孟鲁司特二羧酸非对映体

仪器信息网孟鲁司特二羧酸非对映体专题为您提供2024年最新孟鲁司特二羧酸非对映体价格报价、厂家品牌的相关信息, 包括孟鲁司特二羧酸非对映体参数、型号等,不管是国产,还是进口品牌的孟鲁司特二羧酸非对映体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合孟鲁司特二羧酸非对映体相关的耗材配件、试剂标物,还有孟鲁司特二羧酸非对映体相关的最新资讯、资料,以及孟鲁司特二羧酸非对映体相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

孟鲁司特二羧酸非对映体相关的资料

孟鲁司特二羧酸非对映体相关的论坛

  • 【求购】关于吡啶二羧酸酐的分析

    吡啶二羧酸酐结构看似简单,可因其在水中水解成酸,影响样品游离酸含量分析,化学滴定不好作;做GC时热分解,与相应的二酸峰重合;液相用水溶液作流动相不行,用非水有机相作流动相如用醇又会醇解,估计可用正相做,但该样在许多有机溶剂中溶解性差,所以一直没找到好的分析方法。请问哪位老师作过吡啶二羧酸酐的HPLC分析,能否帮帮我。谢放!

  • 吡啶-2,6-二羧酸

    做金属物质检测时,会用的吡啶-2,6-二羧酸,皮考啉二酸,DPA,这个物质,不知道有没有那个老师以前做过?实验过程中,起到什么作用呢?谢谢!

孟鲁司特二羧酸非对映体相关的方案

孟鲁司特二羧酸非对映体相关的资讯

  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的使用沃特世(Waters)ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。背景公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。解决方案人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。总结利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的采用沃特世(Waters)ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。背景生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。解决方案联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。总结ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • 一种检测葡萄糖对映体的表面增强拉曼散射光谱策略
    近期,上海师范大学杨海峰教授、刘新玲博士课题组报道了一种用于检测葡萄糖对映体的SERS策略,相关成果以“Chiral Detection of Glucose: An Amino Acid-Assisted Surface Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals”为题发表在国际化学权威杂志Analytical Chemistry上(DOI: 10.1021/acs.analchem. 2c02340)。 研究背景: 在手性环境中(如人体内),由于分子间手性相互作用的差异性,手性分子和其对映体可表现出不同的性质和功能。因而,手性分子检测是一个非常重要的研究课题。圆二色(CD)光谱是一种常用的手性光谱检测技术,其检测原理是基于手性分子对于左旋和右旋圆偏振光具有不同的吸收系数,使得对映体产生符号相反的CD信号,从而可以直观地区分手性构型(图1)。然而,对于不含生色团的手性分子而言,其CD信号很弱、或者超出仪器检测波长范围。因此,发展灵敏的光谱分析技术用于手性分子构型鉴定和含量测定具有重要意义。表面增强拉曼光谱(SERS)分析方法灵敏度高,SERS信号可以反映出分子间相互作用机制,但是如何将SERS技术优势应用于手性检测仍有待于深入研究。 研究内容: 人体对氨基酸和葡萄糖具有特殊的对映体选择性,分别以L-氨基酸和D-葡萄糖为主,上述手性选择性起因仍是一个未解的科学难题。受此启发,如图2所示,该课题组制备了L-苯丙氨酸(L-Phe)修饰的“核-卫星”金纳米结构作为SERS基底。该基底与D-葡萄糖(D-Glu)混合后,L-Phe的SERS信号强度会增加(“signal on”);反之,L-葡萄糖(L-Glu)会降低L-Phe的SERS信号强度(“signal off”)。若以上述基底的SERS信号为参考,通过差值计算法,则可以获得和CD光谱类似的SERS信号强度差值曲线,即D-Glu和L-Glu表现出符合相反的SERS差值信号,从而直观地区分D-Glu和L-Glu手性构型。根据上述signal on和signal off效应,该方法可以测定葡萄糖对映体过量值(ee)及浓度,并可拓展到唾液中葡萄糖浓度检测(10-8~10-4 mol/L)。 图一示例: 圆二色光谱法区分对映体示意图(来源:Anal. Chem.) 图二示例:用于葡萄糖对映体检测的SERS分析策略示意图(来源:Anal. Chem.) 本研究通过氨基酸和葡萄糖对映体之间的差异化手性相互作用,导致氨基酸的SERS信号变化具有对映体选择性,实现葡萄糖对映体的区分及其含量测定,从而提供了一种基于SERS的手性分析策略。

孟鲁司特二羧酸非对映体相关的仪器

  • 详细介绍产品简介 ZR-D15型废气二噁英采样管,配套ZR-3720型废气二噁英采样器使用,有效长度1.5米。 ZR-3720型废气二噁英采样器主要用于对污染源排放的固相和气相二噁英进行采样。危险废物焚烧处置设施医疗废物焚烧处理设施和水泥窑共处置危险废物设施建设项目竣工环境保护验收、监督性检测过程中的二噁英类检测生活垃圾焚烧设施二噁英排放检测其它可应用的场合。执行标准HJ/T365-2007 《危险废物(含医疗废物)焚烧处置设施二噁英排放检测技术规范》HJ77.2-2008 《环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱——高分辨质谱法》UNI EN 1948EPA Method 23技术特点模块化设计,整个系统体积小,重量轻,携带运输方便,现场快速组装使用更容易;采用进口高负压大流量采样泵,ABB变频控制器,能在恶劣的采样状态下持续工作,使用寿命长,免维护;5.6寸彩色触摸屏,中文菜单,触控操作方式;提示信息丰富,操作界面友好,容易操作;具有USB接口,支持U盘导出,实现数据的海量存储;采样气路采用惰性材料,减少污染。钛取样管可更换,配多规格钛采样嘴,满足各种工况等速采样;滤筒收集,整个气路自动恒温加热控制;合理的连接方式,有效克服气密性问题;采样中断电记忆,自动保存采样数据,来电后继续采样;高速低噪声热敏打印机,现场打印报表速度快;具有实时时钟,为数据报表提供准确的采样日期、时间,且有后备电池;自动加热制冷温控系统,温控系统速度快,精度高,稳定性好;基于皮托管平行等速采样原理,自动跟踪烟气流速等速采样 跟踪精度高、速度快;实时测量大气压,环境温度,自动实时换算标况流量、标况体积;自动监测采样工作状态,遇到故障自动保护;密码保护仪器校准数据,并可一键恢复到出厂状态;支持多种含湿量获得方法:直接输入,干湿球法,冷凝法;
    留言咨询
  • 详细介绍产品简介 ZR-3720型废气二噁英采样器主要用于对污染源排放的固相和气相二噁英进行采样。危险废物焚烧处置设施医疗废物焚烧处理设施和水泥窑共处置危险废物设施建设项目竣工环境保护验收、监督性检测过程中的二噁英类检测生活垃圾焚烧设施二噁英排放检测其它可应用的场合。执行标准HJ/T365-2007 《危险废物(含医疗废物)焚烧处置设施二噁英排放检测技术规范》HJ77.2-2008 《环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱——高分辨质谱法》UNI EN 1948EPA Method 23技术特点模块化设计,整个系统体积小,重量轻,携带运输方便,现场快速组装使用更容易;采用进口高负压大流量采样泵,ABB变频控制器,能在恶劣的采样状态下持续工作,使用寿命长,免维护;5.6寸彩色触摸屏,中文菜单,触控操作方式;提示信息丰富,操作界面友好,容易操作;具有USB接口,支持U盘导出,实现数据的海量存储;采样气路采用惰性材料,减少污染。钛取样管可更换,配多规格钛采样嘴,满足各种工况等速采样;滤筒收集,整个气路自动恒温加热控制;合理的连接方式,有效克服气密性问题;采样中断电记忆,自动保存采样数据,来电后继续采样;高速低噪声热敏打印机,现场打印报表速度快;具有实时时钟,为数据报表提供准确的采样日期、时间,且有后备电池;自动加热制冷温控系统,温控系统速度快,精度高,稳定性好;基于皮托管平行等速采样原理,自动跟踪烟气流速等速采样 跟踪精度高、速度快;实时测量大气压,环境温度,自动实时换算标况流量、标况体积;自动监测采样工作状态,遇到故障自动保护;密码保护仪器校准数据,并可一键恢复到出厂状态;支持多种含湿量获得方法:直接输入,干湿球法,冷凝法;
    留言咨询
  • 果汁筛选分析服务 SGF Profiling SGF Profiling™ 为一种基于核磁的水果果汁筛选方法,它是Bruker BioSpin GmbH和SGF International e.V.联合研发的结果。对于每一种果汁,几分钟内采集一个数据列,同时评估与质量和可靠性相关的大量参数。 特点包括评估和报告在内的400兆核磁自动按键NMR解决方案。可靠的筛选方法,提供靶向和非靶向的多标记物分析统计分析基于从全世界生产线获取超过1万6千种参考果汁的大量核磁图谱数据库,并定期更新。定向分析:参考A.I.J.N. 和NMR分布,同时绝对量化相关有机物。非靶向分析:核磁图与对应的参考图谱组做比较,自动监测浓度偏差(甚至对于未知化合物)。分类分析,如测定水果产地(见规格表)。测定水果含量(监测加入的水,氨基酸或糖 统计分析 靶向性和非靶向性多标记分析 Verification models are used for the non-targeted analysis of even unknown compounds自旋指纹筛选提供标准的靶向性多标记分析,其中包含以下各项的绝对定量:糖分(葡萄糖、果糖、蔗糖)主要果酸(柠檬酸、苹果酸、异柠檬酸、奎宁酸)易腐性指标(乙醇、富马酸、乳酸、HMF)流程控制参数(半乳糖醛酸、氯)此外,该技术允许采用非靶向性多标记方法,该方法则基于上百种化合物的浓度差异同步评估。相比靶向性标准分析常规,它可以检测出意外成分的存在,从而检测出未知欺诈。 光谱数据库在广泛的光谱数据库基础上进行筛选,该数据库包括来自主要正宗果汁的上千种 NMR 光谱。目前,该数据库含有约 40 种不同的水果,来自全球 50 多个产地。此外,该数据库还允许访问上百种小分子化合物,以便进一步分析未知成分。 按键式常规程序自旋指纹筛选是全自动按键式常规程序,无需操作人员之间的互动。从样品条码注册、配制和处理到数据捕获和统计评估,所有步骤都在 Bruker 实验室信息系统 SampleTrack™ 的控制之下。 报告 定量 自旋指纹筛选提供超过 30 种成分的绝对浓度,这对果汁评估非常关键。数值与参考标准相比较,出现偏差则表示特征质量存在问题,例如添加了糖分。 样品分类 样品分类有助于进一步区分类似的水果类型,例如橙子、血橙和柑橘。更专业的模型甚至可以分辨纯果汁和稀释果汁,并且能确定原产地。 验证 进行样品分类后,单变量和多变量验证可提供更多的信息,例如相比参照组别的意外偏差。回归分析 基于定型数据集的回归分析可评估额外的参数,例如滴定酸度。 水果成分估算 最终报告中还包括水果成分的估算SGF Profiling archives all results in the form of a standardized sample quality report
    留言咨询

孟鲁司特二羧酸非对映体相关的耗材

  • InertCap CHIRAMIX 对映异构体专用柱
    产品描述对光学异构体有优异的分离度涂布两种以上环糊精衍生剂尖锐峰型GL Sciences公司独创InertCap CHIRAMIX 是涂布了两种以上环糊精衍生剂混合物的固定相专门用于分离对映异构体的毛细管柱。与其他只涂布了一种环糊精固定相的色谱柱相比,InertCap CHIRAMIX 可以作为在很短的时间内分离分析较宽范围化合物的第一优先选择的色谱柱。InertCap CHIRAMIX 是与T. Hasegawa Co., Ltd.合作研发的色谱柱。CHIRAMIX 是T. Hasegawa Co., Ltd 品牌名称.应 用订货信息InertCap CHIRAMIX直径(mm)长度(m)膜厚(μm)最高使用温度(℃)货号0.25300.25iso.180-prog.2001010-69142
  • 瑞思泰康 Rt-βDEXsp 复杂的对映体分离 手性柱
    Rt-βDEXsp 手性色谱柱(熔融石英)(2,3-二-O-异丙基-6-O-叔丁基二甲基甲硅烷基-β-环糊精加入14%氰丙基/86%二甲基聚硅氧烷)用途:通常与Rt-βDEXsm连接组成双柱配置用于复杂的对映体分离。订货信息:IDdf温度限30米0.25 mm0.25 μm40 to 230 °C131110.32 mm0.25 μm40 to 230 °C13110
  • Astec CHIRALDEX G-TA气相色谱柱分离母体药物对映体及其代谢物73033AST Supelco
    Astec CHIRALDEX G-TA气相色谱柱分离母体药物对映体及其代谢物73033AST Supelco73033ASTSupelcoAstec® CHIRALDEX® G-TA 毛细管气相色谱柱Astec® CHIRALDEX® G-TA Capillary GC ColumnL × I.D. 30m × 0.25mm, df0.12μm◆产品描述:美国色谱科Supelco Astec CHIRALDEX G-TA 毛细管气相色谱柱是第 1 组 CSP(表面相互作用,复合衍生物)的首选。该阶段已被证明是制药行业最广泛选择的阶段,特别是在临床试验的各个阶段中手性中间体和药物研究的分析。在没有包含机制的情况下发生分离,并且通常比大多数手性固定相更快且更有效。G-TA 也被用于分离母体药物对映体及其代谢物。G-TA 对含氧分析物的选择性最高,如醇、二醇和多元醇,作为游离醇和酰基衍生物;胺类作为酰基衍生物;氨基醇、卤素(Cl Br F)、氨基酸、羟基酸、内酯、呋喃和吡喃。它对卤化物也具有高选择性。Chem/Phys Resistance温度限制:-10 °C 至 180 °C 等温和程序的Other Notes辅助产品:SyringesVials气体净化和气体管理吸入管路、玻璃棉和专用手动工具、手套和专用手动工具柱套圈、螺母和专用手动工具◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Supelco Astec CHIRALDEX G-TA 毛细管气相色谱柱。Astec 为以下机构的注册商标: Sigma-Aldrich Co. LLCCHIRALDEX 为以下机构的注册商标: Sigma-Aldrich Co. LLC◆订货信息:73035ASTAstec CHIRALDEX G-TA 毛细管气相色谱柱L × I.D. 50 m × 0.25 mm, df 0.12 μm (Supelco)73031ASTAstec CHIRALDEX G-TA 毛细管气相色谱柱L × I.D. 10 m × 0.25 mm, df 0.12 μm (Supelco)73032ASTAstec CHIRALDEX G-TA 毛细管气相色谱柱L × I.D. 20 m × 0.25 mm, df 0.12 μm (Supelco)73033ASTAstec CHIRALDEX G-TA 毛细管气相色谱柱L × I.D. 30 m × 0.25 mm, df 0.12 μm (Supelco)73034ASTAstec CHIRALDEX G-TA 毛细管气相色谱柱L × I.D. 40 m × 0.25 mm, df 0.12 μm (Supelco)◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Supelco Astec CHIRALDEX G-TA 毛细管气相色谱柱。 ◆欢迎联系北京康林科技科技有限责任公司咨询相关业务。Astec CHIRALDEX G-TA气相色谱柱分离母体药物对映体及其代谢物73033AST Supelco
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制