碎裂谱图的离子峰信息进行数据库搜索来鉴定肽段,最后将鉴定的肽段进行组装、重新归并为蛋白质[sup][back=yellow][13][/back][/sup]。电喷雾电离具体包括以下几个过程:样品首先通过一个毛细管喷针被喷出来,进入质谱仪,在喷针的外面用鞘气加热样品,辅助样品的雾化。加热雾化过程中溶液中的流动相或者溶剂挥发,剩下的气态离子在毛细管喷针尖端被电离。这些离子在质谱仪入口处被真空抽到质谱仪里,电场驱动进入质谱仪进行分子量的检测[sup][back=yellow][14][/back][/sup]。一般来说,电喷雾质谱法对盐类的容忍度较低。一方面是因为小分子盐类在电喷雾系统中存在较强的竞争性电离效应,从而导致强烈的离子抑制效应,使待测物的灵敏度明显降低[sup][back=yellow][15][/back][/sup]。其次,盐类的存在会产生一系列的离子加成峰,这使得谱图的解析变得复杂[sup][back=yellow][16-18][/back][/sup]。此外,过多的盐分会腐蚀和污染质谱系统的硬件,严重时导致硬件损坏,需要及时清洗[sup][back=yellow][19][/back][/sup]。因此,蛋白组学样品前处理过程中,脱盐步骤是非常必要的。2? 存在问题为减少机器的损坏,并且提高检测灵敏度,上机前一般都会要求对蛋白组学样品脱盐处理。目前脱盐常用的方法是反相C18树脂脱盐柱法。脱盐柱法分为结合、清洗、洗脱三步。首先,利用疏水相互作用,多肽在高水相流动相中与反相柱结合。然后,使用水反复清洗盐和缓冲液。最后,用有机溶剂破坏多肽与C18的结合,洗脱多肽。然而,该方法存在一系列的弊端,比如多肽对C18吸附性有差异,包括磷酸化多肽在内的亲水性比较强的多肽可能不能与C18树脂很好地结合,会造成结合阶段的样品损失,而疏水性强的多肽与C18树脂结合牢固,洗脱阶段却难以洗脱下来,所以亲水性强的多肽和疏水性强的多肽都会在脱盐柱脱盐过程中损失,进而导致样品的选择性偏好,会损坏质谱结果的客观性。而且,最终多肽样品上机前需要在0.1%甲酸溶液中溶解,因此,有机溶剂洗脱后的多肽不能很好的与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]衔接,还需真空离心干燥去除有机溶剂。使用有机溶剂洗脱样品可能会造成样品的PEG聚合物污染,导致质谱峰偏移。这些问题导致脱盐柱脱盐后的蛋白组学样品重复性差、检出蛋白质种类低问题,因此亟需一种脱盐柱脱盐的替代方法。3? 改进措施将酶解前超滤管中的缓冲液通过反复离心置换成碳酸氢铵水溶液。酶解后利用碳酸氢铵加热潮解的特性除去多肽溶液中的碳酸氢铵成分,最终得到纯净的多肽。多肽样品溶解在0.1%甲酸溶液中后可以直接上机检测。4? 改进后效果首先取100μg蛋白样品,用6 M 盐酸胍稀释至400μL。加入10μL 500mM 三-(2-羧乙基)膦、 8 μL 1M 碘乙酰胺,混匀。室温避光振荡反应 40 min。将样品转移至10KD超滤管,室温10000g离心30分钟。加入400 μL 50mM碳酸氢铵溶液置换5次。用200 μL 50 mM 碳酸氢铵溶液垂悬,加入2μg胰蛋白酶,于37 ℃酶解过夜。10000g离心10分钟,收集滤液。真空离心干燥滤液,干燥后观察管底,如有白色盐粉末,加入少量超纯水溶解白色盐,转入75℃金属浴烘干,碳酸氢铵在烘干过程中分解挥发。上机前加入50μL 0.1% 甲酸溶液,装入超洁净样品瓶,上机检测。4.1 潮解脱盐效果评估利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)分析表明,在五次洗涤步骤后 ,三-(2-羧乙基)膦和碘乙酰胺的浓度至少降低了100000倍,并且降至检测阈值以下,表明五次连续洗涤足以将杂质降低到不干扰的水平([color=#c45911]图1A[/color])。酶解后,离心[color=black]收集到滤液200μL。试纸法测滤液pH,呈弱碱性(pH 7.5-8.0)。[/color]多肽样品经过真空离心干燥后,观察管底,可见白色盐粉末,如[color=#c45911]图1B[/color]所示。加入2μL 超纯水溶解白色盐,转入75℃金属浴烘干,碳酸氢铵在烘干过程中分解挥发,白色粉末消失,如[color=#c45911]图1C[/color]所示。用200[color=black]μL超纯水复溶多肽,测pH为7.0。[/color]这些结果说明碳酸氢铵被去除。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411135143_5595_5680383_3.jpg[/img][color=#c45911]图1 [/color][color=#c45911]脱盐的效果与验证。A:高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)分析图;B:多肽干燥后可观察到管壁上残留白色盐分;C:加热碳酸氢铵潮解后管壁上白色盐分消失; D:潮解前后的氨离子浓度对比图。数据来自三次独立重复实验(n = 3)。[/color]为了直接确认碳酸氢铵的去除,采用分光光度尼斯勒试剂法对氨浓度进行定量。分光光度尼斯勒试剂法包括以下步骤:将样品用去离子水稀释,向样品中加入一定量的分光光度尼斯勒试剂,封闭瓶子并摇动,让混合物静置5-10分钟,使用分光光度计在紫外-可见光谱范围内的波长630nm处测量吸光度,通过相同方法处理一系列氨标准溶液,测量吸光度值并绘制标准曲线,最后,通过使用样品的吸光度值查找标准曲线上相应的氨离子浓度来计算样品浓度。实验结果显示氨离子浓度从50 mM降低到不到10 nM,证实了通过热力潮解去除碳酸氢铵的有效性([color=#c45911]图1D[/color])4.2 新方法对不同分子量的蛋白质进行的蛋白质回收性能的研究蛋白质的分子量分布范围很大,从几千到几十万道尔顿不等。为了研究在酶解之前,超滤管辅助酶解及加热潮解除盐的蛋白组学前处理方法(以下称为新方法)在蛋白质回收方面是否存在偏好,在酶解前比较了溶液法(in-solution)、过滤辅助样品制备法(Filter-Aided Sample Preparation, FASP) 和本研究提出的新方法中的蛋白质回收率。蛋白质定量采用了与还原剂相容的BCA蛋白质测定试剂盒,吸光度在分光光度计(Agilent Technologies,美国)上以562纳米的波长读取。在本研究中测试的蛋白质包括细胞色素C(约12.4 kDa)、绿色荧光蛋白(GFP)(约27 kDa)、抗凝血酶III(约58 kDa)、转铁蛋白(约80 kDa)、免疫球蛋白G(IgG)(约150 kDa)和纤维连接蛋白(具有广泛的分子量范围,通常超过200 kDa)。实验进行了三次重复,并使用小提琴图来呈现结果。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411144597_3153_5680383_3.jpg[/img][color=#c45911]图2使用溶液法、过滤辅助样品制备法和新方法对不同分子量的蛋白质进行的蛋白质回收率评估图。[/color]结果清晰地表明,在不同分子量的蛋白质中,无论是在溶液法、过滤辅助样品制备法还是新方法中,所有三种方法在蛋白质回收率方面均达到了80%以上(图2)。总的来说,在所测试的分子量范围内,过滤辅助样品制备法和新方法之间的蛋白质回收率没有显著差异。然而,值得注意的是,对于低分子量蛋白质,溶液方法展现了略高的回收率,这可能归因于使用了10 kDa分子量截止滤器。 具体来说,对于低分子量蛋白质细胞色素C,过滤辅助样品制备法和新方法的平均回收率分别为85%和83%,而溶液方法的回收率为96%。然而,随着蛋白质分子量的增加,过滤辅助样品制备法和新方法的回收率显著提高。例如,对于分子量约为27 kDa的绿色荧光蛋白(GFP),过滤辅助样品制备法和新方法的回收率约为93%,而溶液方法对GFP蛋白的回收率为97%。此外,对于分子量超过50 kDa的较大蛋白质,如抗凝血酶III,使用过滤辅助样品制备法和新方法的回收率与溶液方法没有显著差异,均达到约98%。可见,本发明方法在蛋白质酶解之前对不同分子量的蛋白质回收率能达到83%至98%范围,达到了较好的蛋白截流作用。4.3新方法中潮解脱盐对不同大小和亲水性的肽段回收性能的研究为了探究不同方法酶解后对不同分子量的肽段进行潮解除盐的潜在偏好,对潮解法脱盐和C18脱盐的多肽回收率进行比较分析。在脱盐过程之前和之后,使用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)测量了肽段的浓度。使用了一个反相柱,并监测了220 nm处的吸光度。受测试的肽段包括亮氨酸脑啡肽(分子量:555.68 Da,由五个氨基酸组成)、血管加压素(分子量:1084.23 Da,由九个氨基酸组成)、生长抑素(分子量:约1637.89 Da,由十四个氨基酸组成)和胰高血糖素(分子量:约3483.87 Da,由二十九个氨基酸残基组成),三次重复实验的结果呈现在小提琴图中(图3A)。结果显示,通过C18柱脱盐得到的回收率在75%到90%之间,与肽段的分子量之间没有明显的相关性。这可能是由于在C18柱脱盐过程中样品损失的因素,比如柱子的结合性能和洗脱效率。相比之下,潮解脱盐在所有测试的肽段中实现了超过96%的回收率,而不受它们的分子量影响。这一结果表明,潮解脱盐在回收不同分子量的肽段方面非常有效。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411149252_2052_5680383_3.jpg[/img][color=#c45911]图3肽段回收性能比较。A:使用两种脱盐方法(潮解去盐和脱盐柱脱盐)评估不同分子量的肽段回收率;B:使用潮解去盐和脱盐柱脱盐对高亲水性和疏水性肽段进行比较回收分析;实验均进行了三次独立的重复。[/color]接下来,使用C18脱盐柱脱盐和潮解脱盐对高亲水性和疏水性肽段的回收率进行了比较分析。选择了抗菌肽(Cat. No. LL37-05MG)和细胞穿膜肽(CAS号:697226-52-1)分别代表疏水性和亲水性肽段。结果显示,脱盐柱脱盐对抗菌肽和细胞穿膜肽的回收率相对较低,平均回收率分别为45%和39%。相比之下,新方法潮解除盐后对这两种肽段都实现了超过95%的回收率,而不受它们的亲水性影响(图3B)。这些发现表明,脱盐柱脱盐中的回收率受到肽段亲水性的影响。这可能归因于脱盐柱脱盐依赖于疏水相互作用将肽段结合到C18柱树脂上,然后使用亲水溶剂进行洗脱,这可能导致不同亲水性的肽段被选择性保留。另一方面,潮解脱盐提供了原位操作的优势,从而在脱盐过程中避免了肽段的损失。我们的研究结果表明,潮解脱盐不会导致肽段的损失,并实现了比C18柱脱盐更高的多肽回收率。4.4 新方法在实际蛋白质组学分析中的应用比较小鼠肠组织用PBS磷酸盐缓冲液润洗两次,以去除任何残留物质,然后与蛋白酶抑制剂混合。将组织使用组织研磨仪进行破壁,然后在冰浴中使用超声波(200W)裂解,直到悬浮液变清澈。通过孔径为0.22μm的微孔滤器纯化得到裂解物。使用BCA分析试剂盒测定蛋白质浓度。随后,采用三种方法进行了酶解:溶液法、过滤辅助样品制备法和新方法[color=black](蛋白组学原始数据保存于PXD044209)[/color]。酶解后,使用高性能[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]将蛋白质分离,并使用QE质谱仪进行分析。具体来说,酶解后的肽样品采用Q Exactive Plus质谱仪联用EASY nano[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统进行分析,该系统配备了EASY纳米电喷雾接口。色谱装置包括Pepmap纳米捕获柱(C18,5 μm,100 ?,100 μm × 2 cm)和EASY-Spray柱(Pepmap RSLC,C18,2 μm,100 ?,50 μm × 15 cm)。在色谱梯度中使用溶剂A(0.1%甲酸)和溶剂B(80% CH3CN/0.1%甲酸),梯度如下:0–8% B持续3分钟,8–28% B持续42分钟,28–38% B持续5分钟,38–100% B持续10分钟。质谱数据经Maxquant软件处理,Maxquant分析考虑至少具有两个肽段的蛋白质,并根据特定的参数和说明搜索UniProt数据库。修饰方面,半胱氨酸的烷基化修饰被设置为固定修饰,而氧化(M)被考虑为可变修饰。设置蛋白质为胰蛋白酶的特异性剪切,最多允许两个漏切位点。片段质量容差设置为0.02 Da。为确保可靠的鉴定,要求蛋白质和肽段的最大假阳性发现率(FDR)均为1.0%。蛋白质的鉴定基于至少有一个唯一的肽段鉴定,而蛋白质的定量是通过计算每个蛋白质的唯一肽段的中位数来执行的。每种方法产生了不同的蛋白质鉴定结果,如[color=#c45911]图4A[/color]所示。总体而言,新方法鉴定的蛋白质数量最多(2975±52),其次是过滤辅助样品制备法(2964±102),最后是溶液法(2803±57)。每种方法的已鉴定肽段数量如[color=#c45911]图4B[/color]所示。使用溶液法,鉴定了10931±16个独特的肽段。过滤辅助样品制备法和新方法分别鉴定了10981±48和10959±23个独特的肽段。平均而言,在溶液法中每个蛋白质匹配到3.90个独有肽段,在过滤辅助样品制备法中匹配到3.70个独有肽段,在新方法方法中匹配到3.68个独有肽段。这表明新方法表现出最高的蛋白质鉴定效率。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411151149_9928_5680383_3.png[/img][color=#c45911]图 4 不同蛋白组学前处理方法在实际蛋白质组学分析中的应用。A:使用三种方法(溶液法、过滤辅助样品制备法和新方法)比较蛋白质鉴定结果;图B为每种消化方法鉴定的独特肽段,结果代表了三次生物学实验;图C为使用组内相关系数(ICC)评估无标签定量分析的可重复性;每种方法都有三次生物学重复。[/color]随后,使用ICC评估无标签定量分析的可重复性([color=#c45911]图4C[/color])。发现新方法显示出最佳的可重复性,平均ICC值为0.622,有1375个蛋白质的ICC值大于0.4。过滤辅助样品制备法表现出稍弱的可重复性,平均ICC值为0.533,有1180个蛋白质的ICC值大于0.4。相比之下,溶液法的可重复性最差,平均ICC值仅为0.477,有1017个蛋白质的ICC值大于0.4。4.5 新方法有助于减少氨基酸残基的不利修饰[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411148874_7284_5680383_3.png[/img][color=#c45911]图 5 样品制备方法对氨基酸残基修饰的影响。A:比较三种样品制备方法(溶液法、过滤辅助样品制备法和新方法)引入的单氧化修饰;B:三种方法对氨基酸残基脱酰胺化修饰的影响,该实验作为生物学重复进行了三次。[/color]氧化修饰和去酰胺修饰通常在天然蛋白质和多肽样本中被观察到,研究这些修饰对于理解蛋白质的固有应激至关重要。然而,样品预处理引起的人为修饰可能会对修饰蛋白组学分析带来挑战。为了评估在样品处理过程中引入的这些不利修饰对样品的影响,我们比较了三种方法:溶液法、过滤辅助样品制备法和新方法,关于它们对氧化和去酰胺修饰的影响。我们鉴定和定量了不同数量的单氧化和去酰胺修饰,但未检测到双氧化和三氧化修饰。在这三种方法中,新方法和溶液法显示出相对较低水平的单氧化修饰([color=#c45911]图5A[/color])。此外,新方法还减少了非必要的去酰胺修饰([color=#c45911]图5B[/color]),鉴定了具有去酰胺修饰的蛋白质最少(473±8),其次是溶液法(485±23),最后是过滤辅助样品制备法(544±23)。考虑到有机溶剂中的羟基可以与酰胺键形成氢键,因此在溶液法和过滤辅助样品制备法中观察到较高水平的去酰胺修饰可能归因于在去盐过程中使用有机溶剂,而新方法更加高效的样品处理可能有助于减少人为的氧化修饰。总之,新方法有效减少了氨基酸残基的去酰胺和氧化修饰。5? 结语南开大学医学院实验室改进的蛋白组学样品前处理方法,利用超滤管将酶解缓冲液置换成碳酸氢铵水溶液,酶解后利用碳酸氢铵加热潮解的特性除去多肽溶液中的碳酸氢铵成分,最终得到纯净的多肽,可以方便地与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]直接衔接,进行质谱分析。与传统的方法相比,无样品损失,提高了蛋白质检测数目,同时操作简单快捷。值得注意的是,与传统的过滤辅助样品制备法相比,新方法在最小化氧化和去酰胺修饰方面表现出卓越的性能。这一创新的方法代表了蛋白质组学分析的重大进展,为质谱分析提供可靠和高效的结果。虽然新方法和过滤辅助样品制备法在使用基于滤膜的蛋白质截断方法方面有相似之处,但它们之间的关键区别变得显而易见。过滤辅助样品制备法在酶解前需要进行更彻底的洗涤,通常需要使用碳酸氢铵水溶液进行5次洗涤,而过滤辅助样品制备法通常只需要进行2次洗涤[sup][color=black][back=yellow][20][/back][/color][/sup]。此外,新方法可以通过轻度加热实现原位样品脱盐和纯化方法的完美集成。相比之下,过滤辅助样品制备法通常需要额外的脱盐柱纯化步骤。与新方法和过滤辅助样品制备法不同,悬浮陷阱法(S-Trap)采用三维多孔材料来捕获蛋白质 [sup][color=black][back=yellow][21][/back][/color][/sup]。由于其较大(亚微米级)的孔径,悬浮陷阱法滤膜的每个离心循环只需1分钟,实现了比本文中新方法和过滤辅助样品制备法更高的洗涤效率[sup][color=black][back=yellow][22][/back][/color][/sup]。然而,值得注意的是,与悬浮陷阱法相比,超滤管目前的成本较低,悬浮陷阱法在酶解后需要多次使用有机溶剂(如甲酸和乙腈)进行洗涤。悬浮陷阱法还涉及额外的脱盐柱纯化步骤,增加了实验的复杂性。总之,本文描述了一种独特的蛋白组学前处理方式,显著提高了高效样品制备的能力。6? 数据可用性声明本研究所有数据均包含在论文中。所有的蛋白质组学质谱数据已被存储在ProteomeXchange,并可通过访问编号PXD044209:[url=https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD044209][color=#0563c1]https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD044209[/color][/url] [sup][color=black][back=yellow][23, 24][/back][/color][/sup]来获取。参考文献(References):[1]? Solari F A, Kollipara L, Sickmann A, et al. Two birds with one stone: parallel quantification of proteome and phosphoproteome using iTRAQ[M]//Proteomics in Systems Biology. Humana Press, New York, NY, 2016: 25-41.[2]? Zhang G, Xue W, Dai J, et al. Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley[J]. Food chemistry, 2019, 298: 124973.[3]? Zhu Z, Chen T, Wang Z, et al. Integrated Proteomics and Metabolomics Link Acne to the Action Mechanisms of Cryptotanshinone Intervention[J]. Frontiers in pharmacology, 2021, 12: 700696.[4]? Liu C, Si X, Yan S, et al. Development of the C12Im-Cl-assisted method for rapid sample preparation in proteomic application[J]. Analytical Methods, 2021, 13(6): 776-781.[5]? Liu Q, Shi J, Sun J, et al. Graphene and graphene oxide sheets supported on silica as versatile and high‐performance adsorbents for solid‐phase extraction[J]. Angewandte Chemie, 2011, 123(26): 6035-6039.[6]? Kecskemeti A, Bako J, Csarnovics I, et al. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device[J]. Analytical and bioanalytical chemistry, 2017, 409(14): 3573-3585.[7]? Li L, Wu R, Yan G, et al. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold-nanoparticle-based depletion[J]. Analytical and bioanalytical chemistry, 2016, 408(2): 441-448.[8]? Shieh I F, Lee C Y, Shiea J. Eliminating the interferences from TRIS buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry[J]. Journal of Proteome Research, 2005, 4(2): 606-612.[9]? LaCava J, Molloy K R, Taylor M S, et al. Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives[J]. Biotechniques, 2015, 58(3): 103-119.[10]? Dupree E J, Jayathirtha M, Yorkey H, et al. A critical review of bottom-up proteomics: The good, the bad, and the future of this field[J]. Proteomes, 2020, 8(3): 14.[11]? Duong V A, Park J M, Lee H. Review of three-dimensional liquid chromatography platforms for bottom-up proteomics[J]. International Journal of Molecular Sciences, 2020, 21(4): 1524.[12]? 翟芳. 鸟枪法蛋白质组学质谱平台性能标准和参考数据集的建立[D]. 重庆大学, 2018.[13]? Shen Y, Toli? N, Zhao R, et al. High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry[J]. Analytical Chemistry, 2001, 73(13): 3011-3021.[14]? Livesay E A, Tang K, Taylor B K, et al. Fully automated four-column capillary LC? MS system for maximizing throughput in proteomic analyses[J]. Analytical chemistry, 2008, 80(1): 294-302.[15]? Ca?as B, Pi?eiro C, Calvo E, et al. Trends in sample preparation for classical and second generation proteomics[J]. Journal of chromatography A, 2007, 1153(1-2): 235-258.[16]? Wheeler A R, Moon H, Bird C A, et al. Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS[J]. Analytical chemistry, 2005, 77(2): 534-540.[17]? Kim K H, Compton P D, Tran J C, et al. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry[J]. Journal of proteome research, 2015, 14(5): 2199-2206.[18]? Wang C, Wu Z, Yuan J, et al. Simplified quantitative glycomics using the stable isotope label Girard’s reagent p by electrospray ionization mass spectrometry[J]. Journal of Proteome Research, 2014, 13(2): 372-384.[19]? Righetti P G, Boschetti E, Lomas L, et al. Protein Equalizer? Technology: The quest for a “democratic proteome”[J]. Proteomics, 2006, 6(14): 3980-3992.[20]? Homsi C, Rajan R E, Minati R, et al. A Rapid and Efficient Method for the Extraction of Histone Proteins[J]. Journal of Proteome Research, 2023, 22(8): 2765-2773.[21]? Fu Q, Murray C I, Karpov O A, et al. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis[J]. Mass Spectrometry Reviews, 2023, 42(2): 873-886.[22]? Duong V A, Lee H. Bottom-Up Proteomics: Advancements in Sample Preparation[J]. International Journal of Molecular Sciences, 2023, 24(6): 5350.[23]? Ma J, Chen T, Wu S, et al. iProX: an integrated proteome resource[J]. Nucleic acids research, 2019, 47(D1): D1211-D1217.[24]? Chen T, Ma J, Liu Y, et al. iProX in 2021: connecting proteomics data sharing with big data[J]. Nucleic Acids Research, 2022, 50(D1): D1522-D1527.[size=12px]收稿日期:[/size][size=12px]2023-10-27[/size] [size=12px]修改日期:[/size][size=12px] [/size]基金项目:国家重点研发计划(32030083)。作者简历:季学猛,硕士,实验师,研究方向为微生物学、蛋白组学。E-mail:jixuemeng@nankai.edu.cn。

  • 【中文】蛋白质的聚丙烯酰胺凝胶电泳

    蛋白质的聚丙烯酰胺凝胶电泳 最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质前移并在分离胶前沿积聚。此处pH值较高, 有利于甘氨酸的离子化,所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。SDS与蛋白质结合后引起蛋白质构象的改变。SDS-蛋白质复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形状的长椭园棒,不同蛋白质的SDS复合物的短轴长度都一样(约为18Å,即1.8nm),而长轴则随蛋白质分子量成正比地变化。这样的SDS-蛋白质复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只是椭园棒的长度也就是蛋白质分子量的函数。由于SDS和巯基乙醇的作用,蛋白质完全变性和解聚,解离成亚基或单个肽链,因此测定的结果只是亚基或单条肽链的分子量。 SDS聚丙烯酰胺凝胶的有效分离笵围取决于用于灌胶的聚丙烯酰胺的浓度和交联度。在没有交联剂的情况下聚合的丙烯酰胺形成毫无价值的粘稠溶液,而经双丙烯酰胺交联后凝胶的刚性和抗张强度都有所增加,并形成SDS蛋白质复合物必须通过的小孔。这些小孔的孔径随 “双丙烯酰胺~丙烯酰胺” 比率的增加而变小,比率接近 1:20 时孔径达到最小值。SDS聚丙烯酰胺凝胶大多按“双丙烯酰胺~丙烯酰胺”为1:29 配制,试验表明它能分离大小相差只有3% 的蛋白质。 凝胶的筛分特性取决于它的孔径,而孔径又是灌胶时所用丙烯酰胺和双丙烯酰胺绝对浓度的函数。用5~15%的丙烯酰胺所灌制凝胶的线性分离范围如下表:

  • 【原创】SDS聚丙烯酰胺凝胶电泳原理

    [size=4][b][size=5][font=黑体][/font][/size] [/b][/size][b]SDS聚丙烯酰胺凝胶电泳原理[/b] 采用十二烷基硫酸钠-聚丙稀酰胺凝胶电泳(SDS-PAGE,polyacrylamide gel electrophoresis)方法可对蛋白质的组分进行分离,并可精确测得蛋白质的分子量。常用的方法为SDS-PAGE不连续系统。基本原理:聚丙稀酰胺是由丙稀酰胺(acrylamide)和N,N’-亚甲基双丙稀酰胺(N,N’-methylene bis acrylamide)经共聚合而成。此聚合过程是由四甲基乙二胺(tetramethylethylenediamine,TEMED)和过硫酸胺(ammonium persulfate,AP)激发的。被激活的单体和未被激活的单体开始了多聚链的延伸,正在延伸的多聚链也可以随机地接上双丙稀酰胺,使多聚链交叉互连成为网状立体结构,最终多聚链聚合成凝胶状。[b]丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温( 120℃)烹调下容易产生丙烯酰胺。[/b] [b]研究表明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。[/b] [b]丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。丙烯酰胺进入体内后,会在体内与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变。[/b] [b]对接触丙烯酰胺的职业人群和偶然暴露于丙烯酰胺人群的调查表明,丙烯酰胺具有神经毒性作用,但目前还没有充足的证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显关系。[/b][b][/b] [b]丙烯酰胺简介[/b][b]丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。[/b][毒性]  丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。[预防]⒈职业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。⒉日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。⒊由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法 [b]N.N-亚甲基双丙烯酰胺,别名MBA,双叫N.N-甲叉双丙烯酰胺,次甲基双丙烯酰胺,N.N-甲撑双丙烯酰胺。是一种白色晶体粉末,无味,吸湿性极小。遇高温或强光则自交联,微溶于水、乙醇。[/b][b]丙烯酰胺单体和交联剂N1 N′-亚甲基双丙烯酰胺在催化剂的作用下聚合成含有酰胺基侧链的脂肪族长链。相邻的两个链通过亚甲基桥交联起来就形成三维网状结构的聚丙烯酰胺凝胶。[/b][b]N, N -亚甲基双丙烯酰胺又名甲撑双丙烯酰胺 , 英文缩写名 MBA, 为白色或浅黄色粉末状结晶 , 毒性低 , 对皮肤无刺激 , 无神经毒性 , 溶于水及乙醇、丙酮等有机溶剂。在它的结构中具有两个相同且非常活泼的反应性官能团 , 可作为交联剂 ,能将线性高分子迅速转变为体型高分子 , 制备吸水性聚合物 , 还可与各种离子型单体发生聚合反应 ,使其在石油开采以及医药、水处理等行业具有广泛用途。 [/b][b]产品简介: [/b][b]? TEMED即N,N,N‘,N’-Tetramethylethylenediamine,中文名为N,N,N‘,N’-四甲基二乙胺。分子式为(CH3)2NCH2CH2N(CH3)2, 分子量为116.20。 [/b][b]? 进口分装,用于配制PAGE胶等。TEMED通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。[/b][b]? 加入加速剂TEMED后聚合马上开始,应立即将凝胶混匀,迅速灌胶。[/b][b]保存条件: 4℃保存。 [/b][b]注意事项: [/b][b]?易燃,有腐蚀性,请注意防护。 [/b][b]?为了您的安全和健康,请穿实验服并戴一次性手套操作。[/b][b]过硫酸铵分子式: (NH4)2S2O8 分子量: 228.20[/b][b]性状:过硫酸铵是一种白色、无味晶体,常作强氧化剂使用,也可用作单体聚合引发剂。它几乎不吸潮,由于能达到很高的纯度而具有特别好的稳定性,便于储存。另外,它还具有使用方便、安全等优点。[/b][b]储存及使用注意事项:[/b]  [b]过硫酸铵属于非易燃品,但由于能释放氧而有助燃作用,因此必须在一定条件下储存。首先必须存放在干燥、密闭的容器中,其次应避免阳光直射、热源、潮湿等不利因素。另外,一些杂质如脏物、铁锈、少量金属以及还原剂可能引起过硫酸铵的分解,在存放和使用过程中也必须注意。由于潮湿的过硫酸铵粉末及其水溶液有漂白和轻微的腐蚀作用,因此使用过程中应避免眼睛、皮肤和衣物直接与其接触。[/b][b]过硫酸铵的应用:过硫酸铵提供驱动丙烯酰胺和双丙烯酰胺聚合所必需的自由基。须新鲜配制[/b]。 [b]过硫酸铵是乳胶或丙烯酸单体聚合液、醋酸乙烯、氯乙烯等产品的引发剂,同时也是苯乙烯、丙烯腈、丁二烯等胶体发生共聚作用的引发剂。 [/b][b]过硫酸铵-TEMED(四甲基乙二胺)系统:在Acr 和Bis的溶液中放入这个催化系统后,过硫酸铵[(NH4)2S2O8]产生出游离氧原子使单体成为具有游离基的状态,从而发生聚合作用。聚合的初速度和过硫酸铵浓度的平方根成正比。这种催化系统需要在碱性条件下进行。例如,在pH 8.8条件下7%的丙烯酰胺溶液30分钟就能聚合完毕;在 pH 4.3时聚合很慢,要90分钟才能完成。温度与聚合的快慢成正比。通常在室温下就很快聚合,温度升高聚合更快。如将混合后的凝胶溶液放在近0℃的地方,就能延缓聚合。一般来讲,温度过低,有氧分子或不纯物质存在时都能延缓凝胶的聚合。为了防止溶液中气泡含有氧分子而妨碍聚合,在聚合前须将溶液分别抽气,然后再混合。[/b][b]十二烷基硫酸钠 SDS[/b][b]不连续系统由上层浓缩胶和下层的分离胶组成。浓缩胶(pH6.7,孔径大)主要作用是使样品浓缩,使样品在未进入分离胶前,被浓缩成很窄的条带,从而提高分离效果。分离胶(pH8.9,孔径小)通过分子筛效应和电荷效应,把样品中的各组分按分子量和电荷的大小而分开。 [/b]如果要利用凝胶电泳测定某一蛋白质的分子量就必须将电荷效应去掉或减少到可以忽略不计的程度,使蛋白质泳动率的大小完全取决于分子量。如何去除电荷效应呢?现常用的是十二烷基硫酸钠(SDS)。SDS是一种阴离子去污剂。在电泳体系中加入一定浓度的SDS,SDS以一定的比例和蛋白质分子结合成复合物,使蛋白质分子带负电荷,这种负电荷远远超过了蛋白质分子原有的电荷,从而减低或消除了各种蛋白质分子天然电荷的差异。[b]是阴离子型表面活性剂,它能按一定比例与蛋白质分子结合成带负电荷的复合物,再与PAGE技术结合,则谱带差异更加明显、清晰,并可测定蛋白质分子量。 [/b][b]在有去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAGE只是按照分子大小分离的,而不是根据分子所带的电荷和大小分离的。[/b][b]SDS带有大量负电荷,当其与蛋白质结合时,所带的负电荷大大超过了蛋白质原有的负电荷,因而消除或掩盖了不同种类蛋白质间原有电荷的差异,使蛋白质均带有相同密度的负电荷,因而可利用Mr差异将各种蛋白质分开。[/b][b]甘氨酸[/b][b]最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质前移并在分离胶前沿积聚。此处pH值较高,有利于甘氨酸的离子化,所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。[/b][b]浓缩效应:凝胶由两种不同的凝胶层组成。上层为浓缩胶,下层为分离胶。浓缩胶为大孔胶,缓冲液pH6.7,分离胶为小孔胶,缓冲液pH8.9。在上下电泳槽内充以Tris—甘氨酸缓冲液(pH8.3),这样便形成了凝胶孔径和缓冲液pH值的不连续性。在浓缩胶中 HCl几乎全部解离为Cl-,但只有极少部分甘氨酸解离为H2NCH2COO-。蛋白质的等电点一般在pH5左右,在此条件下其解离度在HCl和甘氨酸之间。当电泳系统通电后,这3种离子同向阳极移动。其有效泳动率依次为Cl->蛋白质>H2NCH2COO-,故C1-称为快离子,而H2NCH2COO- 称为慢离子。电泳开始后,快离子在前,在它后面形成离子浓度低的区域即低电导区。电导与电压梯度成反比,所以低电导区有较高的电压梯度。这种高电压梯度使蛋白质和慢离子在快离子后面加速移动。在快离子和慢离子之间形成—个稳定而不断向阳极移动的界面。由于蛋白质的有效移动率恰好介于快慢离子之间,因此蛋白质离子就集聚在快慢离子之间被浓缩成—条狭窄带。这种浓缩效应可使蛋白质浓缩数百倍。 [/b]

丙烯酰胺溶液蛋白组学级相关的方案

丙烯酰胺溶液蛋白组学级相关的资讯

  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 解决方案丨生活饮用水中丙烯酰胺的测定
    丙烯酰胺是聚丙烯酰胺的单体,聚丙烯酰胺主要应用于水的净化处理。虽然聚丙烯酰胺被认为是无毒的,但其单体——丙烯酰胺却已被国家癌症中心(IARC)列为IV类致癌物。由于丙烯酰胺的危害较大,它已被我国列入水中优先控制的污染物。我国的《生活饮用水卫生标准》(GB5749-2022)和《地表水环境质量标准》(GB3838-2002)都规定了丙烯酰胺的限值。本文依据GB/T 5750.8-2023《生活饮用水标准检验方法 第8部分:有机物指标》中丙烯酰胺的测定方法,采用睿科Fotector Plus高通量全自动固相萃取仪完成水中丙烯酰胺的富集和洗脱,洗脱液经睿科Auto EVA 80 高通量全自动平行浓缩仪浓缩,再结合高效液相色谱-串联质谱进行定性定量检测。在0.01ug/L的加标水平下,丙烯酰胺的回收率在70.0%-100%之间,RSD值小于5%,表明该方法具有操作自动化、快速和高通量等优点,适合生活饮用水中丙烯酰胺的测定。仪器和耗材1.仪器高效液相色谱-串联质谱仪:岛津高效液相色谱+AB Qtrap 6500三重四级杆串联质谱仪全自动固相萃取仪:Fotector Plus高通量全自动固相萃取仪全自动氮吹浓缩仪:Auto EVA 80 高通量全自动平行浓缩仪固相萃取柱:活性炭固相萃取柱(2g/6mL)2.试剂甲醇 (HPLC),超纯水:电阻率大于18.2MΩ标准物质:丙烯酰胺,纯度不低于99%内标溶液:13C3-丙烯酰胺溶液,母液浓度为1.0 mg/mL样品处理1.样品前处理活化:分别用10mL甲醇和10mL水以4 mL/min的速度活化固相萃取柱;吸附:取100mL水样,加入50μL浓度为100μg/L的13C3-丙烯酰胺内标使用液,混匀,内标物在水中的浓度为0.05μg/L,以5mL/min的速度通过固相萃取柱;干燥:调节气压为25psi,用氮气吹干固相萃取小柱10min;洗脱:用10mL甲醇以1mL/min的速度洗脱固相萃取柱,收集洗脱液。具体方法参数如图-1所示:图-1 Fotector Plus水中丙烯酰胺的固相萃取方法2.浓缩用Auto EVA 80 高通量全自动平行浓缩仪在40℃、1.0 L/min流量的条件下将洗脱液浓缩至近干,加入1.0 mL水涡旋混匀,转移至进样小瓶上机检测。检测条件1.色谱条件色谱柱:极性改性C18色谱柱 (150mm×2.1mm,3.5um)流速:0.3 mL/min柱温:35°C洗脱梯度:A相:0.1%甲酸水溶液;B相:乙腈表-1 梯度洗脱程序时间(min)A(%)B(%)0.09550.509552.5040602.519555.009552.质谱条件采集模式:ESI+干燥气温度:550℃Gas 1:50 Gas 2:50 气帘气:35毛细管电压:5500 V监测离子参数情况见表-2表-2 丙烯酰胺的特征离子及质谱条件 注:*表示定量离子3.TIC谱图图-2 丙烯酰胺TIC谱图(10 ug/L)方法可行性验证为了验证该方法的回收率,本实验向自来水(100 mL)中加入丙烯酰胺标准品(10uL,100 ug/L)进行加标回收验证(n=3),内标法定量。在0.01ug/L的加标水平下,丙烯酰胺的平均回收率为89.43%,相对标准偏差小于5.0%(n=3),满足标准要求。表-3 丙烯酰胺标准添加(10ug/L)回收率及RSD值(n=3)结果与讨论1.本次实验用的活性炭固相萃取小柱规格为2g/6mL,氮吹时间设为10min;而标准中活性炭固相萃取小柱的规格为500mg/6mL,氮吹时间为2min,因此适当增加了氮吹时间。但时间不宜过长,太长将导致回收率降低。2.本实验采用睿科Fotector Plus高通量全自动固相萃取仪取得了优异的回收率和RSD结果,主要是因为睿科全自动固相萃取仪采用精密的注射泵来控制活化和洗脱的体积,通过正压上样,活化、洗脱、上样等步骤流速稳定可控;多个通道同步进行萃取,处理样品通量高。此外仪器在夜间也可以运行,大幅提高了工作效率。
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。

丙烯酰胺溶液蛋白组学级相关的仪器

  • 蛋白组学样本前处理工作站是一款具备高通量、高回收率、安全性能强、抗干扰能力强,适用范围广等优势,适用大队列样本的高通量处理设备,可实现质谱蛋白样本前处理的全自动化和标准化操作。蛋白组学样本前处理解决方案适用于血浆、血清、尿液、细胞、组织等类型样本从蛋白到多肽混合物的质谱检测前处理工作,试剂盒利用新型固相烷基化试剂SPA材料与蛋白的特异性共价反应,实现蛋白质的高效捕获,通过清洗磁珠表面,快速去除干扰物质,并进行原位固相酶解,获得蛋白酶解产物,仪器整合制冷模块、磁吸附模块、加热振荡模块、抓扳手,进而实现蛋白质组提取、还原、烷基化、酶解等流程自动化操作,提高蛋白质样品的处理效率和回收率。 优势特点高通量■96通道移液头,一次可处理最多96个样本,高效完成实验流程中吸废等步骤;■兼具8通道移液功能,可以实现试剂的精准分装;■ 全流程4-5小时可完成96个蛋白样本的前处理(具体时间根据具体实验流程);自动化程度高■ 整合抓板手,用于对标准SBS板子的转移;■ 整合蛋白前处理所需的试剂制冷模块、磁吸附模块、加热振荡模块等功能模块;■均一化操作,减少实验过程中的误差,提高准确性和稳定性;灵活性强■ 盘面包含18个SBS标准盘位,除功能模块外,有15个盘位放置试剂和耗材;■开放式平台,配有多样化适配器,可适配多种不同品牌试剂耗材;■软件界面人性化设计,拖拽式布局,操作简单,每个步骤可独立进行参数设置,实验流程可进行存储,按键式启动运行;安全性■可配置避光外罩,搭配紫外消毒灯;■可根据实验需求选配正、负压HEPA过滤系统,有效避免交叉污染; 数据测试样本批内测试数据材料:293T 细胞实验方法:手工操作3 组,仪器操作3 组Q Exactive质谱结果如下:表1:手工操作和仪器操作后蛋白数及零漏切率对比图1 Venn diagram(蓝色:手工;绿色:仪器)试验总结手工操作和仪器操作蛋白样本预处理后可检测到的蛋白数及零漏切率基本一致,达到预期要求;手工操作与仪器操作蛋白种类皮尔斯相关系数大于0.97,与预期一致;样本批间测试数据图2 96孔板检测示意图如图2所示共处理96个样品,分三组进行实验,随机选取36个样品进行Q Exactive质谱检测,结果如下:图3 36个样本检测蛋白数(个)图4 36个样本零漏切率(%)图5 随机样品日间比较实验总结36个随机样本检测蛋白数3074±89个,零漏切率78.32±2.66%,样本预处理的结果正常且稳定;36个样品的皮尔斯相关系数及日间随机样品皮尔斯相关系数均介于0.955-0.989之间,达到指标要求,具有较好的均一性。 应用领域临床诊断/用药指导/病理机制研究/疾病标志物的发现/药物机理研究
    留言咨询
  • Novex® NuPAGE® 凝胶系统高性能、高质量预制蛋白质凝胶&bull 出众的蛋白条带分辨率和稳定性&bull 更短的样本电泳时间(一般 35分钟甚至更短)&bull 更长的产品保存期(长达 2个月)NuPAGE® Novex® 预制凝胶系统是一种全新的高性能聚丙烯酰胺凝胶系统。凝胶有Bis-Tris和Tris-乙酸两种配方及各种丙烯酰胺浓度和尺寸可供选择(小型:8× 8cm和中型:8× 13cm),确保您可以找到符合您电泳要求的凝胶。不管哪种配方和浓度,我们独特的Novex® NuPAGE® 凝胶配方可最大程度避免其它凝胶类型经常出现的&ldquo 微笑&rdquo 现象及较差的分离效果(参见图);中性pH 凝胶和缓冲液系统还可避免碱性电泳环境下出现的样品化学修饰,使得您每次都可以获得可靠的分离结果。此外,Novex® NuPAGE® 凝胶可以提高蛋白转移效率,将更多样品转移至膜上,从而增强蛋白质印迹分析的检测信号。使用Novex® NuPAGE® 中型胶(A)时,分离得到的蛋白条带笔直而细窄,而在同类厂商的凝胶上则呈波纹条带(B)。每个泳道含有5&mu L Mark12&trade 未染色标准品。Life Tech新浪微博Life Tech优酷视频
    留言咨询
  • Natrix®膜含有高密度惰性纤维网络骨架,内部充填多孔聚丙烯酰胺水凝胶,并结合了相应的官能团。内部交互的多孔结构(孔径为0.4 µm)具有非常大的表面积,可以提供更高的蛋白结合和透过性。Natrix® Q是一款高载量和高通量的强阴离子交换膜层析产品,用在流穿条件下纯化生物分子,如单抗。独特的Natrix® Q膜拥有直接聚合在多孔膜骨架内的高密度季胺基官能团。Natrix® Q膜的交互多孔结构和高密度配基,能够实现高流速下的超高通量和上样量,并在这些极端操作条件下仍保持杂质去除的优异能力。Natrix® Q膜可为生物工艺提供生产力、灵活性和工艺稳定性方面更高的选择。优势:- 优秀的HCP去除、DNA去除和病毒清除能力- 盐和pH的高耐受性(即使磷酸盐缓冲液体系)- 精纯过程保持高通量和高载量( 10 kg/L)- 易于放大和优化的高通量纯化解决方案- 操作灵活(宽泛的上样量、流速和缓冲液条件)- 提高生产力、降低操作复杂性、提高工艺的稳定性和经济性- 简单、低成本的精纯操作- 稳定、安全的供应链、以及验证和法规支持Natrix® Q产品系列(小试、中试以及生产型)提供从研发到cGMP生产的不同规格精纯产品:- Recon Mini, 0.2 mL- Pilot, 15 mL- Process, 115/460 mL更多信息,e.g., 层析膜表现,详细性能列表等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询

丙烯酰胺溶液蛋白组学级相关的耗材

  • 蛋白组学 SISPROT 试剂盒
    蛋白组学 SISPROT 试剂盒产品介绍:SISPROT,全称Simple and Integrated Spintip-based Proteomics Technology.该技术于2016年首次报道,是一种基于独特的离心移液枪头“Spintip”的集成式蛋白质组学前处理技术,可实现从原始样品出发一站式完成蛋白质组学样品前处理所有步骤,处理后的样品可直接用于色谱质谱检测。蛋白组学样品前处理从“毫克时代”迈入“纳克时代”。蛋白组学 SISPROT 试剂盒产品步骤:一站式样品前处理:集成提取、酶解、脱盐为一体的蛋白组组学样品前处理。蛋白组学 SISPROT 试剂盒产品特点:1、极高效,传统前处理方法需要16h,SISPROT法缩短至2h。2、高灵敏度,最低样本初始量可低至10个细胞或1ng,组织样本低至1mm2组织切片,鉴定能力与处理常规毫克级样品相当。3、结果具有很好的稳定性;蛋白组学 SISPROT 试剂盒适用领域:该试剂盒适用于低微克甚至纳克蛋白质样品;适用于科学研究领域如干细胞、蛋白质复合物、蛋白质翻译后修饰;临床样品检测行业如组织活检、液体活检、肠道微菌群;植物研究如经济作物、菌菇类、水果类等。蛋白组学 SISPROT 试剂盒产品图片:
  • 蛋白质组学级胰蛋白酶
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:
  • EZsep 活性炭小柱水中丙烯酰胺检测AC 1000mg/6ml 30/pkgSPE 固相萃取柱
    用于水中丙烯酰胺检测。

丙烯酰胺溶液蛋白组学级相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制